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Real interpolation

P In this lecture we study real and complex interpolation.

» These are methods of deducing boundedness of certain linear
or quasi-additive operators on certain “intermediate” function
spaces, from the boundedness of these operators on some
other “endpoint” function spaces.

» We begin with the real method of interpolation, following
Marcinkiewicz.

> We have already seen a version of it in the study of maximal
functions and singular integrals in Lectures 3 and 4.

> We will sometimes encounter Lebesgue spaces LP with p < 1,
and the statement of Marcinkiewicz interpolation theorem is
best formulated using Lorentz spaces LP".

» We introduce these in the next few slides.



Lebesgue spaces for p < 1
» Let (X, u) be a measure space, and f: X — C be measurable.
» For p € (0,1), we still say f € LP if

1/p
Il = ([ 17Pan) < .

» Note that || - [[.» does not define a norm when p € (0,1); the
triangle inequality is not satisfied.

» The following is often a useful substitute:
If +gllZe < IfIIZ> + llelZe

which holds for all f,g € LP, p € (0,1].

» From this we deduce a quasi-triangle inequality: for all
p € (0,1), there exists some finite constant C, such that

If +&ller < Co(llfllee + llgller)

for all f,g € LP.



Lorentz spaces LP"

>
>
>
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Next we introduce Lorentz spaces.

Let (X, i) be a measure space, and f: X — C be measurable.
Let p € (0,00), r € (0,00]. f is said to be in the Lorentz
space LP", if ||f]]| 5., < 0o, where

1/r

Wil i= (p [ [ontlf1> 7] 2 ) it re 0,00

1Fllnr = sup [apdlf| > a}?] if r = oo,
a>0

Note that LP**° is the weak-LP space introduced in Lecture 3.
By convention, L% is L*>°, and L°>" is undefined for r < oo.
Observe also ||f]||;»., = ||f]|ee by Fubini for all p € (0, cc].

It is often convenient to note that

1o = 125 {1£] > 23 Y/P gz

for all measurable f and all p € (0,00), r € (0, oc].



» In general |||-||| .- defines only a quasi-norm on LP:", and not a
norm. In other words, the triangle inequality is not satisfied,
but we have

I+ &l < Cour (Il o + llgllcor)

for some finite constant C, , > 1.

» But LP" does admit a comparable norm if p € (1,00) and
r € [1,00]; indeed when p € (1,00) and r € (1,00], LP" is the
dual space of Lpl’r/, so it admits a dual norm

I#luse = {| [ e el <1}

The same construction works when p € (1,00) and r = 1. See
Homework 8 for details, and Stein and Weiss' Introduction to
Fourier Analysis, Chapter V.3, for an alternative approach of
norming LP:".



To formulate the Marcinkiewicz interpolation theorem, let
(X, ), (Y,v) be measure spaces.

Let T be an operator defined on a subspace Dom(T) of
measurable functions on X, that maps each element in
Dom(T) to a measurable function on Y.

We say T is subadditive if
IT(f+g) < |Tf] +|Tgl

for all f,g € Dom(T).

Suppose Dom(T) is stable under truncations, i.e. if
f € Dom(T) then fxg is in Dom(T) for all measurable
subsets E of X, where x is the characteristic function of E.

Let p,g € (0,00]. If p # oo, then we say that T is of
restricted weak-type (p, q), if

| TF Lo S ||Fller for all £ € Dom(T) N LPL;

if p = 0o, then we say that T is of restricted weak-type (p, q),
if the same holds with LP-! replaced by L.



Theorem (Marcinkiewicz interpolation theorem)

Let po, p1, qo, q1 € (0,00] with po # p1 and qo # q1. Let p,q be
such that

1 1-6 6 1 1-6 6
= + — and - + —
p Po b1 q q0 q1

for some 6 € (0,1). If a subadditive operator T is of restricted
weak-types (po, qo) and (p1, q1), then for any r € (0,00], we have

[Tl ar S AF ]l

for all f in Dom(T) N LP"; in particular, if p < q, then
| Tfl|a S |fl|e for all £ in Dom(T) N LP.

» In applications usually we have both pg < gqg and p; < g1,
from which it follows that p < g.



» Here we mention a related observation:

Proposition

Let po, p1, 0, g1 € (0,00] with po = p1 and qo # q1. Let p,q be
as in the previous theorem with 6 € (0,1). If a subadditive
operator T is of weak-types (po, qo) and (p1,q1) (not just
restricted weak-types), then for all r € (0, 0], we have

| Tl Lar S 1 Fll e

for all f in Dom(T) N LP".

» The proposition follows just from the inclusions LP" C [P:*°
and L90°° N [9.% C [ 97 But the condition qg # @1 is crucial.

» Combining the theorem (the case where py < qo and p; < ¢1)
with the proposition, we obtain the following corollary:



Corollary (weak-type case of Marcinkiewicz interpolation)

Let po, p1, qo, g1 € (0,00] with qo # q1, po < go and p1 < q1. Let
p, q be such that

1 1-0 0 1 1-0 0
= 4+ — and —= + —
p Po p1 q qo a1

for some 6 € (0,1). If a subadditive operator T is of weak-types
(Po, qo) and (p1,q1), then

[Tl e < [1F]]ee

for all f in Dom(T) N LP.



We now turn to the proof of the theorem.

We will only prove the case when pg, p1, qo, g1 are all finite;
the cases where one of the p;’s is infinite, and/or where one of
the g;'s is infinite, is left as an exercise (see Homework 8).

Let po, p1, qo, g1 € (0,00) with pg # p1 and qo # q1. Let
0 € (0,1), and define p, g as in the theorem.

It will be convenient to write

1 1 1 1
a=p(———), B=q(———),
Po Pp1 ao a1

xo=qot), x1=—qi(l—0).
We have a # 0 and 8 # 0 by assumption.
Let r € (0,00), f € LP" with |||f]||;».r = 1. We will show that

I T#]lar < 1.



» Decompose

f=> f

keZ

where fi = fXokc|fj<ori. Write Wi = pu(suppfy), so that

Sk P <1

keZ

» For k € Z, we define
a = Z o—lk—tleotr Wgr/p
LEL
where € > 0 is a small parameter to be determined. Then
Wi < 2*kpa';/r forall ke Z and Zak <1,
keZ

(and these would also hold if we had simply defined a, to be
2kr Wkr/p), but the additional sup over £ in the definition of a,

guarantees that a, does not vary too rapidly, in the sense that

ax < 2lk=tea, forall k,0 € 7.



» In particular, since ay < 1 for all ¢, taking ¢ ~ Jg we have

a=f .
ak r < 2|Jﬁ7ko‘|c6

for some finite constant C = C, g,,.

> For k,j € 7Z, let '
Ckj = 2_|j’8_ka|€.

» Then since a # 0, >, cz ckj Se 1, so by subadditivity of T,

plITF > 2} <3 {ITh] Ze a2,
kEZ

which by the restricted weak-type properties of T is bounded
above by
- —1n—jrkya1/pi\ ¥
< 3 ()
kez

(We used the finiteness of po, p1, qo, g1 here.)



» Hence to show that || Tf|| er < 1, it suffices to show that

' : —1n—jrkin1/pi\ ¥
2.7 [Z 01 (C"JZ W p)

J€Z keZ

q
<L

~

> Now using W < 2_kpaz/r, we just need to show

>[5 (e Dol )]
1=0, 2

jez Lkez

» Since

1 1 1 1
Pqi ( - ) =ax; and qgq; ( - ) = Bxi,
pi P 9 9

the above is just

E E (jB—ka) Nk
H —qi —KQ)Xj 4 Pi
[ iT(I)nl (ck’j 2 a, ) .

Jjez Lkez 7



Now factor our az/r from the minimum in the sum. Since
pqi 1 1 1 1
— —q=pgi| - ——)tqg—g=axi—qq; | — — —
Pi i P qi q

which equals (o — 3)x;, the above is just

q (=B \ | 9
i —Qin(jB—ka)xi ;"
E [ E a, I_r:(l)nl (de- 2 a, >] .

jez Lkez

a—=p

In view of our earlier bound for ar and ¢ j, this is bounded
by

q ) _ 3
>[5 g )] o
JEZ LkeZ 0

for some finite constant c.
We now choose £ > 0 sufficiently small, so that

ce < min{|xol, |x1|}-



If £ <1, then we use > 179 <37, [.-.]"79, and bound

(1) by ,
75" ai min (2UFkedugliaeles) ©
i=0,1

JEZ ke

Since xp, x1 are non-zero, of opposite signs, and 5 #£ 0, in
view of our earlier choice of £, we have

5 min (205*"“)Xi2\jﬁfka\c5>§ <1
=01 <
J

uniformly in k, so

1)528"51'

kEZ



> If g > 1, we use the observation that

3" min (2(jﬁfka)x,-2|jﬂfka|<r€) <1
kez, =Ot

uniformly in j. Jensen's inequality then shows

r

q
aﬂ min (2(15 ka)xioljB— ka|c5)
k=01

keZ

<" ak min (209 kedmglis—keles)

which we then sum over j to yield

Z ak Z In_qml ( Jﬁ*ka)xi2\jf8*ka|cs> S 1.

keZ  jJeZ

(We used again 3 # 0 to evaluate the last sum over j.)



This completes the proof of the Marcinkiewicz interpolation
theorem when r € (0, c0).

When r = oo the proof is easier.

Indeed, let f € LP*° with ||f|[zp.c =1, and let A > 0.

To estimate u{|Tf| > A}, we decompose f = fy + f1, where
fo = fX|f> and i = Fx|r1<-

We have

1 _kp (L _1
1Bllms S 32 2uflf] > 244w 5 3 2k2 3 = (% 75)
2k >~ 2k >~

and similarly

_p( L _1
illna S 7" 75).



» As a result,

p{ITE > Ay < pf{| Th| > A/2} + p{|TA] > A/2}
SA PNl fon + A A

HLpl 1

which is bounded by
S R R CRRIE)
= 79 (WPoyTe p yPymom )
» Choosing v = A?/2 gives
p{[ TFI > A} S A79,

as desired.



Complex interpolation

» Next we turn to the complex method of interpolation,
following Riesz, Thorin and Stein.

> The key is the following three lines lemma, which is a variant
of the maximum principle for holomorphic functions on a strip
(whose proof we defer to Homework 8):

Lemma

Let S be the strip {0 < Rez < 1}, and S be its closure. Suppose f
is a holomorphic function on the strip S that extends continuously
to S. Assume |f(z)| < Ay when Rez =0, and |f(z)| < A1 when
Rez = 1. If there exist o < 1, and constants C, ¢, such that

f(2)] < Ce=™"

for all z € S, then |f(z)| < A;Re?ARez on S.

» The condition |f(z)] < Cece™ " would be satisfied, if say |f]
is bounded on the strip.



» To proceed further, if (X, u) is a measure space, and
Po, p1 € [1,00], then we denote by LP + LP! the space of all
functions f on X such that f = fy + f; for some fy € LP and
fi € LP1. This can be made a Banach space with norm

1Flleoyrer == inf {[[folleo + |Aallion £ =Fo + h,fo € L, € L7}

Note that LP embeds continuously into LP® + LPt if p is
between pg and p;.

> We will also need the Banach space LP° N LPt, where
Po, P1 € [1,00]. Indeed, this is equipped with norm

glltronee: == max {|lgl[ceo, [Ig]lLe }

LPo N LPt embeds continuously into LP if p is between pg
and P1-



Theorem (Riesz-Thorin)

Let (X, u), (Y,v) be measure spaces. Let po, p1, o, q1 € [1, 0],
and T: (LPo 4 [PY)(X) — (L% + L9)(Y') be a linear operator.
Suppose there exist constants Ay, A1 such that

H TfHqu < AOHfHLPo for all f € LPO(X),

| Tf||ta < Avl|fljeen for all £ € LP(X).
Then for any 0 € (0,1), we have

I TFllee < A5~ ALl FllLe
for f € LP(X), where

1 1-6 6 1 1-9 4
+ +

p Po pi° g o g1




» Before we prove the theorem, recall that a simple function on
X is a function of the form

J
LR
j=1

where J € N, a1,...,a; € C and Ey,..., E; are measurable
subsets of X of finite measures.

» Note that if p € (0,00), the set of simple functions on X is
dense in LP (the same is true for p = oo if in addition X is
o-finite, but we will not need this).

» The key to the proof of the theorem is the following
proposition (where as before S = {0 < Rez < 1}):



Proposition

Let (X, 1) be a measure space. Let pg, p1 € (0,00] and 6 € (0,1).
Let p be the exponent given by 1/p = (1 —6)/po+ 0/p1. Let f be
any simple function on X. Then for any z € S, there exists a
simple function f, on X, such that the (vector-valued) map z +— f,
is holomorphic on S, continuous on S, bounded on S, and satisfies

|zl < ||fllLe when Rez = j, for j = 0,1,
with fy = f.

» Indeed, it suffices to take

() [FlPUR )

FO) o)
£l

1]l -




To prove the theorem, let po, p1, g0, g1 € [1, 0], 6 € (0,1),
and define p, g as in the statement of the theorem.

Suppose p # co. We claim that it suffices to show that
1Tl < AG AL Fllo (2)

for all simple functions f on X.

Indeed, then given a general f € LP(X), we take a sequence
{fa} of simple functions such that f, — f in LP(X) as n — oo.
Under the hypothesis of the theorem, the map

T: (LPo 4 LP1)(X) — (L% + L9)(Y) is continuous.

By continuity of the inclusion of LP(X) into (LP° 4 LP1)(X), it
follows that Tf, — Tf in (L% + L9)(Y).

But by (2), {Tf,} is Cauchy in L9(Y), so it converges in L9.
Since convergence in L9 implies convergence in L9 + L9 we
see that Tf € L9(Y), and that Tf, — Tf in LI(Y), so (2)
holds for this general f € LP(X) as well.



v

Let now f be a simple function on X. We establish (2) for f.
We consider two cases, namely g # 1 and g = 1.

Assume first g # 1. By density of simple functions in L9 (Y),
it suffices to show that

/ Tf - gdv
Y

for all simple functions g on Y.

< ATAIf e llg o (3)

So fix two simple functions f and g on X and Y respectively.

We apply the earlier proposition to f, pg, p1, 60 and g, q;, g1, 6,
and obtain a holomorphic family f, and g,, where the key
properties are that

1l < [Ifllee and lgz|l o < llgllLo

when Rez =, for j = 0,1, and that fy =f, gy = g.



Let now
F(z) = / Tf, - g.dv.
%

We see that F(z) is holomorphic on the strip S, continuous
on S, and bounded on S. Also, the assumed bound of T on
LPo and LP' shows that

|F(2)| < Ajllflleellgll ¢+ when Rez = j, for j =0,1.

So the three lines lemma imply |F(0)| < A~ "A%|f|l1so|lg]l Lo
which is the desired conclusion (3) since fy = f and gy = g.

On the other hand, if g = 1, we will show directly that

/ Tf - gdv
Y

for all g € L (Y).
So fix a simple function f on X, and a general g € L9 (Y).

—0 70
< A ALl flle gl o (4)

Note that since g = 1, we have qo = g1 = g, so we already
have g € (L% N L9)(Y).



> We apply the earlier proposition to f, pg, p1, 8 only, and obtain
a holomorphic family f,; then consider

F(z) :/ Tf, - gdv
Y

> Since g € (L% N L9)(Y), our assumptions imply that F(z) is
Eolomorphic on the strip S, continuous on S, and bounded on
S. Also, the assumed bound of T on LP° and LP* shows that

|F(z)] < Ajllflleellgll,# when Rez =j, for j =0,1.

> So the three lines lemma imply [F(0)] < A3 AY||f|irllg]l o
which is the desired conclusion (4) since fy = f.

» This completes the proof of the theorem when p # oco.
» When p = oo, we simply show directly that

I TFlle < AG~°AdlIFllLe (5)

for all f € LP(X).



>

>

Indeed, let f be a general function in LP(X). Then since
p = oo, we have py = p1 = p, so we have f € (LPo N LPY)(X).

If g # 1, then we show that

/ Tf - gdv
Y

for all simple functions g on Y, by considering [, Tf - g,dv
for a suitable holomorphic extension of the simple function g;
if ¢ = 1, we show that the same holds for all g € L9 (Y)
directly.

< A ALlIFlle gl o

This completes the proof of the Riesz-Thorin theorem. (The
cases p = oo or ¢ = 1 would not require a separate treatment
if we assume both X and Y are o-finite.)

Coming up next is a remarkably useful observation of Stein,
namely that the Riesz-Thorin theorem also works for an
analytic family of operators.

As before, denote by S the strip {0 < Rez < 1}, and S the
closure of S.



Theorem (Stein)

Let (X, u), (Y,v) be measure spaces. Let po, p1,qo, g1 € [1,0].
Suppose {T,}, 5 is a family of bounded linear operators from
(LPo N LPL)(X) to (L% + L9)(Y'), analytic in the sense that for
every f € (LP N LP1)(X) and g € (L%" N L9')(Y), the map

zZ fY T,f - gdv is holomorphic on S, continuous up to S and
bounded on S. Assume for all f € (LP* N LP1)(X), we have

| Tf|l;a < Ajl|fll»i  whenever Rez = j, for j =0,1.
Then for any 0 € (0,1), we have
I Tofllea < A5 PAdlIflle for all f € (LP° N LPY)(X),

where
1 1-6 0 1 1-6 0
+ +

P P P 4 G  q

In particular, Ty extends to a bounded linear map from LP(X) to
L9(Y), with norm < A3~ AJ.



>

| 2

The ability to vary the operator involved makes this theorem
way more powerful than the original theorem of Riesz-Thorin.

One particularly striking aspect of this theorem is that its
proof can be obtained from that of the Riesz-Thorin theorem
simply “by adding a single letter of the alphabet”

(i.e. by replacing T everywhere by T,).

Indeed, suppose p # oo and g # 1. By considering

F(z) = [y T.f, - g.dv instead, we see that

I Tof o < Ag AdIflLr

for all simple functions f on X. The continuity of

To: (LPP N LPY)(X) — (L% + L9)(Y), together with the
density of simple functions in (LP N LP1)(X), shows that the
same inequality is true for f € (LP0 N LPL)(X). Similarly one
can adapt the previous argument if p = co or g = 1.



This proof shows that one can relax the assumption that

[y T-f - gdv is bounded on S for every f € (LP° N LP)(X)
and g € (L% N L9')(Y), to the assumption that for every
such f and g, there exist @ < 1 and constants C, ¢ such that

/ T,f - gdv
Y

We remark that the above proofs of complex interpolation rely
crucially on the duality between L9 and L9 when g € [1, o0];
this gives rise to the assumption po, p1, o, g1 € [1, 0].

To|z|

< Ce®® forall z € S.

But one can modify the above proof, so that the conditions
on the exponents can be relaxed to po, p1, 9o, g1 € (0, <].

The key is to first take appropriate ‘square root’ of the
functions involved, and to use the maximum principle for
subharmonic functions instead of that for holomorphic
functions. See Homework 8 for details.

Also see Homework 8 for a complex interpolation theorem for
bilinear operators.



Complex interpolation involving BMO

| 2

>

We specialize now to the case when X = Y = R"” with the
usual Lebesgue measure.

One can also use complex interpolation for operators that
map into BMO instead of L*°.

Recall that a locally integrable function h on R" is said to be
in BMO, if the sharp maximal function M:h is in L°, where

)= sup | |h(y) = hs|dy.
xeB

the supremum taken over all balls B containing x.

Also recall that LIOC is the space of all locally integrable

functions on R”, and it is a topological vector space where

fo — f in LL_, if and only if ||f, — fll1(ky — O for every

compact subset K of R".

For convenience, let us write Lg° for the space of bounded,

compactly supported measurable functions g on R", with

Jgn gdx = 0.



Theorem

Let po, p1 € [1,00]. Suppose {T,}, 5 is a family of continuous
linear operators from (LPo M LPY)(R™) to L} (R™), analytic in the
sense that for every simple function f and every g € Lg°, the map
Z fRn T.f - gdx is holomorphic on S, continuous up to S and
bounded on' S. Let qq € [1,00). Assume for all f € LP° N LPt, we

have T,f € L% for all z € S, with

| T2f]| o0 < Ao||f||Lre whenever Rez =0,
| T.fllamo < Ai||f||tr whenever Rez = 1.

Then for any 0 € (0,1), we have

[ Toflla < ASTOAY| e for all f e LPo N LP,

~

where 1 1-60 ¢ 1 1-—46

9

p Po p1 q q0

In particular, Ty extends to a bounded linear map from LP(R") to
L9(R™), with norm < A(l)*HAf.



» The key is the following proposition:

Proposition

Let qo € [1,00). Suppose {h.}, 5 is an analytic family of L, _
functions on R", in the sense that for every g € L3°(R"), the map
Z fR,, h, - gdx is holomorphic on S, continuous on S and
bounded on S. Assume that h, € L% for all z € S, and that there

exists constants Ap, A1 such that

||hz|| o0 < Ao whenever Rez =0,
llhz|lsmo < A1 whenever Rez = 1.

Then for any 6 € (0,1), we have hy € L9 with

1 1-96
lholle < ASPAY where = = :
~ 0
q qo

» Assuming the proposition for the moment, we finish the proof
of the theorem as follows.



Let po, p1, 90 € [1,00], 8 € (0,1), and define p, g as in the
statement of the theorem.
Let first £ be a simple function on R".
We apply our earlier proposition to f, pg, p1, 0, so that we
have a holomorphic family f,, with ||%||» < ||f]|L» when
Rez=j,j=0,1,and fh = f.
Then h, := T,f, satisfies the hypothesis of the proposition on
the previous slide, so for any 6 € (0,1), we have Tyf € L9,
with

I Tofllea S AG ALl Flleo-

~

Now since simple functions are dense in LPO N [Pt if f is a
general LPo N [Pt function on R”, we take a sequence of
simple functions {f,} so that f, — f in LPo N LPL.

Then by continuity of Ty: LPO N [Pt — Llloc, we have

Tofs — Tof in LL_, whereas our earlier estimate for simple
functions show that Tyf, is Cauchy in L9.

Since convergence in L9 implies convergence in Llloc, this

shows Tyf € L9, with || Tyf||ia S Ay O A||f|| 1o for this
general f € LPo N LPt as well.



» This finishes the proof of the theorem.

> We now turn to the proof of the proposition. We use the
following lemma:

Lemma
Suppose h € Lo(R"). If Mth € LY(R") for some q € [qg,c0), then
h € L9(R") with

1hllca < IMPh]| o

» The proof of the lemma is based on a relative distributional
inequality from Homework 3. See Homework 8 for details.

» In view of the lemma, to prove the proposition, we only need
to show that ||Mthg|| e < ASTOA] for all 6 € (0,1).

> Recall for h € L}, M*h(x) = sup,cp {5 |h(y) — hg|dy, where
the supremum is taken over all balls B containing x.

» But by dominated convergence, it suffices to take balls with
center in Q" and radius in Q.



Now consider a collection of balls { By }xcrn such that By
contains x, the volume of B, is bounded above and below
independent of x, and the center and the radius of B,
depends measurably on x (such measurability could be
guaranteed, if say the center and the radius takes value in a
countable set like Q" and Q).

Also consider a measurable function 7(x, y) on R” x R"” with
In(x,y)| <1 forall x,y € R".

If for a fixed x € R", we compute

]é [h(y) — hg In(x, y)dy

and take supremum over all collections of balls and all
functions 7 as above, then we obtain M#h(x).

We now return to the setting of the proposition.

We want to estimate ||M*hg||a.



By duality, we fix a compactly supported simple function g
with ||g||,# = 1, and consider a holomorphic extension g, of
g such that g, is a simple function for each z € S, the map
z + g, is holomorphic on S, continuous on S, bounded on S,
with

ngHqu’ <1 when Rez =0,

ngHLl <1 when Rez=1.

We fix any collection of balls {By} and bounded function 7 as
on the previous slide.
Now let

F@) = [ 1) - (e Jnlx. )b z €S

where {h,}, 5 is as in the proposition.
Note that if g = Zj bjxF; where the Fj's are disjoint bounded
measurable subsets of R”, then

Z\b| ‘b|XF



(1=
> So F(Z):Zj|bj|q( )‘blfRn y)dy, where
Gj(y) is given by

X8, (¥) xs (y) [ xs.(w) .
/RHXFJ(X)[ |BBX‘ n(x,y) - |BBX‘ . TBX! n(x, w)dw | dx;

note Gj(y) is in L3 for every j.

» Our assumptions guarantee that F is holomorphic on S,
continuous on S, bounded on S, and

[F(2)] < llhzllmol|gzllr < A1 when Rez =1,

|F(2)| < 2[|Mh;||o|lgzll ;' S Ao when Rez = 0.



» So the three lines lemma implies that
IF(O)] < Ay AL
which in turn implies

[MPhg||a < AFTOAS.

~

This completes the proof of the proposition.

> \We remark that the hypothesis of the proposition can be
weakened as before: it will suffice if for every g € Lg°, there
exist a < 1 and C, ¢ such that | [p, h, - gdx| < Cee™! for
all z € S. This yields a corresponding improvement of the
complex interpolation theorem involving BMO.



Comparing the real and complex methods of interpolation

» To conclude, let us draw a comparison between the real and
complex methods of interpolation.

» The real method of interpolation allows one to convert
weak-type or restricted weak-type hypothesis into strong type
conclusions (whereas the complex method doesn't).

» Indeed, the real method is less sensitive to the hypothesis
given at the endpoints; it gives the same conclusion regardless
of whether a strong-type and a (restricted) weak-type
hypothesis is given (contrary to the complex method).

» The real method also allows one to work with subadditive
operators (whereas the complex method requires the operator
to be linear, or at least linearizable).

» On the other hand, the complex method allows one to vary an
operator within an analytic family, a feature that is
tremendously useful in practice.



