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Introduction

I While multiplier operators are very useful in studying constant
coefficient partial differential equations, one often encounters
variable coefficient partial differential equations.

I Thus we consider a variable coefficient generalization of
multiplier operators, namely pseudodifferential operators.

I We study compositions and mapping properties of
pseudodifferential operators.

I These in turn allow one to construct paramatrices to variable
coefficient elliptic PDEs.

I We close this lecture with a beautiful almost orthogonality
principle, due to Cotlar and Stein, which will play a crucial
role in the proof of the T (1) theorem in the next lecture.
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Symbols of pseudodifferential operators
I Given a smooth function a(x , ξ) on Rn × Rn (which we think

of as the cotangent bundle of Rn), a pseudodifferential
operator with symbol a is by definition

Taf (x) =

ˆ
Rn

a(x , ξ)f̂ (ξ)e2πix ·ξdξ.

I We will consider only symbols a that satisfy the following
differential inequalities:

|∂αx ∂
β
ξ a(x , ξ)| . (1 + |ξ|)m−|β|γ+|α|δ

for all multiindices α and β, where m ∈ R and γ, δ ∈ [0, 1] are
three fixed parameters.

I Following Hörmander, a symbol a is said to be of class Sm
γ,δ, if

the above differential inequalities are satisfied for all α and β.
I Usually we consider only the case γ = 1, δ = 0, in which case

we write Sm in place of Sm
1,0.

I m is called the order of the symbol (or the order of the
associated operator).



I Example: If p(ξ) is a polynomial of degree m, and

a(x , ξ) = p(2πiξ),

then a ∈ Sm, and

Taf (x) = p(∂x)f (x)

is a constant coefficient differential operator of order m.

I More generally, if m ∈ N and

a(x , ξ) =
∑
|β|≤m

Aβ(x)(2πiξ)β,

where the Aβ’s are all C∞c on Rn, then we have a ∈ Sm with

Taf (x) =
∑
|β|≤m

Aβ(x)∂βx f (x)

is a variable coefficient partial differential operator of order m.



I It is easy to see that if a ∈ Sm
γ,δ for some m ∈ R, γ, δ ∈ [0, 1],

then Ta is a linear map from S(Rn) into itself, and the map

Ta : S(Rn)→ S(Rn)

is continuous.

I One typical use of pseudodifferential operators is to construct
paramatrices (i.e. approximate solutions) to partial differential
equations.

I For those we usually need pseudodifferential operators of
non-positive orders, which are typically integral operators.

I As before, let (Rn × Rn)∗ be Rn × Rn with the diagonal
{(x , y) ∈ Rn × Rn : x = y} removed.



Kernel estimates

Theorem
Let −n < m ≤ 0, and a ∈ Sm. Then there exists a function
K0 ∈ C∞((Rn × Rn)∗) such that

Taf (x) =

ˆ
Rn

K0(x , y)f (y)dy

for all f ∈ C∞c (Rn) and all x not in the support of f . Furthermore,

|∂λx ,yK0(x , y)| . 1

|x − y |n+m+|λ|

for all multiindices λ and all x 6= y .

I Indeed pick a smooth function η with compact support on Rn

with η(0) = 1. For x 6= y and ε > 0, let

Kε(x , y) :=

ˆ
Rn

a(x , ξ)η(εξ)e2πi(x−y)·ξdξ.



I We claim that Kε(x , y) ∈ C∞((Rn × Rn)∗) for all ε > 0, with

|∂λx ,yKε(x , y)| . 1

|x − y |n+m+|λ|

for all multiindices λ and all x 6= y , where the constants are
uniform in ε > 0.

I One sees this by splitting the integral depending on whether
|ξ| ≤ |x − y |−1 or not; when |ξ| > |x − y |−1, we integrate by
parts using

e2πi(x−y)·ξ =
1

−4π2|x − y |2
∆ξe

2πi(x−y)·ξ

sufficiently many times to gain enough decay in |ξ|. This
shows

|Kε(x , y)| . 1

|x − y |n+m

when x 6= y , and similarly one can estimate ∂λx ,yKε(x , y).



I Furthermore, by a similar argument, Kε(x , y) converges locally
uniformly on (Rn × Rn)∗ as ε→ 0+, and so do ∂λx ,yKε(x , y)
for all multiindices λ.

I For x 6= y , let

K0(x , y) := lim
ε→0+

Kε(x , y) ∈ C∞((Rn × Rn)∗).

I Now note that if f ∈ S(Rn) and x ∈ Rn, then

Taf (x) = lim
ε→0+

ˆ
Rn

a(x , ξ)η(εξ)f̂ (ξ)e2πix ·ξdξ

= lim
ε→0+

ˆ
Rn

ˆ
Rn

a(x , ξ)η(εξ)f (y)e2πi(x−y)·ξdydξ

= lim
ε→0+

ˆ
Rn

f (y)Kε(x , y)dy .

I If in addition f ∈ C∞c (Rn), and x is not in the support of f ,
then the last line is equal to

Taf (x) =

ˆ
Rn

f (y)K0(x , y)dy

by the dominated convergence theorem.



I This establishes the desired kernel representation formula for
Taf (x).

I The estimates for ∂λx ,yK0(x , y) on (Rn × Rn)∗ follow from the

corresponding uniform estimates for ∂λx ,yKε(x , y).

I We remark that if |x − y | & 1, the above proof also shows that

|∂λx ,yK0(x , y)| . |x − y |−N

for any multiindices λ and any N ∈ N (i.e. we get rapid decay
as |x − y | → +∞).

I This is closely tied to the pseudolocality of psuedodifferential
operators: indeed a linear operator T : S(Rn)→ S ′(Rn) is
local, if the support of Tf is contained in the support of f for
every f ∈ S(Rn). This is the case if the Schwartz kernel of T
is supported on the diagonal {(x , y) ∈ Rn × Rn : x = y}.

I While K0(x , y) is not supported on the diagonal
{(x , y) ∈ Rn × Rn : x = y}, the above decay of K0(x , y) away
from the diagonal is a close substitute for it.



Mapping properties on L2

I We now focus on pseudodifferential operators of order 0.

Theorem
Let a ∈ S0. Then Ta extends to a bounded operator on L2(Rn).

I In view of the kernel representation theorem above, and the
variable coefficient singular integral theorem from Lecture 4,
this establishes the following corollary.

Corollary

Let a ∈ S0. Then Ta extends to a bounded operator on Lp(Rn) for
all 1 < p <∞.



I One direct proof of the theorem proceeds via pseudolocality.

I For j ∈ Zn, let Bj be the open ball of radius 2 centered at j .
Then {Bj}j∈Zn covers Rn.

I Let 1 =
∑

j φ
2
j be a smooth partition of unity subordinate to

the above cover, so that φj ∈ C∞c (Bj) for every j .

I Then

‖Taf ‖2L2 =
∑
j

‖φjTaf ‖2L2

=
∑
j

‖φjTa(χ2Bj
f )‖2L2 +

∑
j

‖φjTa(χ(2Bj )c f )‖2L2 .



I From our earlier kernel estimates when |x − y | & 1, we get

|φj(x)Ta(χ(2Bj )c f )(x)| . χBj
(x)

ˆ
y /∈2Bj

|f (y)||x − y |−Ndy ,

so choosing N > n and using Cauchy-Schwarz, we get

|φj(x)Ta(χ(2Bj )c f )(x)|2 . χBj
(x)

ˆ
y /∈2Bj

|f (y)|2|x − y |−Ndy .

Integrating both sides gives

‖φjTa(χ(2Bj )c f )‖2L2 .
ˆ
|y−j |&1

|f (y)|2|j − y |−Ndy ,

so summing over j gives∑
j

‖φjTa(χ(2Bj )c f )‖2L2 .
∑
j

ˆ
|y−j |&1

|f (y)|2|j−y |−Ndy . ‖f ‖2L2 .



I It remains to show∑
j

‖φjTa(χ2Bj
f )‖2L2 . ‖f ‖

2
L2 .

This follows if we can show

‖φjTa‖L2→L2 . 1

since
∑

j ‖χ2Bj
f ‖2L2 . ‖f ‖

2
L2 .

I But φjTa is a pseudodifferential operator with symbol
φj(x)a(x , ξ). The latter is just another symbol in Sm, except
now it has compact x-support inside some ball of radius 2.

I Hence it remains to prove our theorem for a ∈ S0, under the
additional assumption that a(x , ξ) has compact x-support
inside some unit cube.

I This we obtain by expanding a(x , ξ) as Fourier series in x .



I Without loss of generality, suppose a(x , ξ) ∈ S0 and has
compact x-support on the unit cube B centered at 0. Then

a(x , ξ) =
∑
η∈Zn

â(η, ξ)e2πiη·x

where â is the Fourier transform of a in the first variable. Thus

Taf (x) =
∑
η∈Zn

e2πiη·x
ˆ
Rn

â(η, ξ)f̂ (ξ)e2πix ·ξdξ

=
∑
η∈Zn

e2πiη·x

(1 + 4π2|η|2)n

ˆ
Rn

∆̂n
xa(η, ξ)f̂ (ξ)e2πix ·ξdξ.

I But ∆̂n
xa(η, ξ) is a bounded multiplier on L2 uniformly in η.

I Thus triangle inequality gives

‖Taf ‖L2 .
∑
η∈Zn

(1 + |η|)−2n‖f ‖L2 . ‖f ‖L2 ,

which finishes the proof of the Theorem.



Compound symbols

I We will turn soon to the adjoints and compositions of
pseudodifferential operators whose symbols are in Sm for
some m ∈ R.

I A convenient tool is the concept of compound symbols.

I Let m ∈ R, γ ∈ [0, 1], δ ∈ [0, 1). A compound symbol of class
CSm

γ,δ is a smooth function c(x , y , ξ) on Rn × Rn × Rn where

|∂αx ,y∂
β
ξ c(x , y , ξ)| . (1 + |ξ|)m−|β|γ+|α|δ

for all multiindices α and β.

I To every c ∈ CSm
γ,δ, we associate an operator T[c] on S(Rn) by

T[c]f (x) = lim
ε→0+

T[c],εf (x), where

T[c],εf (x) :=

ˆ
Rn

ˆ
Rn

c(x , y , ξ)η(εξ)f (y)e2πi(x−y)·ξdξdy

and η is a fixed function in C∞c (Rn) with η(0) = 1.



I Since δ < 1, one can show that for f ∈ S(Rn), T[c],εf defines
a Schwartz function on Rn for every ε > 0, and that T[c],εf
converges in the topology of S(Rn) as ε→ 0+. Indeed this
follows from multiple integrating by parts via

e2πi(x−y)·ξ =
(I −∆y )e2πi(x−y)·ξ

1 + 4π2|ξ|2
.

I Thus T[c] defines a linear mapping

T[c] : S(Rn)→ S(Rn);

it is easy to check that this map is also continuous.

I We are mainly interested in CSm
γ,δ when γ = 1 and δ = 0.

I We write CSm for CSm
1,0 if m ∈ R.

I The main theorem about compound symbols is the following:



Theorem
If c ∈ CSm for some m ∈ R, then there exists a ∈ Sm such that

T[c]f = Taf

for all f ∈ S(Rn). Also, we have the asymptotic expansion

a(x , ξ) ∼
∑
γ

(2πi)−|γ|

γ!
∂γy ∂

γ
ξ c(x , y , ξ)|y=x ,

in the sense that the sum of those terms with |γ| < N on the right
hand side differ from a(x , ξ) by a symbol in Sm−N for all N ∈ N.

I A proof is outlined in Homework 6.

I We note that different compound symbols c may give rise to
the same symbol a in the above theorem.

I In particular, the map c 7→ T[c] is not injective.

I We will use this non-injectivity to our advantage in what
follows.



Closure under adjoints and compositions

I We will prove two theorems using compound symbols.

Theorem
Let m ∈ R. If a ∈ Sm, then there exists a symbol a∗ ∈ Sm, such
that the formal adjoint of Ta is Ta∗ , in the sense that

ˆ
Rn

Taf (x)g(x)dx =

ˆ
Rn

f (x)Ta∗g(x)dx for all f , g ∈ S(Rn).

Also, we have the asymptotic expansion

a∗(x , ξ) ∼
∑
γ

(2πi)−|γ|

γ!
∂γy ∂

γ
ξ a(y , ξ)

∣∣∣
y=x

.

In particular,

a∗(x , ξ) = a(x , ξ) (mod Sm−1).



Theorem
Let m1,m2 ∈ R. If a1 ∈ Sm1 and a2 ∈ Sm2 , then there exists a
symbol a ∈ Sm1+m2 , such that

Ta1Ta2f = Taf for all f ∈ S(Rn).

Also, we have the asymptotic expansion

a(x , ξ) ∼
∑
γ

(2πi)−|γ|

γ!
∂γξ a1(x , ξ)∂γx a2(x , ξ).

In particular,

a(x , ξ) = a1(x , ξ)a2(x , ξ) (mod Sm1+m2−1).



I Indeed, let m ∈ R, a ∈ Sm and f , g ∈ S(Rn). Let η ∈ C∞c on
Rn with η(0) = 1. Then by dominated convergence,
ˆ
Rn

Taf (x)g(x)dx = lim
ε→0+

ˆ
Rn

ˆ
Rn

a(x , ξ)η(εξ)f̂ (ξ)g(x)e2πix ·ξdξdx .

I Writing c(x , y , ξ) := a(y , ξ), the above limit is equal to

lim
ε→0+

ˆ
Rn

ˆ
Rn

ˆ
Rn

a(x , ξ)η(εξ)f (y)g(x)e2πi(x−y)·ξdydξdx

= lim
ε→0+

ˆ
Rn

f (y)T[c],εg(y)dy .

I Since T[c],εg converges to T[c]g in S(Rn) as ε→ 0+, the
above limit is just

ˆ
Rn

f (y)T[c]g(y)dy .

I It remains to write T[c] as Ta∗ for some a∗ ∈ Sm, using our
previous theorem about compound symbols.



I Next, let m1,m2 ∈ R, a1 ∈ Sm1 , a2 ∈ Sm2 .

I By the previous theorem, there exists a∗2 ∈ Sm2 , such that the
formal adjoint of Ta∗2

is Ta2 , which in view of the computation
on the previous page implies

Ta2f (x) = lim
ε→0+

ˆ
Rn

ˆ
Rn

a∗2(y , ξ)η(εξ)f (y)e2πi(x−y)·ξdydξ.

for all f ∈ S(Rn) and all x ∈ Rn (limit taken in S(Rn)).

I Hence Ta1Ta2f (x) is given by

lim
ε→0+

ˆ
Rn

ˆ
Rn

ˆ
Rn

a1(x , ξ)a∗2(y , ξ)η(εξ)f (y)e2πi(x−y)·ξdydξ.

I The latter is limε→0+ T[c],εf (x) if

c(x , y , ξ) := a1(x , ξ)a2(y , ξ).

Since such c ∈ CSm1+m2 , by the previous theorem about
compound symbols, there exists a ∈ Sm1+m2 , such that the
above limit is equal to Taf (x).



Parametrix construction

I Let m ∈ N. Let

P(D) =
∑
|α|≤m

pα(x)∂αx

be a differential operator of order m with C∞ coefficients.

I P(D) is a pseudodifferential operator with symbol

p(x , ξ) :=
∑
|α|≤m

pα(x)(2πiξ)α.

I It is said to be elliptic, if there exists a constant C > 0, such
that

|p(x , ξ)| ≥ C |ξ|m

for all x ∈ Rn and all ξ with |ξ| ≥ 1.

I We use the following theorem to construct parametrices of
such elliptic partial differential operators.



Theorem
Let m ∈ R. Given a sequence of symbols a0, a1, . . . , with

ak ∈ Sm−k for every k ≥ 0,

then there exists a symbol a ∈ Sm, such that for every N ∈ N,
there exists eN ∈ Sm−N with

a(x , ξ) =
N−1∑
k=0

ak(x , ξ) + eN(x , ξ).

I See Homework 6 for its proof.



I Let P(D) be an elliptic partial differential operator of order m
with C∞ coefficients. Let p(x , ξ) be its symbol.

I Let ϕ(ξ) be a smooth function that is identically 0 on B(0, 1),
and identically 1 outside B(0, 2).

I Let Ta0 be the pseudodifferential operator of order −m with
symbol

a0(x , ξ) :=
ϕ(ξ)

p(x , ξ)
.

I Then the composition theorem shows that

P(D)Ta0 = I − E−1

for some pseudodifferential operator of order −1.
I We compose both sides on the right by E k

−1 (where k ∈ N),
and get

P(D)Ta0E
k
−1 = E k

−1 − E k+1
−1 .

I Summing over k and telescoping, we get

P(D)[Ta0 + Ta0E−1 + · · ·+ Ta0E
N
−1] = I − EN+1

−1

for any N ∈ N.



I Using the composition theorem again, for any k ∈ N, there
exists a symbol ak ∈ S−m−k , such that

Ta0E
k
−1 = Tak .

I From the previous theorem, there exists a symbol a ∈ S−m,
such that for every N ∈ N, there exists eN ∈ S−m−N such that

Ta =
N−1∑
k=0

Tak + TeN .

I Let Te be the pseudodifferential operator defined by

P(D)Ta = I + Te .

I The calculation on the previous slide shows that e ∈ S−m−N

for any N ∈ N.

I In this sense Ta is an approximate solution to P(D), aka a
parametrix for P(D).



Cotlar-Stein lemma (almost orthogonality)

I Earlier we proved L2 boundedness of psuedodifferential
operators with symbols in S0 by using the Fourier transform.

I We now describe another important tool about establishing L2

boundedness of linear operators, namely Cotlar-Stein lemma.

I This can be used to prove a theorem of Calderón and
Vaillaincourt, namely Ta is bounded on L2 whenever a ∈ S0

γ,γ

for all γ ∈ [0, 1) (see Homework 6); in particular, this recovers
the L2 boundedenss of psuedodifferential operators with
symbols in S0.

I The Cotlar-Stein lemma also plays a key role in the proof of
many celebrated theorems.

I We will prove a proposition this time, which will play a crucial
role in the proof of the T (1) theorem in the next lecture.



Theorem (Cotlar-Stein)

Suppose {Tj} is a sequence of bounded linear operators between
two Hilbert spaces. If there exist constants A and B such that

sup
j

∑
i

‖TjT
∗
i ‖1/2 ≤ A and sup

i

∑
j

‖T ∗i Tj‖1/2 ≤ B

for all i , j , then
∑

j Tj converges strongly to a bounded linear

operator T between the two Hilbert spaces, with ‖T‖ ≤
√
AB.

I This is called an almost orthogonality lemma, because one
situation where the hypothesis are fulfilled are when all
‖Tj‖ ≤ B, the images of the different Tj ’s are orthogonal, and
the images of the different T ∗i ’s are orthogonal.
(Indeed then T ∗i Tj = 0 and TjT

∗
i = 0 whenever j 6= i .)

I The proof of Cotlar-Stein involves a classic application of the
tensor power trick.



I To prove Cotlar-Stein, suppose first {Tj} is a finite sequence
(say J terms). Then for any positive integer N,

‖T‖2N =
∥∥∥(TT ∗)N

∥∥∥ =
∑

j1,...,j2N

∥∥Tj1T
∗
j2Tj3T

∗
j4 . . .Tj2N−1

T ∗j2N
∥∥

I But the summand is bounded by both∥∥Tj1T
∗
j2

∥∥∥∥Tj3T
∗
j4

∥∥ . . . ∥∥Tj2N−1
T ∗j2N

∥∥
and

‖Tj1‖
∥∥T ∗j2Tj3

∥∥ . . . ∥∥∥T ∗j2N−2
Tj2N−1

∥∥∥∥∥T ∗j2N∥∥ .
I So taking geometric average, the sum is bounded by∑

j1,...,j2N

‖Tj1‖
1/2
∥∥Tj1T

∗
j2

∥∥1/2 ∥∥T ∗j2Tj3

∥∥1/2. . . ∥∥Tj2N−1
T ∗j2N

∥∥1/2 ∥∥T ∗j2N∥∥1/2
≤ J max

j1
‖Tj1‖1/2ANBN−1 max

j2N
‖Tj2N‖

1/2

I Taking 2N-th root and letting N → +∞ yields ‖T‖ ≤
√
AB.



I The general case when we have infinitely many operators Tj

follows once we have the following lemma:

Lemma
Let {fj} be a sequence in a Hilbert space, and A ∈ R. Suppose for
any sequence {εj} that has only finitely many non-zero terms, and
that satisfies |εj | ≤ 1 for all j , we have∥∥∥∥∥∥

∑
j

εj fj

∥∥∥∥∥∥ ≤ A.

Then
∑

j fj converges in the Hilbert space.

I See Homework 6 for the proof of this lemma.

I We close this lecture by the following application of
Cotlar-Stein.



Proposition

Suppose δ > 0. Let {kj(x , y)}j∈Z be a sequence of C∞ kernels on
Rn × Rn that satisfies

|kj(x , y)| . 2jn

(1 + 2j |x − y |)n+δ
(1)

|∂αx ∂βy kj(x , y)| . 2j(n+|α|+|β|)

(1 + 2j |x − y |)n+δ
for all α, β (2)

ˆ
Rn

kj(x , y)dy = 0 for all x ∈ Rn (3)

ˆ
Rn

kj(x , y)dx = 0 for all y ∈ Rn. (4)

For each j ∈ Z, let Tj f (x) =
´
Rn f (y)kj(x , y)dy . Then

‖TjT
∗
i ‖L2→L2 + ‖T ∗i Tj‖L2→L2 . 2−δ|i−j |,

so
∑

j Tj converges strongly to a bounded linear operator T on L2.



I One can use this to prove, for instance, that the Hilbert
transform is bounded on L2; see Homework 6.

I Indeed, morally speaking, (1) to (4) says that
∑

j Tj is almost
like a translation-invariant singular integral we studied in
Lecture 4.

I Next time we use this proposition to prove the T (1) theorem.
I We prove this proposition as follows.
I We will only show that

‖TjT
∗
i ‖L2→L2 . 2−δ|i−j |

since the bound for ‖T ∗i Tj‖L2→L2 is similar.
I The kernel for TjT

∗
i is

Kj ,i (x , y) :=

ˆ
Rn

kj(x , z)ki (y , z)dz ,

and if i ≥ j , then we rewrite this using (3) as

Kj ,i (x , y) =

ˆ
Rn

(kj(x , z)− kj(x , y))ki (y , z)dz .



I From (1) and (2), we get

|kj(x , z)− kj(x , y)|

.(2j |z − y |)
δ
2

(
2jn

(1 + 2j |x − z |)n+δ
+

2jn

(1 + 2j |x − y |)n+δ

)
;

indeed if 2j |y − z | ≥ 1, this follows by estimating

|kj(x , z)− kj(x , y)| ≤ |kj(x , z)|+ |kj(x , y)|

and using (1), whereas if 2j |y − z | ≤ 1, then we use (2) and
the mean-value theorem, noting that if u is on the straight
line segment connecting y and z , then

min{|x − y |, |x − z |} . 2−j + |x − u|,

which implies

2jn

(1 + 2j |x − u|)n+δ
.

2jn

(1 + 2j |x − z |)n+δ
+

2jn

(1 + 2j |x − y |)n+δ
.



I Now we invoke an elementary inequality, which says
ˆ
Rn

2jn

(1 + 2j |x − z |)n+
δ
2

2in

(1 + 2i |z |)n+
δ
2

dz .
2jn

(1 + 2j |x |)n+
δ
2

if i ≥ j (this can be proved by rescaling to j = 0, and then
dividing the domain of integration into 2 parts, depending on
whether |z − x | ≥ |x |2 or |z − x | ≤ |x |2 ).

I Hence if i ≥ j , then

|Kj ,i (x , y)| . 2−(i−j)
δ
2

2jn

(1 + 2j |x − y |)n+
δ
2

;

similarly if j ≥ i , then

|Kj ,i (x , y)| . 2−(j−i)
δ
2

2in

(1 + 2i |x − y |)n+
δ
2

.

I From Young’s inequality, it follows that

‖TjT
∗
i ‖L2→L2 . 2−|i−j |

δ
2 .


