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Introduction

» While multiplier operators are very useful in studying constant
coefficient partial differential equations, one often encounters
variable coefficient partial differential equations.

» Thus we consider a variable coefficient generalization of
multiplier operators, namely pseudodifferential operators.

» We study compositions and mapping properties of
pseudodifferential operators.

» These in turn allow one to construct paramatrices to variable
coefficient elliptic PDEs.

» We close this lecture with a beautiful almost orthogonality
principle, due to Cotlar and Stein, which will play a crucial
role in the proof of the T(1) theorem in the next lecture.



Outline
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Symbols of pseudodifferential operators

» Given a smooth function a(x, &) on R” x R" (which we think
of as the cotangent bundle of R"), a pseudodifferential
operator with symbol a is by definition

Tuf) = [ ale RO <.

» We will consider only symbols a that satisfy the following
differential inequalities:

1050 a(x, )| S (1 + [¢[ymPhHeld

for all multiindices o and 3, where m € R and v, € [0,1] are
three fixed parameters.

» Following Hormander, a symbol a is said to be of class 575, if
the above differential inequalities are satisfied for all « and .

» Usually we consider only the case v =1, § = 0, in which case
we write 5™ in place of 57.

» m is called the order of the symbol (or the order of the
associated operator).



» Example: If p(§) is a polynomial of degree m, and
a(x, &) = p(2mit),
then a € S, and
Taf(x) = p(9x)f(x)

is a constant coefficient differential operator of order m.

» More generally, if m € N and

X&)=Y Ag(x)(2ri&)’,

1Bl<m

where the Ag's are all C2° on R", then we have a € S™ with

= ) Ag(x)0f(x

1Bl<m

is a variable coefficient partial differential operator of order m.



It is easy to see that if a € ST for some m € R, ,6 € [0,1],
then T, is a linear map from S(R") into itself, and the map

T.: S(R™) — S(R")

is continuous.

One typical use of pseudodifferential operators is to construct
paramatrices (i.e. approximate solutions) to partial differential
equations.

For those we usually need pseudodifferential operators of
non-positive orders, which are typically integral operators.

As before, let (R” x R")* be R” x R" with the diagonal
{(x,y) e R" xR": x = y} removed.



Kernel estimates

Theorem
Let —n < m<0, and a € S™. Then there exists a function
Ko € C((R" x R")*) such that

Taf() = [ Koleo)F(y)dy

for all f € C°(R™) and all x not in the support of f. Furthermore,

1
A < -
’ax,yKO(Xa y)‘ ~ ‘X _ y’n_;'_m_;'_l)\‘

for all multiindices A and all x # y.

» Indeed pick a smooth function i with compact support on R”
with 7(0) = 1. For x # y and € > 0, let

Kxy) = [ alx et de,



» We claim that K.(x,y) € C®((R" x R™)*) for all ¢ > 0, with

1

A < -
|6X7yK€(X7.y)| ~ |X—y‘n+m+|/\|

for all multiindices A and all x # y, where the constants are
uniform in € > 0.

» One sees this by splitting the integral depending on whether
|€] < |x — y|71 or not; when [£] > |x — y| 7!, we integrate by
parts using

1

eZﬂi(X—y)'f —
—Ar2|x — y|?

A£e27ﬂ.(x_y)'£

sufficiently many times to gain enough decay in |£|. This
shows

1
|Ke(x, ¥) < m

when x # y, and similarly one can estimate BQJKE(X,y).



Furthermore, by a similar argument, K.(x, y) converges locally
uniformly on (R” x R")* as ¢ — 0T, and so do 93  K:(x, y)
for all multiindices A.

For x # vy, let

Ko(x,y) == lim K.(x,y) € C((R" x R™)¥).
e—0"
Now note that if f € S(R") and x € R”, then

T.F(x) = lim / a(x, (=€) F(€)e>™Ede

e—0+

= lim / / (x, E)n(e€)f(y)e®™ )€ dyde
e—0t n n

= lim / f(y)Ke(x,y)dy.
e—0t n

If in addition f € C2°(R"), and x is not in the support of f,
then the last line is equal to

Tafl) = [ F)Ko(xy)dy

by the dominated convergence theorem.



This establishes the desired kernel representation formula for
Taf (x).

The estimates for 9}  Ko(x,y) on (R" x R")* follow from the
corresponding uniform estimates for 8;\’yK5(x,y).

We remark that if |[x — y| 2 1, the above proof also shows that
|a))<\,yK0(X7y)‘ S |X - y|_N

for any multiindices A and any N € N (i.e. we get rapid decay
as |x — y| = +o0).

This is closely tied to the pseudolocality of psuedodifferential
operators: indeed a linear operator T: S(R") — S'(R") is
local, if the support of Tf is contained in the support of f for
every f € S(R"). This is the case if the Schwartz kernel of T
is supported on the diagonal {(x,y) € R" x R": x = y}.
While Ko(x,y) is not supported on the diagonal

{(x,y) € R" xR": x = y}, the above decay of Ky(x,y) away
from the diagonal is a close substitute for it.



Mapping properties on L2

» We now focus on pseudodifferential operators of order 0.

Theorem
Let a € S°. Then T, extends to a bounded operator on L?(R").

> In view of the kernel representation theorem above, and the
variable coefficient singular integral theorem from Lecture 4,
this establishes the following corollary.

Corollary

Let a € S°. Then T, extends to a bounded operator on LP(R™) for
all1 < p < oo0.



v

v

v

v

One direct proof of the theorem proceeds via pseudolocality.

For j € Z", let B; be the open ball of radius 2 centered at j.
Then {B;}jczn covers R".

Let 1 = EJ- <Z>J2 be a smooth partition of unity subordinate to
the above cover, so that ¢; € C2°(B;) for every j.

Then

I TafIIZ2 = Z 6 Taf 172

—ZH@ XzsszJrZH% (X(28)<F)I32-



From our earlier kernel estimates when |x — y| 2 1, we get

16,0 o2 )| < x5,(%) / IF()lIx - y|Ndy,

y¢2B;

so choosing N > n and using Cauchy-Schwarz, we get

6,0 Talas NP S xg(0) [ 1P =yl ay.

y¢2B;

Integrating both sides gives
165 Talxcazy F)I% < / )L — y[ V.
ly—jl21

SO summing over j gives

Zuw(m HLst/ WPRL—y|Vdy < 1F]2..

—j|z1



It remains to show

Zu@ (xa8, )32 < 1o

This follows if we can show
¢ Tall 2oz S 1

since Z HXzB f”L2 ~ ”fH

But ¢;T, is a pseudodlfferential operator with symbol
pj(x)a(x,&). The latter is just another symbol in 5™, except
now it has compact x-support inside some ball of radius 2.

Hence it remains to prove our theorem for a € S, under the
additional assumption that a(x, §) has compact x-support
inside some unit cube.

This we obtain by expanding a(x, £) as Fourier series in x.



» Without loss of generality, suppose a(x, &) € SO and has
compact x-support on the unit cube B centered at 0. Then

a(x,€) = 3 a(n,€)e>

newLn

where 3'is the Fourier transform of a in the first variable. Thus

Tof(x) = 3 e / a(n, §)F ()€™ d¢

nez"
27|'I77X 2 »
_ TiX-
nez"

» But E\Qa(n,f) is a bounded multiplier on L2 uniformly in 7.
» Thus triangle inequality gives

ITafle S Y @+ )" N flle S NFllees
nez"

which finishes the proof of the Theorem.



Compound symbols

» We will turn soon to the adjoints and compositions of
pseudodifferential operators whose symbols are in S™ for
some m € R.

» A convenient tool is the concept of compound symbols.

» Let me R, v €[0,1], 6 €[0,1). A compound symbol of class
CSTs is a smooth function c(x, y,§) on R” x R" x R" where

\3f7yafc(><,y,§)\ < (1 4 |¢|)m-1Biv+lals

for all multiindices o and (3.
» To every c € CST;, we associate an operator Tjj on S(R") by

T f(x) = E'_i)n8+ Tiqef(x), where

Tiel. / / c(x, v, )n(e€)F (y)e*™ < ddy
and 7 is a fixed function in C2°(R") with n(0) = 1.



Since § < 1, one can show that for f € S(R"), T f defines
a Schwartz function on R" for every € > 0, and that T .f
converges in the topology of S(R") as ¢ — 0". Indeed this
follows from multiple integrating by parts via

(/ . Ay)e27ri(x—y)~§

e2milx=y)-€ —
1+ 4m2|¢J2

Thus T{ defines a linear mapping
T[C]: S(Rn) — S(Rn);

it is easy to check that this map is also continuous.

We are mainly interested in CS;% when v =1 and § = 0.
We write CS™ for CS[ if m € R.

The main theorem about compound symbols is the following:



Theorem
If c € CS™ for some m € R, then there exists a € S™ such that

Tigf = Taf

for all f € S(R™). Also, we have the asymptotic expansion

a6~y (2”;’8787 oy )l
Y

in the sense that the sum of those terms with |y| < N on the right
hand side differ from a(x, &) by a symbol in S™ N for all N € N.

» A proof is outlined in Homework 6.

» We note that different compound symbols ¢ may give rise to
the same symbol a in the above theorem.

> In particular, the map ¢ — T[] is not injective.

» We will use this non-injectivity to our advantage in what
follows.



Closure under adjoints and compositions
» We will prove two theorems using compound symbols.

Theorem
Let m € R. If a € S§™, then there exists a symbol a* € S™, such
that the formal adjoint of T, is T+, in the sense that

/an( )g(x )dx—/"f( )Taxg(x)dx for all f,g € S(R").

Also, we have the asymptotic expansion

wi)h
708~ 5 D007 3(7.6)

=x
'y y

In particular,

a*(x,€) = a(x,€) (mod S™1).



Theorem
Let my,my € R. Ifa; € §™ and a, € 5™, then there exists a
symbol a € S™TM2 sych that

To Tof = Tof  forall f € S(R™).

Also, we have the asymptotic expansion

i)l
a(x.€) ~ 3 BT g (v, )00 a(x. €).

Y

In particular,

a(x,€) = a1(x,&)an(x,€)  (mod S™FTm—1),



Indeed, let me R, a€ S™ and f,g € S(R"). Let n € C° on
R™ with n(0) = 1. Then by dominated convergence,

/n Tof (x)g(x)dx = lim // (x, E)n (=€) F(€)g(x)e* ™ < dedx.

e—07t

Writing c(x, y,€) := a(y, €), the above limit is equal to

sl—if&/n/n/n (x, E)n(=€)F(y)g (x)e¥™ =) C dyd¢ dx
= li fy)T d
' /R (¥) i) -8 (y)dy-

e—0t

Since Ty .g converges to Tiqg in S(R") as ¢ — 07, the
above limit is just

. f(y) Tiqe(y)dy.

It remains to write T[C] as T,+ for some a* € 5™, using our
previous theorem about compound symbols.



Next, let my,my € R, a1 € S™, a, € §™,

By the previous theorem, there exists a3 € 5™, such that the
formal adjoint of T, is T, which in view of the computation
on the previous page implies

Taf(x) = lim /n/nazyf)naﬁ ()27”Xy£dyd§.

for all f € S(R") and all x € R” (limit taken in S(R")).
Hence T,, T,,f(x) is given by

im [ [ e300l () <y

e—0t

The latter is lim._o+ Tigf(x) if

C(X7y)£) = 31(X7§)32(y,§)-

Since such ¢ € CS™T™M by the previous theorem about
compound symbols, there exists a € S™ ™ such that the
above limit is equal to T,f(x).



Parametrix construction

» Let me N. Let

POD)= Y pa()S

laf<m

be a differential operator of order m with C*° coefficients.

» P(D) is a pseudodifferential operator with symbol

P &)= 3 pa(x)(2ri€)".

lal<m

» It is said to be elliptic, if there exists a constant C > 0, such
that
Ip(x,8)| > Cl¢|™

for all x € R" and all £ with [£| > 1.

» We use the following theorem to construct parametrices of
such elliptic partial differential operators.



Theorem
Let m € R. Given a sequence of symbols ag, a1, ..., with

ay € S™ K for every k > 0,

then there exists a symbol a € S™, such that for every N € N,
there exists ey € S™ N with

=2
-

a(x, &) = ak(x, &) + en(x,§).

0

x
Il

» See Homework 6 for its proof.



Let P(D) be an elliptic partial differential operator of order m
with C*° coefficients. Let p(x, &) be its symbol.

Let ¢(&) be a smooth function that is identically 0 on B(0,1),
and identically 1 outside B(0, 2).

Let T,, be the pseudodifferential operator of order —m with

symbol ©
_ pl&
(.8 = p(x,€)

Then the composition theorem shows that

P(D)Tay =1 — E_4

for some pseudodifferential operator of order —1.
We compose both sides on the right by Efl (where k € N),

and get
P(D)T.,EX, = EX, — EXL.

Summing over k and telescoping, we get
P(D)[Tag + TagE1+ -+ ToEM] =1 — ENF?
for any N € N.



Using the composition theorem again, for any k € N, there
exists a symbol a, € S—m—k such that

TaEX = To,.

From the previous theorem, there exists a symbol a € $7,
such that for every N € N, there exists ey € S~™ N such that

N-1
To=) To+ Ty
k=0

Let T, be the pseudodifferential operator defined by
P(D)T, =1+ Te.

The calculation on the previous slide shows that e € S—™N
for any N € N.

In this sense T, is an approximate solution to P(D), aka a
parametrix for P(D).



Cotlar-Stein lemma (almost orthogonality)

» Earlier we proved L2 boundedness of psuedodifferential
operators with symbols in SO by using the Fourier transform.

» We now describe another important tool about establishing L2
boundedness of linear operators, namely Cotlar-Stein lemma.

» This can be used to prove a theorem of Calderén and
Vaillaincourt, namely T, is bounded on L? whenever a € 52’7
for all v € [0,1) (see Homework 6); in particular, this recovers
the L? boundedenss of psuedodifferential operators with
symbols in S°.

» The Cotlar-Stein lemma also plays a key role in the proof of
many celebrated theorems.

» We will prove a proposition this time, which will play a crucial
role in the proof of the T(1) theorem in the next lecture.



Theorem (Cotlar-Stein)

Suppose {T;} is a sequence of bounded linear operators between
two Hilbert spaces. If there exist constants A and B such that

SU,PZ”TJ'T,-*H1/2§A and Sl’!pZHTi*Tj”l/2§B
i 5 e

for all i,j, then ;j Tj converges strongly to a bounded linear
operator T between the two Hilbert spaces, with | T| < VAB.

» This is called an almost orthogonality lemma, because one
situation where the hypothesis are fulfilled are when all
| Ti|| < B, the images of the different T;'s are orthogonal, and
the images of the different T;*'s are orthogonal.
(Indeed then T T; =0 and T;T; = 0 whenever j # i.)

» The proof of Cotlar-Stein involves a classic application of the
tensor power trick.



To prove Cotlar-Stein, suppose first { T;} is a finite sequence
(say J terms). Then for any positive integer N,

ITIPY = (T = > ITaTiTaTi o Tona Tl

J1sesdon

But the summand is bounded by both

T TR T3 T3l T Tl
and
ITl 5 Tall || T T | 1751

So taking geometric average, the sum is bounded by

S T2 T T 2N TE T2 T T 2 Tl

3 Jan
152N

< Jmax || T, |*/2AN BN= max || T, ||}/
J1 2N

ol

Taking 2N-th root and letting N — +o0 yields || T|| < VAB.



» The general case when we have infinitely many operators T;
follows once we have the following lemma:

Lemma

Let {f;} be a sequence in a Hilbert space, and A € R. Suppose for
any sequence {€;} that has only finitely many non-zero terms, and
that satisfies |ej| < 1 for all j, we have

Z@ <A

Then _; f; converges in the Hilbert space.

» See Homework 6 for the proof of this lemma.

> We close this lecture by the following application of
Cotlar-Stein.



Proposition
Suppose § > 0. Let {kj(x,y)}jcz be a sequence of C*° kernels on
R" x R" that satisfies

2in
1+ 2|x — y|)n+?

ki Y S ( (1)

for all a, (2)

e o 2ilHlal+)
| x>~y J(X7y)’ ~ (1+2J|X—y|)n+6

/ ki(x,y)dy =0 forall x € R" (3)
Rn

/ ki(x,y)dx =0 forall y € R". (4)
For each j € Z, let T;f(x) = [gn f(y)kj(x,y)dy. Then

sl
T3 T s + I T7 Tl oo S 2700,

so Y. ; Tj converges strongly to a bounded linear operator T on L2.



One can use this to prove, for instance, that the Hilbert
transform is bounded on L2; see Homework 6.

Indeed, morally speaking, (1) to (4) says that } ; T; is almost
like a translation-invariant singular integral we studied in
Lecture 4.

» Next time we use this proposition to prove the T(1) theorem.

» We prove this proposition as follows.

» We will only show that

1T T 2z S 2700

since the bound for || T T;|[ ;2,2 is similar.
The kernel for T; T is

Kiitxy) 1= [ lg(x 2Rl 2)dz,
and if i > j, then we rewrite this using (3) as

Kiilxoy) = | (x2) ey )ly. 2)z.



» From (1) and (2), we get

[kj(x, 2) = ki(x, y)

3 Jn N
<2z y))} 2 2 ;
S A2 — ) T @ 2wy

indeed if 2|y — z| > 1, this follows by estimating

|kj(x,2) = ki(x, y)| < [ki(x, 2)| + [ki(x, ¥)]

and using (1), whereas if 2/|y — z| < 1, then we use (2) and
the mean-value theorem, noting that if u is on the straight
line segment connecting y and z, then

min{|x — yl,|x — 2|} S 277 + [x — ul,
which implies

2jn < 2_][7 2./”
L+ D — a7~ (A 2x— 270 [+ 2]x— )i




Now we invoke an elementary inequality, which says

oin oin oin
/ ; 5 - 5dz 5 s
e (14 20— 2™ (1 202y (1t 2y

if i > j (this can be proved by rescaling to j = 0, and then
dividing the domain of integration into 2 parts, depending on
whether |z — x| > % or |z—x| < %)
Hence if i > j, then

2in
(1+2]x =y

K i(x,y)| S 2703

similarly if j > i, then
2in

PN
K, y) S 27008 .
o (14 2]x — y|)"*3

From Young's inequality, it follows that

1T T |2y S 27115,



