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Introduction

I In the previous two lectures, we discussed Riesz potentials,
singular integrals and Littlewood-Paley projections.

I Today we will use these ideas, to study various function
spaces that are important in the study of harmonic analysis
and partial differential equations.
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Hölder spaces

I Let γ ∈ (0, 1). A function f on Rn is said to be Hölder
continuous of order γ (written f ∈ Λγ), if

|f |Λγ := ‖f ‖L∞ + sup
x ,y∈Rn

y 6=0

|f (x + y)− f (x)|
|y |γ

< +∞.

I We will see shortly a characterization of Λγ by the
Littlewood-Paley projections we introduced last time.

I As before, let ψ(ξ) be a smooth function with compact
support on the unit ball B(0, 2), with ψ(ξ) ≡ 1 on B(0, 1).

I Let ϕ(ξ) = ψ(ξ)− ψ(2ξ) so that ψ is supported on the
annulus {1/2 ≤ |ξ| ≤ 2}.

I For f ∈ S ′(Rn), let

P0f = F−1[ψ(ξ)f̂ (ξ)], and

Pj f = F−1[ϕ(2−jξ)f̂ (ξ)] for j ≥ 1.



Theorem
Let γ ∈ (0, 1), and f ∈ S ′(Rn). Then f ∈ Λγ (more precisely, the
tempered distribution f is given by a function in Λγ) if and only if
there exists a constant C > 0 such that

‖Pj f ‖L∞(Rn) ≤ C 2−jγ for all j ≥ 0,

and the smallest C for which this holds is comparable to |f |Λγ .

I This allows one to extend the definition of Λγ to all γ > 0:
For every γ > 0, we define the Hölder space Λγ(Rn) to be the
set of all f ∈ S ′(Rn), for which there exists C such that

‖Pj f ‖L∞(Rn) ≤ C 2−jγ for all j ≥ 0.

The smallest C for which this holds is denoted ‖f ‖Λγ .
(Λγ is also sometimes called a Zygmund space; the next two
theorems together show that ‖f ‖Λγ is well-defined up to a
multiplicative constant, irrespective of the choice of Pj .)



I We sketch only the essence of the proof of the theorem.
It relies on the following lemma (which can be proved by
rescaling to the unit scale):

Lemma
For any multiindices β and any j ≥ 0, we have

‖∂βPj f ‖L∞ . 2j |β|‖Pj f ‖L∞

for all f ∈ S ′(Rn).

I So if ‖Pj f ‖L∞ ≤ C 2−jγ for all j ≥ 0, then

|f (x + y)− f (x)| ≤
∑
j≥0

|Pj f (x + y)− Pj f (x)|,

which we estimate using

|Pj f (x + y)− Pj f (x)|

.

{
2‖Pj f ‖L∞ . C 2−jγ if 2j > |y |−1

|y |‖∇Pj f ‖L∞ . C |y |2j(1−γ) if 2j ≤ |y |−1
.



I Conversely, for j ≥ 1, we have

Pj f (x) =

ˆ
Rn

f (x − y)Φj(y)dy

if Φj(y) = 2jnΦ(2jy) and Φ ∈ S(Rn) such that Φ̂ = ϕ.

I Note that
´

Φ = 0. Thus if

|f (x + y)− f (x)| ≤ C |y |γ ,

then for j ≥ 1, we have

Pj f (x) =

ˆ
Rn

[f (x − y)− f (x)]Φj(y)dy ,

from which it follows that

‖Pj f ‖L∞ ≤ C

ˆ
|y |γ |Φj(y)|dy . C 2−jγ .

I This finishes the sketch of the proof of the theorem.



I Let’s call a function f on Rn Lipschitz, if f is bounded and

|f (x + y)− f (x)| ≤ C |y |

for all x , y ∈ Rn.

I One might guess that perhaps Λ1 is the space of Lipschitz
functions on Rn, but it is not; the space of Lipschitz functions
on Rn is only a proper subset of Λ1

(e.g. f (x) =
∞∑
k=1

2−ke2πi2kx ∈ Λ1(R) but is not Lipschitz).

I Indeed, if f ∈ S ′(Rn), then f ∈ Λ1 if and only if f is bounded
and

|f (x + y) + f (x − y)− 2f (x)| ≤ C |y |

for all x , y ∈ Rn.

I More generally, we have the following theorem:



Theorem
Let γ ∈ (0, 2), and f ∈ S ′(Rn). Then f ∈ Λγ if and only if

‖f ‖L∞ + sup
x ,y∈Rn

y 6=0

|f (x + y) + f (x − y)− 2f (x)|
|y |γ

< +∞.

Also, the quantity above is comparable to ‖f ‖Λγ .

I Combined with the following theorem, we can characterize Λγ

using difference quotients only, for all γ > 0.

Theorem
Let γ > 1, m ∈ N be so that γ −m ∈ (0, 1], and f ∈ S ′(Rn).
Then f ∈ Λγ if and only if

‖f ‖L∞ +
∑
|β|=m

‖∂βf ‖Λγ−m < +∞.

Also, the quantity above is comparable to ‖f ‖Λγ .



I The proof of the first theorem on the previous slide is similar
to the proof of the earlier theorem. The key is to note that

|Pj f (x + y) + Pj f (x − y)− 2Pj f (x)| . ‖∇2Pj f ‖L∞ |y |2,

and that

Pj f (x) =

ˆ
Rn

f (x + y) + f (x − y)− 2f (x)

2
Φj(y)dy

if Φ is even and j ≥ 1. We omit the details.



I To prove the second theorem, if f ∈ Λγ , we just use our
previous lemma to control ‖Pj(∂

βf )‖L∞ , which in turn yields
a control of ‖∂βf ‖Λγ−m if |β| = m.

I Conversely, for j ≥ 1, we have1

Pj f =
∑
|β|=m

(−1)m(−∆)−m∂βPj(∂
βf ),

so it remains to observe that

‖(−∆)−m∂βPjg‖L∞ . 2j(|β|−2m)‖Pjg‖L∞ for all g ,

which can be proved the same way as our previous lemma.
We omit the details.

1Technically ∂βPj(∂
βf ) is only in S ′(Rn), and (−∆)−m is not defined for

every element in S ′(Rn). Fortunately, the Fourier transform of ∂βPj(∂
βf ) is

supported away from the origin in the frequency space. So strictly speaking,
instead of (−∆)−m, we should write a multiplier operator whose multiplier
agrees with that of (−∆)−m on the frequency support of ∂βPj(∂

βf ). The
observation that follows remains valid.



Sobolev spaces
I Let 1 ≤ p ≤ ∞, and f ∈ Lp(Rn).
I Then f ∈ S ′(Rn), so it makes sense to consider its

distributional derivatives ∂βf for any multiindices β.
I Suppose k ∈ N, and ∂βf agrees with an Lp function on Rn for

every multiindex β with |β| ≤ k .
I Then f is said to be in the Sobolev space W k,p(Rn), and

‖f ‖W k,p :=
∑
|β|≤k

‖∂βf ‖Lp(Rn).

I For 1 < p <∞, we can characterize Sobolev spaces by a close
relative to the Riesz potentials, called Bessel potentials.

I For α ∈ R, the Bessel potential of order α is defined by

Jαf (x) := (I −∆)−α/2f (x)

for f ∈ S ′(Rn); in other words, Jα is the multiplier operator
with multiplier (1 + 4π2|ξ|2)−α/2. Note that Jα is a
homeomorphism on the topological vector space S(Rn).



Theorem
Let k ∈ N, 1 < p <∞, and f ∈ S ′(Rn). Then f ∈W k,p(Rn), if
and only if (I −∆)k/2f ∈ Lp. Furthermore,

‖f ‖W k,p ' ‖(I −∆)k/2f ‖Lp .

I This allows one to extend the definition of W k,p, and define
W α,p for all α > 0 and 1 < p <∞: for such α and p, we
define the Sobolev space W α,p(Rn) by

W α,p(Rn) :=
{

f ∈ S ′(Rn) : (I −∆)α/2f ∈ Lp
}
,

and write ‖f ‖Wα,p for any quantity ' ‖(I −∆)α/2f ‖Lp .



I To prove the theorem, suppose g := (I −∆)k/2f ∈ Lp. Then
for any multiindex β, we have

∂βf = ∂βJkg ,

and ∂βJk is bounded on Lp if |β| ≤ k and 1 < p <∞, by the
Hörmander-Mikhlin multiplier theorem. So ∂βf ∈ Lp for all
|β| ≤ k , if 1 < p <∞.

I Conversely, let ∂βf ∈ Lp for |β| ≤ k , and 1 < p <∞. Then

(I−P0)(I−∆)k/2f =
∑
|β|=k

(−1)k(I−∆)k/2(I−P0)(−∆)−k∂β(∂βf ),

and (I −∆)k/2(−∆)−k(I − P0)∂β is bounded on Lp if |β| = k
and 1 < p <∞, by the theorem of Hörmander-Mikhlin (note
that the cut-off I − P0 vanishes near the origin).

I So (I − P0)(I −∆)k/2f ∈ Lp, and together with a trivial
bound for P0(I −∆)k/2f , we see that (I −∆)k/2f ∈ Lp.



I One can also characterize Sobolev spaces by Littlewood-Paley
projections and square functions when 1 < p <∞:

Theorem
Let α > 0, 1 < p <∞, and f ∈ S ′(Rn). Then f ∈W α,p(Rn), if
and only if ∥∥∥∥∥∥∥

 ∞∑
j=0

|2jαPj f |2
1/2

∥∥∥∥∥∥∥
Lp

< +∞.

Furthermore, the quantity above is comparable to ‖f ‖Wα,p .

I Indeed, a vector-valued singular integral theorem shows that∥∥∥∥∥∥∥
 ∞∑

j=0

|Pj(I −∆)α/2f |2
1/2

∥∥∥∥∥∥∥
Lp

'

∥∥∥∥∥∥∥
 ∞∑

j=0

|2jαPj f |2
1/2

∥∥∥∥∥∥∥
Lp

if α > 0 and 1 < p <∞.



Sobolev and Morrey embedding theorems

I The Sobolev embedding theorem describes continuous
embeddings of Sobolev spaces into appropriate Lq spaces.

Theorem (Sobolev embedding theorem)

(a) If α ∈ (0, n) and 1 < p < n/α, then

W α,p(Rn) ↪→ Lp∗(Rn) if
1

p∗
=

1

p
− α

n
.

(b) If k ∈ (0, n) is an integer, then

W k,1(Rn) ↪→ Lp∗(Rn) if
1

p∗
= 1− k

n
.

(c) Also,
W n,1(Rn) ↪→ L∞(Rn).



I To prove (a), it suffices to know that Jα : Lp(Rn)→ Lp∗(Rn),
if α ∈ (0, n), 1 < p < n/α and 1

p∗ = 1
p −

α
n . This follows by

writing
Jα = P0Jα + (I − P0)Jα(−∆)α/2Iα;

note that P0Jα : Lp → Lp∗ , Iα : Lp → Lp∗ , and
(I − P0)Jα(−∆)α/2 is bounded on Lp∗ by the theorem of
Hörmander-Mikhlin. (We put I − P0 to make sure that
(I − P0)Jα(−∆)α/2 is well-defined from S ′(Rn) to S ′(Rn).)

I To prove (b), note that it suffices to prove the case k = 1
(when n > 1) and then use part (a). We use the following
density theorem, which is of independent interest:

Theorem
C∞c (Rn) is dense in W k,p for all k ∈ N and 1 ≤ p <∞.



I Now for f ∈ C∞c (Rn), we have

|f (x)|
n

n−1 .
n∏

k=1

‖∂j f (x)‖
1

n−1

L1(dxk )
;

this is a simple consequence of the fundamental theorem of
calculus in one variable.

I The k-th factor on the right hand side is a function of
x1, . . . , xk−1, xk+1, . . . , xn, so it suffices to apply the following
Loomis-Whitney inequality to conclude:

ˆ
Rn

n∏
k=1

Fk(πk(x))
1

n−1 dx ≤
n∏

k=1

‖Fk‖
1

n−1

L1(Rn−1)

Here F1, . . . ,Fn are any n non-negative measurable functions
on Rn−1, and πk : Rn → Rn−1 is the coordinate projection
forgetting the k-th coordinate. (This Loomis-Whitney
inequality is a simple consequence of Hölder’s inequality.)



I The above shows that if f ∈ C∞c (Rn), then

‖f ‖
L

n
n−1 (Rn)

≤ Cn‖∇f ‖L1(Rn).

I This is called the Gagliardo-Nirenberg inequality on Rn.

I The Gagliardo-Nirenberg inequality is known to be equivalent
with the isoperimetric inequality in geometry, which says that
for any bounded domain Ω ⊂ Rn with smooth boundary,

|Ω|
n−1
n ≤ Dn|∂Ω|.

I Indeed the best constants of the two inequalites are the same,
which is achieved when Ω is a ball in Rn.

I This best constant plays an important role in the study of
many critical non-linear partial differential equations (see e.g.
the Yamabe equation in conformal geometry).

I One finishes the proof of (b) by approximating a general
W 1,1(Rn) function by C∞c functions, and appealing to the
Gagliardo-Nirenberg inequality.



I Finally to prove (c), note that for f ∈ C∞c (Rn), then

f (x) =

ˆ x1

−∞
. . .

ˆ xn

−∞
[∂1 . . . ∂nf ](y)dyn . . . dy1

for all x ∈ Rn. Hence

‖f ‖L∞ ≤ ‖∂1 . . . ∂nf ‖L1 .

The desired conclusion follows by approximation of W n,1

functions by C∞c functions.
(Indeed this also shows that functions in W n,1(Rn) are
continuous after redefinition on a set of measure zero.)



I The Morrey embedding theorem describes continuous
embeddings of Sobolev spaces into appropriate Hölder spaces.

Theorem (Morrey embedding theorem)

If α ∈ (0, n) and n/α < p <∞, then

W α,p(Rn) ↪→ Λγ(Rn) if γ = α− n

p
.

I Indeed, if f ∈W α,p with α ∈ (0, n) and n/α < p <∞, then

‖Pj f ‖L∞ . 2j
n
p ‖Pj f ‖Lp . 2j

n
p 2−jα‖f ‖W k,p

for all j ≥ 0, where the first inequality is the Bernstein
inequality from Homework 4, and the second inequality is by
the square function characterization of W α,p.



Functions of Bounded Mean Oscillation (BMO)

I Let α ∈ (0, n). The Sobolev and Morrey embedding theorems
does not say anything about W α,p(Rn) if p = n/α.

I Indeed W α, n
α (Rn) does not embed into L∞.

I To obtain a positive result, we need to introduce the space of
functions of bounded mean oscillations (BMO).

I Let f be a locally integrable function on Rn. Define the sharp
maximal function M] by

M]f (x) = sup
x∈B

 
B
|f (y)− fB |dy , x ∈ Rn

where the supremum is over all balls B containing x , and
fB :=

ffl
B f (recall

ffl
B = 1

|B|
´
B ; all balls have positive and

finite radius by convention).

I We say that a locally integrable function f on Rn is in BMO, if

‖f ‖BMO := ‖M]f ‖L∞(Rn) < +∞.



I Note that ‖f ‖BMO is only a seminorm; ‖f ‖BMO = 0 if and
only if f is constant.

I We will see shortly that every BMO function defines a
tempered distribution on Rn; thus we usually think of BMO as
a subspace of the quotient space S ′(Rn)/{constants}
(and then ‖f ‖BMO becomes a norm on this quotient).

I Clearly all L∞ functions on Rn are in BMO.
I But BMO is larger than L∞: e.g. log |x | ∈ BMO but /∈ L∞.
I Fortunately BMO is not much larger than L∞: one can prove

that if f ∈ BMO, then for every ε > 0, we haveˆ
Rn

|f (x)|
(1 + |x |)n+ε

dx <∞

(which is certainly true if f ∈ L∞). This also shows BMO
functions define elements in S ′(Rn).

I Also, BMO scales the same way as L∞: if f (x) ∈ BMO, then
so is f (λx) for any λ > 0, with the same BMO norm.

I Indeed BMO will act as a substitute for L∞ for many purposes
in harmonic analysis, as the following theorem indicates.



Singular integrals map L∞ into BMO

Theorem
Let T be a bounded linear operator on L2(Rn). Suppose there
exists a locally L∞ function K0 on {(x , y) ∈ Rn × Rn : x 6= y},
such that

Tf (x) =

ˆ
Rn

f (y)K0(x , y)dy

for every f ∈ L1(Rn) with compact support, and a.e. x /∈ supp(f ).
Suppose in addition that

sup
(x ,x0)∈Rn×Rn

ˆ
|y−x0|≥2|x−x0|

|K0(x , y)− K0(x0, y)|dy ≤ C .

Then for every bounded and compactly supported function f on
Rn, we have

‖Tf ‖BMO . ‖f ‖L∞ .

Furthermore, T can be extended as a continuous linear map from
L∞ to BMO.



I The proof of the theorem uses the following lemma:

Lemma
Let f be a locally integrable function on Rn. Suppose there exists
a constant A, such that for every ball B in Rn, there exists a
constant cB satisfying

 
B
|f (y)− cB |dy ≤ A.

Then f ∈ BMO, and ‖f ‖BMO ≤ 2A.

I Indeed, for every ball B, the triangle inequality shows that
|fB − cB | ≤ A, so

 
B
|f (y)− fB |dy ≤

 
B
|f (y)− cB |dy + |fB − cB | ≤ 2A.

This shows ‖M]f ‖L∞ ≤ 2A.



I To prove the theorem, let B be any ball in Rn. Let x0 be the
center of the ball. Let B∗ for the ball centered at x0, but
twice the radius of B.

I For every bounded and compactly supported f on Rn, let
f1 = f χB∗ , f2 = f χRn\B∗ so that f = f1 + f2.

I Then Tf1 ∈ L2(Rn) (since f1 ∈ L2(Rn)), and

 
B
|Tf1(x)|dy ≤

( 
B
|Tf1(x)|2dx

)1/2

. |B|−1/2‖f1‖L2 ≤ ‖f ‖L∞ .

I Also, since Tf2(x) =
´
Rn\B∗ f (y)K0(x , y)dy for x ∈ B, if we

define cB =
´
Rn\B∗ f (y)K0(x0, y)dy , then

 
B
|Tf2(x)− cB |dx ≤

 
B

ˆ
Rn\B∗

|f (y)||K0(x , y)− K0(x0, y)|dydx

≤ C‖f ‖L∞ .

I Thus
ffl
B |Tf (x)− cB |dx . ‖f ‖L∞ , so ‖f ‖BMO . ‖f ‖L∞ .



I Now given f ∈ L∞ on Rn (not necessarily compactly
supported any more), we need to define Tf (x) for a.e. x ∈ Rn

(modulo constants).

I To do so, let B0 be a ball centered at the origin. Let B∗0 be
the ball centered at the origin and twice the radius of B0.

I Let f1 = f χB∗0
, f2 = f χRn\B∗0 so that f = f1 + f2.

I Tf1(x) is defined a.e. x ∈ B0, since f1 ∈ L2(Rn) and T is
bounded on L2(Rn).

I For x ∈ B0, let Tf2(x) :=
´
Rn\B∗0

f (y)[K0(x , y)− K0(0, y)]dy .

I Then define Tf (x) = Tf1(x) + Tf2(x) for a.e. x ∈ B0.

I This definition depends on the choice of B0, but if B̃0 is a ball
centered at the origin that contains B0, then for a.e. x ∈ B0,
the two definitions differ only by

´
B̃∗0 \B∗0

f (y)K0(0, y)dy ,

which is a constant independent of x ∈ B0.

I Thus Tf ∈ S ′(Rn)/{constants}. The earlier argument shows
readily that Tf ∈ BMO, with ‖Tf ‖BMO . ‖f ‖L∞ .



I Similarly, we have the following mapping properties of the
Riesz potential Iα into BMO.

Theorem
Let α ∈ (0, n). For every bounded and compactly supported
function f on Rn, we have

‖Iαf ‖BMO . ‖f ‖Ln/α .

Furthermore, Iα can be extended as a continuous linear map from
L∞ to BMO.



I To prove the theorem, let α ∈ (0, n), and f ∈ Ln/α on Rn.

I Let B0 be a ball centered at the origin. Let B∗0 be the ball
centered at the origin and twice the radius of B0.

I Let f1 = f χB∗0
, f2 = f χRn\B∗0 so that f = f1 + f2.

I Iαf1(x) is defined a.e. x ∈ B0, since f1 ∈ Lp(Rn) for all

1 < p < n/α, and Iα : Lp(Rn)→ L
np

n−αp (Rn) for such p’s.

I For x ∈ B0, let

Iαf2(x) = cα,n

ˆ
Rn\B∗0

f (y)

(
1

|x − y |n−α
− 1

|y |n−α

)
dy .

Hölder’s inequality shows that Iαf2 ∈ L∞(B0).

I Now define Iαf (x) = Iαf1(x) + Iαf2(x) for a.e. x ∈ B0.

I This definition depends on the choice of B0, but if B̃0 is a ball
centered at the origin that contains B0, then for a.e. x ∈ B0,
the two definitions differ only by

´
B̃0
∗\B∗0

f (y)|y |−(n−α)dy ,

which is a constant independent of x ∈ B0.



I The earlier argument shows readily that Iαf ∈ BMO, with
‖Iαf ‖BMO . ‖f ‖Ln/α ; indeed for any ball B in Rn, we have

 
B
|Iα(f χB∗)(x)|dx .

( 
B
|Iα(f χB∗)(x)|p∗dx

)1/p∗

. |B|−
1
p∗ ‖f χB∗‖Lp

. |B|−
1
p∗ |B|

α
n
− 1

p ‖f ‖Ln/α
= ‖f ‖Ln/α

where p is any exponent satisfying 1 < p < n/α, and
1
p∗ = 1

p −
α
n .



I Furthermore, if B0 is a sufficiently large ball centered at the
origin so that B∗0 contains B∗, then defining Iα(f χRn\B∗) on
B0 as before, and letting

cB := cn,α

ˆ
Rn\B∗

f (y)

(
1

|x0 − y |n−α
− 1

|y |n−α

)
dy

where x0 is the center of B, we have
 
B
|Iα(f χRn\B∗)(x)− cB |dx

.‖f ‖Ln/α
 
B

(ˆ
Rn\B∗

∣∣∣∣ 1

|x − y |n−α
− 1

|x0 − y |n−α

∣∣∣∣ n
n−α

dy

) n−α
n

dx

.‖f ‖Ln/α
 
B

(ˆ
Rn\B∗

1

|x0 − y |n+ n
n−α

dy

) n−α
n

|x − x0|dx

.‖f ‖Ln/α .

I Together we see that ‖Iαf ‖BMO . ‖f ‖Ln/α .



I To summarize, for f ∈ Ln/α(Rn), we have defined Iαf as an
element of BMO, and hence as an element of the quotient
space S ′(Rn)/{constants}.

I Note that for f ∈ Lp(Rn), 1 ≤ p < n/α, we had defined Iαf
as Lp∗ or weak-Lp∗ functions in Chapter 3, and hence as
elements of S ′(Rn).

I For f ∈ Ln/α ∩ Lp(Rn) for some 1 ≤ p < n/α, this old
definition agrees with the new one above when tested against
Schwartz functions whose integrals are zero.



Sobolev embeddings into BMO

I The previous theorem allows us to prove embeddings of
Sobolev spaces into BMO.

Theorem
Let α ∈ (0, n). Then

W α, n
α (Rn) ↪→ BMO.

I To see this, let f ∈W α, n
α (Rn). Write

f = P0f + Iα(I − P0)(−∆)α/2Jα[(I −∆)α/2f ].

Since ‖P0f ‖L∞ . ‖f ‖Ln/α , (I −∆)α/2f ∈ Ln/α,
(I − P0)(−∆)α/2Jα preserves Ln/α, and Iα : Ln/α → BMO,
we see that f ∈ BMO, as desired.

I Indeed more precise estimates are possible; see Homework 5
for a discussion of the Moser-Trudinger inequality, which is
important in conformal geometry.



The John-Nirenberg inequality for BMO
I We close this lecture by stating the John-Nirenberg inequality.

Theorem (John-Nirenberg)

(a) There exists constants C1, C2 depending only on n, such that
for any BMO function f on Rn, and any cube Q ⊂ Rn, we
have

|{x ∈ Q : |f (x)− fQ | > λ}|
|Q|

≤ C1e
− C2λ
‖f ‖BMO

for all λ > 0. Here fQ :=
ffl
Q f is the average of f on Q.

(b) For any p ∈ (1,∞), there exists a constant Cn,p, such that

sup
Q

( 
Q
|f (y)− fQ |pdy

)1/p

≤ Cn,p‖f ‖BMO

for every BMO function f on Rn, where the supremum is over
all cubes Q ⊂ Rn; indeed one may take Cp

n,p ≤ C1Γ(p + 1)C−p2

where C1,C2 are as in part (a).



I Note that in the inequality in part (b), the right hand side is
certainly bounded by the left hand side, by Hölder’s inequality.
The inequality in part (b) is thus sometimes called a reverse
Hölder inequality.

I The bound for the constant in part (b) gives us the following
corollary:

Corollary

There exists constants c ,C > 0 depending only on n, such that for
every BMO function f on Rn and every cube Q ⊂ Rn, we have

 
Q

exp

(
c |f (y)− fQ |
‖f ‖BMO

)
dy ≤ C .

I The proof of part (a) of the theorem can be achieved by
iteratively performing Calderón-Zygmund decomposition.

I Part (b) of the theorem and the corollary then follows easily.

I For details of the proofs, see Homework 5.



I We remark though that in the special case when f ∈ BMO(R)
is non-negative and decreasing on (0, 1), one can easily see
that

f (x) = O(log(1/x)) as x → 0+,

and hence exp(cf ) is integrable on (0, 1) for all sufficiently
small c ; indeed if Ij = [2−j−1, 2−j ] then fIj − fIj−1

. ‖f ‖BMO ,
so

fIj ≤ fI0 + Cj‖f ‖BMO

for all j ≥ 1, which implies the desired pointwise bound for f
given the monotonicity of f . With a bit of care chasing
through this argument, one can also see thatˆ

(0,1)
exp

(
c |f (y)− f(0,1)|
‖f ‖BMO

)
dy <∞,

which is part of the claim of the corollary on the previous slide.
I The John-Nirenberg inequality (in particular, part (b) of the

theorem) will be used in the proof of the Carleson embedding
theorem, which will in turn play a pivotal role in the proof of
the T(1) theorem in Lecture 7.


