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Introduction

> Last time we studied mapping properties of maximal functions
and the Riesz potentials.

» The latter involves (non-negative) integral kernels in a
weak-L9 space for some 1 < g < oo, in lieu of the (strong) L9.

» This time we study singular integrals, which are convolutions
with certain (signed) integral kernels that belong to weak-L1.

» Examples include the Hilbert transform and the Riesz
transforms we have seen in Lecture 2; other multiplier
operators will also be discussed.

» An important application will be given to the Littlewood-Paley
decomposition of functions in LP, 1 < p < oc.

> Note that when p # 2, LP is not a Hilbert space, and hence
the notion of orthogonality is not immediately present. The
Littlewood-Paley decomposition often allows one to resurrect
certain orthogonality in LP spaces, and is hence very useful.
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Singular integral operators: an introduction

» From Young's convolution inequality, we know that if
K € L1(R"), then the convolution operator

f=fxK

is bounded on LP(R") for any 1 < p < oc.

» But many operators of interest in harmonic analysis involve
convolution kernels that are not in L1, that are only in L1

» Examples include the Hilbert transform on R:

1 1
Hf =f* —p.v.—,
s X

as well as the Riesz transforms on R":

() o X
PV e

Rif = f
T



The Hilbert transform and the Riesz transforms will be
prototypes of what we call singular integral operators on R".

We want to study mapping properties of such on LP(R").

Note that the convolution kernels of the earlier operators are
not just in L1°°; they satisfy certain cancellation conditions.
This is important for what follows.

In particular, the kernels of both the Hilbert transform and the
Riesz transforms takes on both positive and negative values
(indeed the kernels are odd).

Things fail if we replace these convolution kernels with their
non-negative counterparts.

It is known, for instance, that f — f ﬁ (appropriately

defined) is not bounded on LP(R) for any 1 < p < 0.
Before we turn to the mapping properties of singular integral
operators, we need to establish the important
Calderén-Zygmund decomposition of an L! function.



The Calderén-Zygmund decomposition

Theorem

Let f € LY(R") and a > 0. Then there exists a decomposition
f =g+ b, such that

gl + 1Bl < Callfl 12,

lglleee < Caar,

In addition, b can be further decomposed into b =" . b;, so that
each bj is supported on a cube Q; (with 0 < |Q;| < 00),

/ bj(y)dy =0 for all j,

J

the Q;'s are essentially disjoint (in the sense that |Q; N Qx| =0
whenever j # k), and that

Cn
> 1al < 2ifl.
J



To establish this Calderén-Zygmund decomposition, let
f e LY(R") and a > 0.
Tile R" by essentially disjoint cubes of side lengths L, where L
is chosen so large so that fQ |f| < a for each cube Q in the

: _ 1
collection (f, = @l Jo)-
Subdivide each cube into 2" cubes of equal sizes, and consider
fo, |f| for each smaller cube Q' that arises. If this average is
> «, we collect @' into a collection Q; if not, then we keep
subdividing.
We end up with a countable collection Q of essentially
disjoint cubes so that for each Q € Q, we have

][]f|2a, whereas ][N\f]<a
Q Q

where Q is the ‘parent’ of Q (the cube from which Q was
obtained by subdivision).



» Thus we have obtained a countable collection O of essentially
disjoint cubes

a§f|f|§2”a for all Q € Q.
Q

» We also note that if Q = UQeQ Q, then
|f(x)| <a forae x¢&Q

by the Lebesgue differentiation theorem.
» It suffices now to enumerate Q as {Q1, @2, ...}, and define

() if x ¢ Q
8t = fQj f(y)dy if x € Q; for some j,

bj(x) = {S(X)_fQj f(y)dy if x € Q

otherwise.

for each j, and b=}, b;.



{f(x) if x ¢ Q

fo f(¥)dy  if x € Q; for some j,

bj(x) = {f(X) - JCQJ_ f(y)dy if x € Q;

0 otherwise.

» Indeed then

gl < NIfll, gl < 2%,

1
/bj:o and |Qj\§/ |f| for all j,
Q; (6% Qj

J

from which all desired properties of g and b can be easily
derived.



> Alternatively, we apply the following Whitney decomposition
theorem for open sets in R":

Theorem
Let Q) be a proper open subset in R". Then there exists a
countable collection of Q of essentially disjoint cubes, such that

Q= @

QeQ
with
diam(Q) < dist(Q,R" \ Q) < 4diam(Q).

» The proof of Whitney's theorem is just one sentence: Indeed
one just takes Q to be the collection of maximal dyadic cubes
in R” that satisfies diam(Q) < dist(Q,R" \ Q).

» Given f € L1(R") and a > 0, we apply Whitney's theorem to
the open set {x € R": Mf(x) > a}.



» This yields a countable collection of Q of essentially disjoint
cubes, for which

G
> 1al =12l < 2ifl.
J

and for which

][ |f| < Char for every j
Q;

since one can bound fQj |f] by Cp ff),— |f|, where @; is a cube
centered at some point in R" \ Q, of side length < 5diam(Q),
that contains Q; (such (N()j exists because of the distance
comparison property in the Whitney decomposition theorem).

» We can then construct g and b from Q as before, and obtain
a Calderén-Zygmund decomposition of f at height «.



Mapping properties of singular integral operators

Theorem R
Let K € S'(R"). Suppose K € L>(R") with

K[ oo (rmy < C,

and that K agrees with a C function Koq away from the origin,
with
IVKo(x)| < Clx|~("*1) for all x # 0.

Let T: S(R") — S'(R") be the convolution operator defined by
Tf :=f*x K. Then for all f € S(R"), we have

—~~

{x € R™: [TF(x)| > a}| < =2||fll,igny for all @ >0, and

O

HTfHLF’(R") < Cn,prHLP(Rn) forall 1 < p < oo.

Hence T can be extended as an operator of weak-type (1,1), and
of strong-type (p, p) for all 1 < p < oc.



The Hilbert transform and the Riesz transforms clearly fall
under the scope of the previous theorem.

Indeed K is a homogeneous function of degree 0 (hence L),
and Ko(x) is just a multiple of% and ‘X‘Xﬁ respectively.

Such Kj are smooth on S"1 and homogeneous of degree —n
(so that VKp(x) satisfies the desired bound).

Hence the theorem shows that the Hilbert transform and the
Riesz transforms extend as an operator of weak-type (1,1),
and as a bounded linear operators on LP, for 1 < p < oc.

We note that the hypothesis on Ky implies

sup / |Ko(x — y) — Ko(x)|dx < C;
yeR" J|x|>2]y|

indeed this is all we will use in the proof.

We now turn to the proof of this theorem.



The proof of the theorem consists of four parts:

First we prove the case p = 2;

then we prove that T is weak-type (1,1);

then we prove that T is bounded on LP when 1 < p < 2;
finally we prove that T is bounded on LP when 2 < p < cc.

The case p = 2 follows from Plancherel easily, since we
assumed K € L*:

ITEll2 = [IFKl2 < [IKl[ee[IF]l2 < CIF]l 2

Next, to prove T is weak-type (1,1), let f € L1, a > 0.

Perform a Calderén-Zygmund decomposition at height «:

f:g+b:g+2bj
J

with b; supported on Q; for each j.



» We estimate

H{x € R": |Tf(x)| > a}|
<H{x € R": |Tg(x)| > a/2}| + [{x € R": | Tb(x)| > a/2}|.

» We have both g € L and g € L™, so g € L? with
lgllz2 < Callfss.
This gives
n 4 2 9
x € B [Tel)] > 0/2}] < —51 el < )l

> Also, if Q7 is the cube with same center as @Q; but 24/n times
the side length, then Q* := Uj QJT" satisfies

Cn
Q<D IQT < V)" Y 1@ < |l
j j



» Thus we are left to show that
{x € R\ Q: [Th()] > 0/2}] < s
» We do so by showing that
1763l 13z gz < Clibillcs for all
so that

[ Thll 1 mmas) < CZ 1Tl 12 qr) < CZ 16jllx < ClIfl 2,
J J

and the desired inequality follows by Chebyshev's inequality.



» To prove that
ITbjll 1 rm@ry < Clibllr for all j,
recall fQj bj = 0. Thus for x ¢ Q7. we have
o) = [ Kalx—»)bi(y)dy
YEeQ;

- / o [Kol(x =) = (v = 39) = Kalx = )] ()l

where y; is the center of Q;. Note that |x — y;| > 2|y — y;| if
x ¢ QF and y € Q;. Also recall

/ |Ko(x — y) — Ko(x)|dx < C
Ix|>2]y|

for all y € R".



» This shows

/ | Thi(x)|dx
R\ Q7

S/yeo,- /XER"\Q,-* Ko((x = 7) = by = j)) = Kolx = yy)l1by(y )] dely

< / Clb;(y)|dy
YEQ;
<Cllbyll

as desired, and finishes the proof that T is of weak-type (1, 1).

» To prove that T is strong-type (p, p) for 1 < p < 2, we
interpolate between p =1 and p = 2.



» More precisely, let f € LP(R"), 1 < p < 2. For a > 0, write
f= fX|f|§oc + fX\f\>a = fo + 1%,

so that f,, € L2, f* e [

» We have

||TfH’Z,, :/0 pap_1|{x eR": | TF(x)| > a}|da

< / paP 1 {x € R™: |TF(x)| > a/2}|da
0

+/ paP  {x € R": |TF*(x)| > a/2}|da
0



» But

n C
[{x € R™ | Tha(x)| > a/2}| < I Thalllz < Slfalliz,

4
pel
so

/ paP {x € R": | Tfy(x)| > a/2}|da
0
SC/ paP o ?|foZ2da
0
SC/ \f(x)]z/ paP3da
" £ ()l
=Collf 175

(We used p < 2 in the last line.)



> Similarly
n @ Ch @
[x € R TF() > a/2} < I,
SO
/ paP Y {x e R": |TF*(x)| > a/2}|da
0 oo
<G, [~ pa” o sda
0

()l
gC,,/ ]f(x)\/ paP2da
Rn 0

= n,p”fH[Zp-

(We used p > 1 in the last line.)



The above shows
| Tfl|ee < Capllflle whenever 1 < p < 2,

i.e. T is strong-type (p,p) for 1 < p < 2.

Finally we need to show that T is strong-type (p, p) for
2 < p<oo.

This follows by duality.

Indeed the adjoint T* of T also satisfies the same conditions
as T.

Hence T* is of strong type (p,p) for 1 < p < 2.
It follows that T is of strong type (p, p) for 2 < p < 0.
This finishes the proof of the theorem.

We formulate a variable coefficient extension of the theorem
in the next slide. It allows for operators that are not
convolutions (that do not commute with translations).



Theorem
Let T be a bounded linear operator on L?>(R"). Suppose there
exists a locally L*> function Ky on {(x,y) € R" x R": x # y},
such that

700 = [ F)Kalxy)dy

for every f € LY(R") with compact support, and a.e. x ¢ supp(f).
Suppose in addition that

sup | [Ko(x, ) — Ko(x, yo)ldx < C.
(v:y0) ERXR™ J |x—yo|>2|y —yol

Then T extends as a linear operator of weak-type (1,1), and of
strong-type (p, p) for all 1 < p < occ.

» The proof is almost the same as before, which we omit.

> In Lecture 7 we will give some general conditions under which
such T would be bounded on L2(R™).



Hormander-Mikhlin multipliers

» We return to operators that commute with translations, and
consider multiplier operators.

» Recall that if m is a bounded function on R”, then the

operator N
f s Tf == F H(mf)

is bounded and linear on L2(R").

» Such operators are called multiplier operators, and can be
written as
Tmf =fxK

whenever f € S(R"), where K := F~m is the inverse Fourier
transform of the tempered distribution m.

» We seek conditions on m so that T,, extends as a bounded
linear operator on LP(R"), for 1 < p < 0.



Theorem (Hormander-Mikhlin)
Suppose m is a C* function on R" \ {0}, and that

08 m(€)| Sa €71 forall € £ 0

and all multiindices o. Then T, extends as a linear operator of
weak-type (1,1), and of strong-type (p, p) for all 1 < p < oo.

>

This applies, for instance, when m is homogeneous of degree 0
and smooth on the unit sphere S"1.

In particular, this shows again that the Hilbert transform and
the Riesz transforms are of weak-type (1,1), and of
strong-type (p, p) for all 1 < p < 0.

Theorem also applies to imaginary powers of the Laplacian:
(—A) is the multiplier operator with multiplier (472|¢[2)',
where the principal branch of the logarithm is taken (t € R).

Various refinements of this theorem are given in Homework 4.



The previous theorem deals with multipliers that are singular
only at one point (the origin). Examples of multipliers with a
bigger set of singularities will be considered in Lecture 11.

The previous theorem also fails to deal with multipliers m(¢)
that oscillates rapidly as |£| — co. Examples of such rapidly
oscillating multipliers include e/léI° when a > 0; such will be
considered in Homework 9.

The proof of the Hérmander-Mikhlin multiplier theorem
consists of estimation of the convolution kernel K := F~1m.

In particular, we show that K agrees with a C* function Ky
away from the origin, and that

|0% Ko(x)] Sa for all x # 0

PR

and all multiindices «, so that our previous theorem applies.



Let ¢(&) be a smooth function with compact support on the
unit ball B(0,2), with (¢) =1 on B(0,1).

Let ©(&) = (&) — ¥ (2€) so that v is supported on the
annulus {1/2 < |¢] < 2}, and

Z(p(Q_jg) =1 forevery £ #0.
JEL

Then '
> p@Im(&) - m(€)

lil<J

in the topology of §’(R"), as J — +c.



For j € Z, let
KU) = F A p(27Ie)m(€)] € S(R™)

so that K := F~m is the limit of Z KU (x) in the
ll<J
topology of S'(R") as J — +o0.

But it is easy to see that
102 KD ()| S 201D min{1, 27V |x| =V}

for any multiindex o and any positive integer N.
Thus there exists a C* function Kp(x) on R"\ {0}, so that

Z KU (x) converges uniformly to Ky(x)
lil<J

on any compact subsets of R” \ {0} as J — oc.



» This shows K := F~1m agrees with this C* function K
away from the origin.

» Furthermore, the above estimates for 92 KU)(x) also readily
implies that

|05 Ko(x) for all x # 0

< 1
~ | x|rHel

and all multiindices «.

» Hence our previous theorem applies, and this concludes the
proof of the Hormander-Mikhlin multiplier theorem.



A vector-valued version of the main theorem

» We turn to a version of the singular integral theorem for
vector-valued operators.

» Let B;, B> be Banach spaces.

» Let End(Bi, By) be the space of continuous endomorphisms
from B; to Bs.

> Let LP(R", Bj) be the space of LP mappings from R” into B;.
» Write (R” x R")* for the set {(x,y) € R" x R": x # y}.

» Then we have the following theorem.



Theorem
Let T be a bounded linear operator from L9(R", By) to LY(R", By)
for some q € (1, 00]. Suppose there exists a function

Ko(x,y) € Li.((R" x R")*, End(Bi, Bz)),
such that

7700 = [ Kalx)f()dy

for every f € LY(R", By) with compact support, and for a.e.
x ¢ supp(f). Suppose in addition that

sup / | Ko(x, y) — Ko(x, ¥0)llEnd(y,B,)dx < C.
(y.90) ER"™XR™ J|x—y0|>2[y—yol

Then T extends as a continuous linear operator from L*(R", By)
to L1>°(R", By), and a continuous linear operator from LP(R", By)
to LP(R", By) for all 1 < p < q.



The proof is almost the same as before, which we omit.
Note that we do not claim mapping properties on LP for
p > q, because duality no longer works when say g < 2.

We use this vector-valued version with B; = C and
B, = (?(7Z,C) (or the other way round) to derive a
Littlewood-Paley inequality.

First we introduce the Littlewood-Paley projections in the
next slide.



Littlewood-Paley decompositions

> As before, let 1/(£) be a smooth function with compact
support on the unit ball B(0,2), with ¥/(¢) =1 on B(0,1).

> Let p(&) = (&) — ¥(2€) so that ¢ is supported on the
annulus {1/2 < |¢| < 2}, and

P(€) + Z ©(279¢) =1 for every £ € R™.
=1
» For f € S'(R"), let
Pof = F(€)F(¢)],  and

Pif = FYp(279€)F(¢)] forj> 1.

» We think of P;f as the localization of f to frequency ~ 2 if
Jj>1, and to frequency < 1if j =0.



By Plancherel, it is easy to see that if f € L2(R"), then
ZjN:O P;f converges to f in L?(R") as N — oo.

In addition, if f € S(R"), then ZJ'N:o P;f converges to f in
the topology of S(R") as N — .

As a result, if f € S'(R"), then Z}V:o P;f converges to f in
the topology of S'(R") as N — cc.

This applies, in particular, for every f € LP(R"), 1 < p < 0.
» Note also that if f € S'(R"), then

N
> Pif =fxkyn
j=0

where k-(x) := e "k(e71x), and k := F~ 1.

Thus ZJ'N:o P;f(x) converges pointwisely to f(x) for a.e.

x € R", whenever f € LP(R") with 1 < p < 0.

If in addition 1 < p < oo, then Question 3 from Homework 3
then shows that for every f € LP(R"), > 7, P;f converges to

fin LP(R") as N — oc.



> Thus for 1 < p < 0o, one way of estimating the L norm of
f € LP(R") is to estimate

N

sup ZPJf
Sl FECH e

» Via the triangle inequality, we can control the above
expression if we can bound

N
> |Pif]
j=0

uniformly in N, which can be done if we can bound

LP(RM)

N 1/2

N2 SRR
j=0

LP(R")

uniformly in N.



» It turns out that one can do better, when 1 < p < o0;
intuitively this is because there is certain orthogonality
between the different P;f’s. (In particular, the following
Theorem is easy to prove if p =2, by Plancherel.)

Theorem (Littlewood-Paley)
Suppose 1 < p < o0.
(a) For every f € LP(R"™), we have

1/2
~ /

11l Lo (rmy =~ Z\ij\z

j=0
LP(R")

(b) Furthermore, if f € S'(R™) and the right hand side above is
finite, then f € LP(R") (hence the above comparison holds).



Let's first prove that
- 1/2
P Laiik S Il e re)
j=0
LP(R")

when f € LP(R") and 1 < p < 0.
(This is half of part (a) of the Theorem.)

Note that the term corresponding to j = 0 can be easily
estimated: indeed

1Pof || Lo(rey < CIIf || o(rr)

by Young's convolution inequality.
Thus we may replace 3 22, by 32

The crux of the matter is captured in the following theorem:



Theorem’
Let ® € S(R") with [, ® =0. Forj € Z and f € S'(R"), let

Ajf(x) = fxDj(x)  where dj(x) = 2"d(2x).

Let 1< p < oo. Then for all f € LP(R™), | Af[|pm) € LP(RT),
and
HHAijﬁ(Z)HLp(Rn) Sop 11l Loqrny-

» By monotone convergence, density and Fatou's lemma, we
may assume f € S(R").

> We will treat the cases 1 < p <2 and 2 < p < oo separately.

» For1 < p<2,let By =C, By = {%(Z,C) = the space of all
complex-valued ¢? sequences (;)jcz.

» We apply the vector-valued singular integral theorem.



> Let K(x) = {®j(x)}jcz € End(By, B2) and Tf(x) = f * K(x)
so that Tf(x) = {A;jf(x)}jez.
» One checks, via Plancherel, that T defines a bounded linear
map from L2(R", B;) to L2(R", By); also
1/2

10K (x)l|lEnd(Br,8,) = Z\axq’j(x)\z
JEZ
is bounded by C|x|~("*1) whenever x # 0.
» Thus the vector-valued singular integral theorem shows that
1/2
> IafP Snp [l Lo (rny
JEZ
LP(R")

whenever 1 < p <2 and f € S(R"), as desired.



» For 2 < p < 0o, we observe that by duality, we just need to
prove that

ZAJgJ SFMP HHg.—jHe2(Z)HLp/(Rn)
JEZ Lp/(Rn)
for all sequences of Schwartz functions {gj};cz, where only
finitely many gj's are non-zero.
» This is because then for every f € LP(R") and all such {gj}'s,
we have

/ZAf x)gj(x dx—/ X)) Ajgj(x)dx

JEZ

S Fll o wny Z A

jGZ Lp’ (Rn)

Snp [l Lo (rey }ngHﬁ(Z)HLp/(Rn)-

The density of such {gj}'s in LP'(¢?) gives the desired
conclusion.



ZAjgj Snp H |’87H€2(Z)HLP/(RH)
jeZ Lp/(Rn)

» To prove this, this time we let B; = ¢?(Z,C), B, = C, and
apply the vector-valued singular integral theorem.

> Indeed, let K(x) =3 ;. ®j(x)ef € End(By, By) where {e;} is
the coordinate basis of By = ¢2, and {ef} is the dual basis.
Let

Tel0= [ Kl y)dy
if g = {gj}, so that

Te(x)=>_Ajg.

JEL



» One checks, via Plancherel, that T defines a bounded linear
map from L2(R", B) to L?(R", B,); also

1/2
105K () |End(Br,B2) = | D 10x®;(x)I?

JEL

is bounded by C|x|~("*t1) whenever x # 0.

» Thus the vector-valued singular integral theorem says that

ZAJgj SH,P H||gj||e2(Z)HLp/(Rn)
JEZ Lp/(Rn)

forl < p/ <2 ie. for2 < p < oo, as desired.



» Theorem’ can also be proved using Klintchine's inequality,
without using vector-valued singular integrals.

» For j > 1, define the j-th Rademacher function r; by

r(t) = +1  if t € [k274,(k +1)27/) for some odd integer k
R | if t € [k277, (k +1)27/) for some even integer k

Theorem (Klintchine)

For every p € (0,00), there exist constants A, and B, that depend
only on p (but not on N), such that for every sequence of complex
numbers {aj}1<j<n, we have

p/2 p p/2

N 1| w N
A [ Sl < / S a(t) dt< By (Y 1o
j=1 j=1 j=1

> A more general version is given in Homework 4.



» We are now ready to give a second proof of Theorem'.

> Let {¢(t)}jez be an enumeration of {rj(t)};>1.

Proposition
Let ® € S(R") with [, ® =0. Forj € Z and f € S(R"), let

Ajf(x) = f*Dj(x)  where dj(x) = 2"d(2x).
Then for every 1 < p < oo and f € S(R"), we have
sup sup || Y &i(t)Af Snp Il e (mn)-

NeN te[0,1] <N Lr(&")



» If the proposition were true, then applying Klintchine, we have
1/2

sup ||| Y 14f[? Snp I [l e
NeN || \ /4
lil<N
LP(R™)
for1 < p<ooandfeSR.

» The same holds for f € LP(R") by density, which gives our
desired conclusion.



To prove the proposition, for every t € [0, 1], and every

N e N, let
Kn.¢(x) = E gj(t)®j(x)
liI<n

so that

D (A = fx K.
jI<N

One checks that Ky ; is a Calderon-Zygmund kernel uniformly
in N and t.

The (scalar-valued) singular integral theorem then gives the
claim of the proposition.



» To recap, we proved half of part (a) of the Littlewood-Paley
theorem. It says that for every 1 < p < oo, f € LP(R"), we

have
1/2

> IPif|? Snp 11l Lo (roy.-
/= Lp(R")

» We remark that the smoothness of the multipliers for P; is
important here; for instance, if we defined Py instead by

Pof = F ™ (x6(0.1)()F(9)),
where xp(o,1) is the characteristic function of the unit ball,

then Py is not bounded on LP(R") whenever n > 2 and p # 2.

» The latter is the famous ball multiplier theorem of Fefferman,
to which we will return in Lecture 11.



We still need to prove the other half of part (a), and also part
(b), of the Littlewood-Paley theorem.
For that we use duality.

For f € S'(R"), let P;f be the Littlewood-Paley projection of
f defined earlier, for j > 0.

We need to prove the following: If f € §'(R") and

1/2
(o]

> IPifI? < 00

=0

’ Lo (R)
for some 1 < p < oo, then f can be identified with an LP
function on R", and that [|f||;p(rn) is controlled by the above
quantity.



Indeed, it suffices to show that

1/2
o.@)

(f,8) Snp Z |Pif|? HgHLP’(R")
=0 LP(R")

for all g € S(R").

To do so, let 1Z be a smooth fuNnction with compact support
on the unit ball B(0,4), with ) = 1 on the support of 1.
Let ¢ be a smooth function with compact support on the
annulus {1/4 < |{| < 4}, with ¢ =1 on the support of .
For g € S(R"), let

Pog = F M d()g(£)],  and
Pig = F 1 p(277€)g(€)] forj>1.

Note that if j > 1, then Pjg g * ¢2 —j for some Schwartz
function ® with Jrn ® =0, so the forward Littlewood-Paley

inequality applies. Also P; = le5j.



» Hence for g € S(R"), we have

N N
(frg) = fim > (f Pig) = lim > (f,PPi)
j=0 j=0
N ~
= lim, S (Bir- )
j=0
- 1/2 - 1/2
<[> 1prP 2 |Prel?
j=0 j=0 ,
LP(R") LP' (R™)
- 1/2
Snp Z‘Pjﬂz Hg”LP’(]R")’
j=0
LP(R")

This concludes the proof of the other half of part (a), and also
part (b), of the Littlewood-Paley theorem we stated earlier.



» To close this lecture, we remark that if f € §'(R") and

1/2

> 1AfP < o0

JEZL
LP(R")

for some 1 < p < oo, it does NOT necessarily follow that f
can be identified with an LP function on R"”. This is because
A; does not capture the Fourier transform of f at 0.

> Nonetheless, if 1 < p < oo, and if we already know that
f € LP(R"), then we do have
1/2

IFlloeny S| D 14;f1
JEZL
LP(R")
> This is because for g € S(R"), we do have 3,y Ajg — g

in LP'(R") as N — oo, when 1 < p/ < 0o, so that we can run
our previous argument. c.f. Homework 4 for the former fact.



