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Introduction

> Last time we saw some operators of interest in harmonic
analysis, such as the Riesz potentials.

» We will study the Riesz potentials in more detail this time.

» Before that, we detour into a study of the Hardy-Littlewood
maximal operator, whose study was motivated by another
important question. We briefly describe this question next.

» The fundamental theorem of calculus says that if f is
continuous at x, then

d X

@ /. f(t)dt = f(x).

> In particular, if f is continuous at x, then

1
lim — f(t)dt = f(x).
r—l>r3+ 2r (x—r,x4+r) ( ) (X)



1
lim — f(t)dt = f(x).
r—0t+ 2r (x—r,x+r)
We seek a variant of this, where we do not assume continuity
of f at x.

This variant will also extend to higher dimensions.
The key issue here is the behaviour of averages of a locally
integrable function f over balls of varying radii.

For this reason we will study the Hardy-Littlewood maximal
operator; what we gather will also ultimately enable us to
come back and study some mapping properties of the Riesz
potentials.
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LP and weak LP spaces

» The LP space on R"” is the space of measurable functions on
R" for which [|f]|;r < 00, where

1/p
fllee == </ |f(x)|pdx> when 1 < p < o0, and
Rn

|f|loe :=inf{M > 0: |f(x)] < M for a.e. x € R"}.
» By Fubini's theorem, we have
1/p

1Fller = (Amﬂxw—w{erWE|axn:>aﬂda)

for1 < p < 0.

» The function oo +— [{x € R": |f(x)| > a}| is sometimes called
the distribution function of f.

» The Chebyshev's inequality says that if f € LP, then

1
{x € R": [F(x)] > a}| < —|If[f, foralla>0.



For 1 < p < o0, the weak LP space on R" (denoted LP:*°) is
the space of measurable functions f on R” for which there
exists a constant C such that

CcP
H{x € R": |[f(x)] > a}| < o for all a > 0.

The smallest constant C for which the above inequality holds
for all & > 0 is precisely

sup [l {x € R": [£(x)| > a}[*/7].
a>0

Hence f is in LP®° if and only if the above supremum is finite.
By Chebyshev, LP embeds into LP*> for 1 < p < oo, but the
embedding is strict.

e.g. |x|="/P € LP> forall 1 < p < oo (but not in LP).



» LP(R") is a Banach space for all 1 < p < 0.

» On the other hand, for 1 < p < oo, the supremum defining
LP-°° on the last slide, namely

sup [al{x € R": [£(x)| > a}|/?]
a>0

defines only a quasi-norm but not a norm; it only satisfies a
quasi-triangle inequality, but not the triangle inequality itself.

> Nevertheless, when 1 < p < oo, there is a comparable quantity

1
fllipoo 1= sup / flxedx
H H E measurable |E|1/p’ R"’ |
0<|E|<o0

which is a norm on LP°° and turn LP*° into a Banach space
(indeed this identifies LP>° as the dual of another Banach
space LP"1 when 1 < p < 0).



The Hardy-Littlewood maximal function

> Let f be a locally integrable function on R”".
» Write B(x, r) for the ball of radius r centered at x.

» Define the Hardy-Littlewood maximal operator by

1
Mf(x) = sup —=—— |f(t)|dt  for every x € R".
r>0 |B(X7 r)| B(x,r)
» It is the maximal average of |f| over all balls centered at x.

» Note that M is a sublinear operator:
M(f +g) < Mf + Mg.

Mf is also lower semi-continuous for every f: the set
{x € R": Mf(x) > a} is open for every o € R.

» We are interested in the mapping properties of M on LP or
weak LP.



Indeed we will show that M is bounded on LP for all

1< p<oo.

It is easy to see that M is not bounded on L1: indeed MF ¢ L1
unless f =0 a.e.

Nevertheless, a substitute result is available for the action of
M on L1

We will show that M maps L' boundedly into weak-L!, and
that's the key to the proof of the boundedness of M on LP
(1 < p<o0)as well

The key then is to interpolate the fact that M: L1 — [1>®
with the easy observation that M: L — [*°.

Terminology: a sublinear operator is said to be of strong-type
(p, q) if it defines a bounded operator from LP into L9; and it
is said to be of weak-type (p, q) if it defines a bounded
operator from LP into weak-L9.



Theorem
M is of weak-type (1,1) on R", i.e. there exists a constant C,, > 0
such that for any o > 0,

n Cn
[{x € R": [MF(x)] > a}| < ZlIf ]l ey

» The proof proceeds via the following covering lemma:

Lemma

Let E C R", and suppose there exists a finite collection of open
balls B that covers E. Then there exists a subcollection
Bi,...,Bn € B such that

» Bi,..., By are pairwise disjoint; and

» 3B1,...,3By covers E, where 3B; is the ball with the same
center as B; but three times the radius.



Assume the lemma for now. We will prove the theorem.

Let f € L}(R"), and a > 0. Let E, be any compact subset of
the open set {x € R": |Mf(x)| > a}.

By inner regularity of the Lebesgue measure, it suffices to
prove that

C
|Ea| < EanHLl(]R")
with a constant independent of E,.

Now for each x € E,, there exists some radius r, > 0 such

that
o L I
’B(Xv rX)| B(x,r«) '

The collection of open balls {B(x, r¢): x € Eo} covers E,,
and since E, is compact, we can select a finite subcover B, of
E, from this collection.



Now apply the covering lemma to E, and this collection of
balls B,.

We obtain a subcollection By, ..., By € B, such that
Bi, ..., By are pairwise disjoint, and E, C Uszl 3B;.

As a result,
N N an N 3n
CAESHELTEED SILTESS S MU EL 7
j=1 j=1 j=1"B
the last inequality following since By, ..., By are pairwise
disjoint.

This proves the theorem with C, = 3", modulo the proof of
the covering lemma.

(This constant is not sharp; one can replace it with (2 + )"
for any € > 0 by using a more refined covering lemma.)



The proof of the covering lemma is by greedy algorithm:

Just let By be a ball in B with maximal radius (possible since
B is only a finite collection).

Throw away all balls in B that intersects B, and let B, be a
ball in the remaining collection whose radius is maximal.

Repeat this process until no balls are left.

The process will terminate since we have only a finite
collection of balls.

The chosen balls are clearly pairwise disjoint.

Any ball that is thrown away intersects one of the chosen balls
with a larger or equal radius.

Thus any ball that is thrown away is contained in 3B; for
some chosen ball B;, and this shows 3B1,3B,,... cover E.

This finishes the proof of the covering lemma.



» Next we prove the following theorem:

Theorem
M is of strong-type (p,p) on R" for all 1 < p < oo, i.e. for any
such p, there exists a constant C, , such that

IMfle < Crplifller
for all f € LP(R").

» Since clearly Mf(x) < ||f||i~ for every x € R", the theorem is
trivial when p = oo (with C, oo = 1).

» We will prove the theorem by interpolating this L>° endpoint
with the weak-type (1,1) result we just proved.

» This gives a constant C, , that depends on n.

» On the other hand, we remark that via more sophisticated
methods, the constant C, , can be chosen independent of n
for all 1 < p < oco. We will not pursue this here.



The starting point of the proof of the theorem is the following
identity:

|MF|JP, = /0 paPL[{x € R": Mf(x) > a}|da

which holds for all 1 < p < oo by Fubini's theorem.
Now for each o > 0, we have

f=1fXf|>a/2 T FX|fl<a/2

and M(fx|fj<a/2)(x) < a/2 for every x € R”, by the
boundedness of M on L*°.

Thus by subadditivity,
{x €R": Mf(x) > a} C {x € R": M(fx|f|>a/2)(x) > a/2}.

Since M is of weak-type (1,1), the measure of the latter is at

most
2C,
a Jr ’f|X\f\>a/2'




» Thus
| ML = / paP7t{x € R": Mf(x) > a}|da
0

o0 2C,
S/O paP? /\f X)|X|f|>a/2(x)dxda

2/F(x
§2C,,p/ |f(x)|/ oz”_2dozdx

<2c/ 2P~LIF(x)|Pdx

= anpﬁ”fum

» This proves the theorem with C, , = 2(p’)1/pC,:,l/p where
p' = p/(p — 1) is the Holder conjugate of p.
> Note that this constant blows up like O(1/(p—1))asp — 17.

» The above method of proof is an example of the technique of
real interpolation. We will return to this in Lecture 8.



Lebesgue differentiation theorem

» We may now prove the Lebesgue differentiation theorem,
which can be thought of as a measure-theoretic version of the
fundamental theorem of calculus in 1-dimension.

Theorem
Let f be a locally integrable function on R". Then for a.e. x € R”,

we have
f(X) _rl—l>0+ |B X, r | / B(x,r) f(t

» Without loss of generality we assume that f is compactly
supported (and hence in L1).

» |f f were also continuous, then the conclusion of the theorem
clearly holds for all x € R".

» The idea is to approximate f in L' by a continuous function
with compact support.



» Suppose f € LY(R"). We will prove a slightly stronger
statement:

lim sup |f(t) — f(x)|dt =0

r—0+ ‘B(Xa r)| B(x,r)
for a.e. x € R".
> Let ¢ > 0. Let g € C(R") be such that [|f — g 1gn) <e.
» Then

Iimsup / — f(x)|dt
r—0t X r ’ xr)
§Iimsup / g(x)|dt
r—0+ X r ’ xr)
li f
Hlimsup ,,/ g(0)ldt + () - g(x)|

<M|f — g|(x) + [f — gl(x



» Hence for any a > 0, we have

[{x € R": limsup [f(t) — f(x)|dt > a}|

r—0+ ‘B(Xar)| B(x,r)
<|{X € R M[f —g|(x) > a/2}[ + [{x € R": |f — g[(x) > a/2}]
2C

/2

> Letting ¢ — 0, we see that

{x € R": limsup
r—0+ |B(X7 r)’

/ IF(£) — F(x)|dt > a}| = 0
B(x,r)
for all « > 0, i.e.

|f(t) — f(x)|dt =0

limsup
r—0+ ‘ ( )‘ B(x,r)

for a.e. x € R".



» More generally, we have the following generalization of
Lebesgue's differentiation theorem:

Theorem
5uppose XS LI(R” W/th fR,, dx = 1. Let ¢ be the least

P(x) = sup |o(y)l.

ly>]x]

Suppose ¥ € LX(R"). Let ¢,(x) = r"¢(r~1x) for r > 0. Let f be
an LP function on R" for some 1 < p < co. Then we have

sup |f * ¢r|(x) < AMF(x)

r>0

for every x € R", where A = [, ¥(x)dx. Also,

f(x) = rl_i>n3+ fxo(x) forae xeR".



Indeed, let 1,(x) = r~"¢(r !x). We claim that

sup |f| x ¥, (x) < AMF(x)
r>0
for all x € R", where A =[5, ¢(x)dx.

If this claim is verified, then at any x where Mf(x) < oo, we
have |f| % 1,(x) < oo for all r > 0, and hence the integral
defining f * ¢,(x) converges for all r > 0.

It then remains to observe that
sup |f x ¢, (x)| < sup|f|* 1, (x) < AMF(x)
r>0 r>0

which is the desired conclusion.

The claim can be proved by approximating 1 from below by
linear combinations of characteristic functions of balls
centered at the origin.



» More precisely, one can find a sequence of functions {p,}?2,
increasing pointwisely to 1, such that each py is a finite sum

of the form
x) = Z 3j,kXBj,«
J

for some non-negative coefficients a; x and some balls B;
centered at the origin, and such that

Zaj7k|Bj7k| <A forany k€ N.
J
» Then
[Fl+r(x) = lim [f] (pi)r(x),
— 00

where (pi)r (x) = r_”,ok(r_lx) and
|f] * Zaj klf| * XBj,k)f(X)

< Z aj k| Bj k|MFf(x) < AMF(x)
J
forany k € N, r > 0 and x € R".



Once we established that sup,-q |f * ¢,(x)| < AMfF(x) for all
x € R”, then to prove

f(x) = lim fx ¢, (x)

r—0+

for a.e. x € R", we may proceed as before when 1 < p < 0.

We only need to note that the above identity holds for every
x € R" if f were in addition continuous with compact support.

To see the latter fact, let f € C.(R"). Let € > 0. Then we can
choose R > 0 large enough, so that f|y|>R |o(y)|dy < e. Then

fw@&%—ﬂ@=:RJ“X—UO—fQﬂMyW%

and we split this integral into two parts depending on whether
lyl<Rorly| =R

The integral over |y| > R is bounded by 2||f|| ~¢.

The integral over |y| < R can be made smaller than ¢ if r
were chosen small enough, by uniform continuity of f.



Now suppose f € LP(R") with 1 < p < 0.
Let € > 0. Let g € C(R") be such that ||f — g||prn) < ¢

Then for any a > 0, we have

{x € R": limsup|f x ¢,(x) — f(x)| > a}|

r—0+
<|{x € R": 2M|f — g|(x) > a}]
Cn7p anp P
<L — gy < 2P

Letting € — 0 we see that f(x) = lim,_,o+ f * ¢,(x) for a.e.
x € R".

When f € L*°(R"), a small modification is necessary:

we will instead prove that

f(x)= lim fx*¢.(x)

r—0*+

for a.e. x € B(0, R), for every R > 0.



» To do so, it suffices to let

f = 1fXp(o2r) + FXB(02R) = 1 + F2,

and verify pointwise a.e. convergence in B(0, R) for each of
them.

» But for every x € B(0, R),

|fox ¢r(x)] =

/ F(y)r(x — y)dy
ly|=2R

as r — 07. Also since f; € Ll(R”), we have

lim fi * ¢r(x) = fi(x) = f(x) forae. xe B(0,R).

r—07+

Thus lim,_,o+ f * ¢,(x) = f(x) for a.e. x € B(0, R).



Boundary behaviour of Poisson integral
» We have thus completed the proof of the generalization of the
Lebesgue differentiation theorem.
» As an application, this allows us to study the behaviour of the
Poisson integral u(x, y) of a function f(x) on R" as y — 0.
Theorem

Let f(x) be an LP function on R" for some 1 < p < oo, and

let u(x,y) = f * P,(x) be its Poisson integral for (x,y) € Rt
Then we have

lim u(x,y)=f(x) forae xecR"
y—07+
In addition,

sup |u(x,y)| < Mf(x) for every x € R".
y>0

» We remark that we also have LP norm convergence of u(x,y)
to f(x) if f € LP(R") and p € [1, c0).



Mapping properties of Riesz potentials

>

Finally, we establish mapping properties of the Riesz
potentials on LP(R") from the mapping properties of
the Hardy-Littlewood maximal function.

Recall the Riesz potentials Z,,: S(R") — S’(R"), defined by
Tof = (=0)"2f = FH((2r[¢))"F(€)) = cnaf * |77

for some explicit constant ¢, if & € (0,n) and f € S(R").
The kernel |x|~("=) s in L7a"*°(R") but not in L (R").
If it were in Lﬁ(R”), then Young's convolution inequality
says that Z,: LP(R") — L9(R") where

1 1 — 1
7:74_” 04_1:7_9 whenever 1 < p < n/a.

g p n p n

Remarkably, this mapping property remains true when
1 < p < n/a even though |x|~("=®) ¢ [7=a (R").



Theorem
Fora € (0,n) and 1 < p < n/a, let

Then we have
(a) Z is of weak type (1,1%) on R";
(b) Z, is of strong type (p,p*) on R" if1 < p < n/c.

v

To prove this, let 1 < p < n/a.
Note that for each x € R", we have

Tof(x) = Cn,a/ f(x—y)

yeR" ‘y’n—a

v

dy.

v

Since the kernel of Z, is non-negative, we may assume that f
is non-negative.

v

We split the integral into two parts, depending on whether
ly] <R or|y] > R, where R > 0 is to be chosen.



1
Iaf(X) = Cn’a/ f(X — y)Tady = / +/
yER? lyl lyl<R  Jly|>R

We estimate the first integral by the Hardy Littlewood
maximal l.cunction: indeed, since f|y|<R = ady < Cq,nRY,
by a previous theorem, we have

1
/ f(x —y)——dy < ConR*MFf(x).
YI<R i
We estimate the second integral by Holder's inequality:

indeed, since p < n/ca, we have X|y‘>R|y\_(”_°‘) e LP'(R™),
and hence

1 a—12
[ )y < R s
YR v

Thus .
Zof(x) Sanp REMF(x) + R ||f| 1o



Tof(X) Samp REMF(x) + R 5| 1o

» We choose R so that the right hand side is almost minimized,
say so that R*Mf(x) = a77||fHLP Then

P
¥

b _ap 1-&
Taf (%) Sanp IFll s M) = ||f]l 7 MF(x)#"

» This shows

P
||Iaf( )HLP* ~Q,n,p HfHLp p HMf( )H P Sa,mp ||fHLP

if 1 < p < n/a, whereas for p =1 we have

{x € R": Z,f(x) > a}|
< |{x € R™: Mf(x) > Cana® ||f]I 7 T}

San @ VIl = a7 VNG

~

» Hence Z, is strong type (p, p*) if 1 < p < n/a, and weak
type (1,1%), as desired.



» We remark that using the mapping properties of Z, we just
proved, and certain rearrangement arguments, one can
establish the following generalized Young's convolution
inequality on R":

Theorem
Suppose 1 < p,q,r < oo and
1 1

1+-=>+
rop

1
.
Then for any f € LP(R"), g € L9°°(R"), we have

I+ gl Spagor [1fllren) gl Lo (r)-

> Instead of giving this rearrangement argument here, we will
give a proof of this theorem in Homework 8, as an application
of a technique called real interpolation (which incidentally
allows one to refine this inequality further).



