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Introduction

I Last time we studied the Fourier transform of L1 and L2

functions.

I This time we extend this study to the more general context of
tempered distributions.

I This will give us tools towards the study of some constant
coefficient partial differential equations such as the Laplace
equation.

I We will then be led to an introduction of many objects of
interest in harmonic analysis, including the Riesz potentials,
the Riesz transform and the Hilbert transform.
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Schwartz functions and tempered distributions

I The Schwartz space on Rn is defined as

S(Rn) := {f ∈ C∞(Rn) : ‖f ‖α,β <∞ for all multiindices α, β} ,

where
‖f ‖α,β := sup

x∈Rn
|xα∂βf (x)|

for any multiindices α, β ∈ (N ∪ {0})n.

I It is a topological vector space, with fn → 0 in S(Rn) if and
only if

‖fn‖α,β → 0 for all multiindices α, β.

I It can be made a complete metric space, with

d(f , g) :=
∞∑
k=0

2−k
‖f − g‖k

1 + ‖f − g‖k

where ‖f ‖k := sup|α|+|β|=k ‖f ‖α,β.



I The space of tempered distributions, denoted S ′(Rn), is the
space of all continuous linear functionals on S(Rn).

I Examples of tempered distributions include Lp functions for all
p ∈ [1,∞], and locally integrable functions that grows at
most polynomially at infinity (if u is such a function, then

u(f ) :=

∫
Rn

u(x)f (x)dx , f ∈ S(Rn)

is a tempered distribution).

I Other examples include the Dirac delta functions δx for
x ∈ Rn:

δx(f ) := f (x), f ∈ S(Rn)

or more generally finite Borel measures with compact supports
on Rn.

I We often write 〈u, f 〉 in lieu of u(f ) if u ∈ S ′(Rn) and
f ∈ S(Rn).



I S ′(Rn) is a topological vector space with the weak∗ topology,
i.e. un → 0 in S ′(Rn) if and only if

〈un, f 〉 → 0 for all f ∈ S(Rn).

I A nice feature of S ′(Rn) is that one can take (distributional)
derivative of any element u of S ′(Rn):

〈∂ju, f 〉 := −〈u, ∂j f 〉, f ∈ S(Rn), 1 ≤ j ≤ n.

(Why is this an element of S ′(Rn)?)

I The above definition of ∂ju is motivated by the identity∫
Rn

(∂ju)(x)f (x)dx = −
∫
Rn

u(x)(∂j f )(x)dx for all u, f ∈ S(Rn)

(and indeed the distributional derivative agrees with the
classical derivative if u ∈ C 1).



I Similarly one can define translations, rotations and dilations of
tempered distributions on Rn:

〈τhu, f 〉 := 〈u, τ−hf 〉, f ∈ S(Rn), h ∈ Rn;

〈u ◦ R, f 〉 := 〈u, f ◦ R−1〉, f ∈ S(Rn), R ∈ O(n);

〈Dλu, f 〉 := λ−n〈u,Dλ−1f 〉, f ∈ S(Rn), λ > 0.

I A tempered distribution u is said to be homogeneous of
degree α on Rn if

Dλu = λαu for all λ > 0;

e.g. δ0 is homogeneous of degree −n, and |x |α is a
homogeneous tempered distribution of degree α if α > −n.



I One can multiply a tempered distribution u by a C∞ function
p that grows at most polynomially at infinity:

〈pu, f 〉 := 〈u, pf 〉, f ∈ S(Rn).

I In particular, one can multiply a tempered distribution by a
polynomial, and modulate a tempered distribution:

〈Λξu, f 〉 := 〈u, e2πix ·ξf 〉, f ∈ S(Rn), ξ ∈ Rn.



I The Fourier transform defines a bijection on S(Rn), and the
Fourier inversion formula holds at every point:

f (x) =

∫
Rn

f̂ (ξ)e2πix ·ξdξ

whenever f ∈ S(Rn) and x ∈ Rn; we also have the duality∫
Rn

g(x)f̂ (x)dx =

∫
Rn

ĝ(x)f (x)dx for all f , g ∈ S(Rn).

I As a result, by duality one can define the Fourier transform of
a tempered distribution u on Rn:

〈û, f 〉 := 〈u, f̂ 〉, f ∈ S(Rn).

I We sometimes also write Fu for the Fourier transform of u if
u ∈ S ′(Rn).



I e.g. δ̂x is a function, given by e−2πix ·ξ; also

F [(2π|x |)−α] = 2απn/2 Γ(α/2)

Γ((n − α)/2)
|ξ|−(n−α) for 0 < α < n.

I If u is a homogeneous tempered distribution of degree α, then
û is a homogeneous tempered distribution of degree −n − α.

I The Fourier transform defines a bijection on S ′(Rn). Thus
one can take the inverse Fourier transform of any tempered
distributions on Rn.

I We sometimes also write F−1u for the inverse Fourier
transform of u if u ∈ S ′(Rn).



I If g ∈ S(Rn) and u ∈ S ′(Rn), we can define the convolution
of g with u, by

〈u ∗ g , f 〉 := 〈u, g̃ ∗ f 〉, f ∈ S(Rn)

where g̃(x) := g(−x). This works because g̃ ∗ f is also
Schwartz when both f , g ∈ S(Rn).

I Indeed if g ∈ S(Rn) and u ∈ S ′(Rn), then u ∗ g agrees with a
C∞ function on Rn, given by

(u ∗ g)(x) = 〈u, τx g̃〉, x ∈ Rn.

I Furthermore, if g ∈ S(Rn) and u ∈ S ′(Rn), then

û ∗ g = ĝ · û.



The Laplace equation on Rn

I We use the above technology of tempered distribution and
Fourier transform to study the equation −∆u = f , where ∆ is
the Laplacian on Rn given by

∆ =
n∑

j=1

∂2

∂x2
j

.

I The equation −∆u = f is equivalent, via the Fourier
transform, to the equation 4π2|ξ|2û(ξ) = f̂ (ξ).



I For n ≥ 2, let m be a tempered distribution on Rn such that

〈m,G 〉 =

∫
Rn

G (ξ)

(2π|ξ|)2
dξ

for every G ∈ S(Rn) with G (0) = 0.

I An explicit such m is given by

〈m,G 〉 :=

{∫
Rn

G(ξ)
(2π|ξ|)2 dξ if n ≥ 3,∫

|ξ|≥1
G(ξ)

(2π|ξ|)2 dξ +
∫
|ξ|≤1

G(ξ)−G(0)
(2π|ξ|)2 dξ if n = 2.

I Such m is not unique; one can for instance always add a
multiple of the δ function at 0.

I We fix any such m in the next slide.



I If f ∈ S(Rn) and n ≥ 2, then

u := F−1(mf̂ ) ∈ S ′(Rn)

solves −∆u = f in the sense of tempered distributions.

I This is because then for any g ∈ S(Rn), we have

〈4π2|ξ|2û, g〉 = 〈û, (2π|ξ|)2g〉

= 〈m, (2π|ξ|)2f̂ (ξ)g(ξ)〉

=

∫
Rn

(2π|ξ|)2f̂ (ξ)g(ξ)

(2π|ξ|)2
dξ

= 〈f̂ , g〉

(the second-to-last equality uses (2π|ξ|)2f̂ (ξ)g(ξ) ∈ S(Rn)
and vanishes at 0), which shows that

4π2|ξ|2û = f̂ .



I This shows that if f ∈ S(Rn) and n ≥ 2, then

u := f ∗ (F−1m) ∈ S ′(Rn)

solves −∆u = f in the sense of tempered distributions.

I The above worked for a class of multipliers m; we may choose
m suitably so that we have

F−1m =

{
− 1

2π log |x | if n = 2
Γ((n−2)/2)

4πn/2 |x |−(n−2) if n ≥ 3.

(Actually just take m as explicitly displayed two slides ago,
and add a suitable multiple of δ0 when n = 2.)
These are called the fundamental solution to −∆ on Rn.

I Thus we obtain a formula for a solution to −∆u = f in the
sense of tempered distributions if f ∈ S(Rn) and n ≥ 2.

I On the other hand, note that the solution to −∆u = f is not
unique in S ′(Rn): if u is a solution, then so is u + P for any
harmonic polynomial P on Rn (of which there are plenty).



Riesz potentials, Riesz transforms and Hilbert transform

I Motivated by the previous computation, given a tempered
distribution m ∈ S ′(Rn), we consider operators of the form

f ∈ S(Rn) 7→ F−1(mf̂ ) ∈ S ′(Rn).

This is called the multiplier operator associated to m.

I We specialize to the case when m(ξ) agrees with the locally
integrable function (2π|ξ|)−α on Rn where α ∈ (0, n).

I We define the Riesz potential of order α on Rn by

Iαf = F−1((2π|ξ|)−αf̂ (ξ))

if f ∈ S(Rn) and α ∈ (0, n). Iα is also sometimes written
suggestively as (−∆)−α/2.

I The distributional solution to −∆u = f we constructed on Rn

in the last section is then just I2f = (−∆)−1f if n ≥ 3.



I By taking the inverse Fourier transform of (2π|ξ|)−α on Rn

when α ∈ (0, n), we see that

Iαf = f ∗ Γ((n − α)/2)

2απn/2Γ(α/2)

1

|x |n−α

for all f ∈ S(Rn).

I The mapping properties of Iα on Rn, for α ∈ (0, n), will be
studied in the next lecture.



I Now we move on to the Riesz transforms on Rn.

I Let n ≥ 2 and f ∈ S(Rn).

I Recall the distributional solution to −∆u = f given by the
fundamental solution of −∆.

I If 1 ≤ j , k ≤ n, then

∂̂xj∂xku = −
ξj
|ξ|

ξk
|ξ|

f̂ .

I This motivates us to study on Rn the multiplier operators

with multiplier −i ξj|ξ| , for 1 ≤ j ≤ n.



I Such are called the Riesz transforms on Rn: the j-th Riesz
transform on Rn is given by

R̂j f (ξ) = −i
ξj
|ξ|

f̂ (ξ)

for f ∈ S(Rn) and 1 ≤ j ≤ n, if n ≥ 2. Equivalently,

Rj f = f ∗
Γ(n+1

2 )

π
n+1

2

p.v.
xj
|x |n+1

.

I Thus if f ∈ S(Rn) and u is the distributional solution to
−∆u = f given by the fundamental solution of −∆, then

∂xj∂xku = RjRk f .



I The study of Riesz transforms on Rn is reduced to the study
of the multiplier isgn(ξ) on R if n = 1.

I This is called the Hilbert transform H on R. More concretely,

Ĥf (ξ) = −isgn(ξ)f̂

if f ∈ S(R), or equivalently

Hf = f ∗ 1

π
p.v.

1

x
.



I The multiplier −isgn(ξ) is, up to scalar multiplication, the
unique homogeneous tempered distribution of degree 0 that is
odd (i.e. that satisfies m ◦ R = −m where R is the reflection
about the origin, given by Rx = −x).

I One can then give a characterization of the Hilbert transform
along this line, using invariance properties.

I Beginning the next slide, we will see how the Hilbert
transform also arises naturally from the study of conjugate
harmonic functions on the upper half space R2

+.

I A similar discussion will be given for the Riesz transforms on
Rn, n ≥ 2.

I The mapping properties of the Hilbert transform (on R) and
the Riesz transforms (on Rn) will be deferred to Lecture 4.



Harmonic functions on the upper half space

I R arises as the boundary of the upper half space

R2
+ := {(x , y) ∈ R2 : y > 0}.

I Given f ∈ S(R), one may try to find a harmonic extension u
of f into the upper half space R2

+, namely a continuous
function u on the closure R2

+ that solves the Dirichlet problem{
∆u = 0 on R2

+

u = f on R.

I By taking partial Fourier transform in x and solving an
ordinary differential equation in y , we are led to one candidate
for such a function u, namely

u(x , y) =

∫
R
f̂ (ξ)e−2πy |ξ|e2πixξdξ.



I One easily verifies that then u is the Poisson integral of f ,
given by

u(x , y) = f ∗ Py (x), y > 0

where

Py (x) =
1

π

y

x2 + y2

is the Poisson kernel on R.

I Hence one also sees that then u solves the Dirichlet problem
on the last slide (since Py (x) forms an approximate identity).

I In addition, such u(x , y) is bounded on R2
+, and is the unique

bounded solution of the aforementioned Dirichlet problem.

I We now determine a suitable conjugate harmonic function v
to u on R2

+, and consider its boundary value as y → 0+.



Conjugate harmonic functions

I Let f ∈ S(R) and

u(x , y) =

∫
R
f̂ (ξ)e−2πy |ξ|e2πixξdξ

be the Poisson integral of f .

I We seek a harmonic conjugate of v , i.e. a harmonic function
v(x , y) on the upper half space R2

+ that satisfies

∂xv = ∂yu, ∂yv = −∂xu.

I Taking partial Fourier transform in x , we see that one such v
is given by

v(x , y) = −i
∫
R
sgn(ξ)f̂ (ξ)e−2πy |ξ|e2πixξdξ;

this is indeed the unique such v that is bounded on R2
+.



v(x , y) = −i
∫
R
sgn(ξ)f̂ (ξ)e−2πy |ξ|e2πixξdξ;

I v(x , y) can also be written as v(x , y) = f ∗ P̃y (x) where

P̃y (x) =
1

π

x

x2 + y2

is the conjugate Poisson kernel.

I We study the boundary behaviour of v(x , y) as y → 0+.

I Since f ∈ S(R), the dominated convergence theorem shows
that

lim
y→0+

v(x , y) = −i
∫
R
sgn(ξ)f̂ (ξ)e2πixξdξ

for every x ∈ R.

I The right hand side is precisely the Hilbert transform of f .



I Alternatively, for f ∈ S(R), we also have

lim
y→0+

v(x , y) = f ∗ 1

π
p.v.

1

x

since

P̃y (x)→ 1

π
p.v.

1

x

in S ′(R) as y → 0+. Again we recognize the Hilbert
transform of f in the limit.

I Hence if f ∈ S(R), then the Hilbert transform of f is the
boundary value of a harmonic conjugate of the Poisson
integral of f .



I A similar characterization can be given for the Riesz
transforms in higher dimensions.

I Let Rn+1
+ = {(x0, x1, . . . , xn) : x0 > 0}.

I For f ∈ S(Rn), the Poisson integral of f is given by∫
Rn

f̂ (ξ)e−2πx0|ξ|e2πix ·ξdξ = f ∗ Px0(x)

where Px0(x) is the Poisson kernel on Rn+1
+ given by

Px0(x) =
Γ(n+1

2 )

π
n+1

2

x0

(x2
0 + |x |2)(n+1)/2

.

This Poisson integral is the unique bounded solution of the
Dirichlet problem on the upper half space Rn+1

+ :{
∆u = 0 on Rn+1

+

u = f on Rn.



I A vector-valued function (U0, . . . ,Un) defined on Rn+1
+ is said

to be a system of conjugate harmonic functions, if{
∂xjUk = ∂xkUj for all 0 ≤ j < k ≤ n∑n

j=0 ∂xjUj = 0.

(If we let U be the differential 1-form on Rn+1
+ given by

U =
∑n

j=0 Ujdx
j , then the above system is equivalent to

saying that U is a harmonic form on Rn+1
+ , i.e.

dU = 0 and d∗U = 0

where d and d∗ are the divergence and curl operators
respectively. Note that when n = 1 the above system is just
the Cauchy-Riemann equations.)



I Now let f ∈ S(Rn) and U0 be the Poisson integral of f
defined on Rn+1

+ .

I We then observe that (U0, . . . ,Un) form a system of
conjugate harmonic functions on Rn+1

+ if

Uj(x0, x) = −i
∫
Rn

ξj
|ξ|

f̂ (ξ)e−2πx0|ξ|e2πix ·ξdξ

for 1 ≤ j ≤ n.

I The boundary values of such are given by

lim
x0→0+

Uj(x0, x) = −i
∫
Rn

ξj
|ξ|

f̂ (ξ)e2πix ·ξdξ,

which we recognize to be the j-th Riesz transform Rj f of f .



I Alternatively, the Uj on the previous slide can be written as

Uj(x) = f ∗ P̃(j)
x0 (x) where

P̃
(j)
x0 (x) =

Γ(n+1
2 )

π
n+1

2

xj
(x2

0 + |x |2)(n+1)/2

is the j-th conjugate Poisson kernel for 1 ≤ j ≤ n.

I The boundary values of such are given by

lim
x0→0+

Uj(x0, x) = f ∗
Γ(n+1

2 )

π
n+1

2

p.v.
xj
|x |n+1

,

which we recognize again to be the j-th Riesz transform Rj f
of f , since

P̃
(j)
x0 (x)→

Γ(n+1
2 )

π
n+1

2

p.v.
xj
|x |n+1

in S ′(Rn) as x0 → 0+.


