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Introduction

» Last time we studied the Fourier transform of L' and L2
functions.

» This time we extend this study to the more general context of
tempered distributions.

» This will give us tools towards the study of some constant
coefficient partial differential equations such as the Laplace
equation.

» We will then be led to an introduction of many objects of
interest in harmonic analysis, including the Riesz potentials,
the Riesz transform and the Hilbert transform.
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Schwartz functions and tempered distributions

» The Schwartz space on R" is defined as

S(R™) :={f € C®(R"): ||f|la,g < 0o for all multiindices a, 5},

where
Illa,s == sup [x*9°F(x)]
xeR"

for any multiindices o, 8 € (NU {0})".

» It is a topological vector space, with f, — 0 in S(R") if and
only if

| falla,s = 0 for all multiindices «, 3.

> It can be made a complete metric space, with
o0

x If—gl«
d(f,g) = 2 e _lf —glle
(re):=2 2" g,

where [|f]|x := supjq|4p|=k |flla,8-



The space of tempered distributions, denoted S’'(R"), is the
space of all continuous linear functionals on S(R").

Examples of tempered distributions include LP functions for all
p € [1,00], and locally integrable functions that grows at
most polynomially at infinity (if v is such a function, then

u(f) = /n u(x)f(x)dx, fe SR

is a tempered distribution).
Other examples include the Dirac delta functions d, for
x € R™
Ix(f):=1f(x), feSR")
or more generally finite Borel measures with compact supports
on R”.
We often write (u, f) in lieu of u(f) if u € S'(R") and
f e S(R").



» S'(R") is a topological vector space with the weak* topology,
i.e. up — 0in §'(R") if and only if

(un,f) — 0 forall f € S(R").

» A nice feature of S’(R") is that one can take (distributional)
derivative of any element u of S’(R"):

(Oju, f) = —(u,9jf), FeSR"), 1<j<n
(Why is this an element of S'(R")?)

» The above definition of 9;u is motivated by the identity

/n(aju)(x)f(x)dx = —/n u(x)(9;f)(x)dx for all u, f € S(R")

(and indeed the distributional derivative agrees with the
classical derivative if u € C1).



» Similarly one can define translations, rotations and dilations of
tempered distributions on R":

(tpu, f) == (u,7_pf), feSMR"), heR"
(WoR )= (u,foRY), feSE®Y, ReO(n)
(Dyu, f) .= X""(u,Dy-1f), feSR"), A>0.

» A tempered distribution u is said to be homogeneous of
degree o on R” if

Dyu= X*u forall A > 0;

e.g. dp is homogeneous of degree —n, and |x|“ is a
homogeneous tempered distribution of degree o if a > —n.



» One can multiply a tempered distribution u by a C* function
p that grows at most polynomially at infinity:

(pu,f) :=(u,pf), feSR").

» In particular, one can multiply a tempered distribution by a
polynomial, and modulate a tempered distribution:

(Aeu, f) = <u,e2”ix'§f>, feSR"), ¢eR™



» The Fourier transform defines a bijection on S(R"), and the
Fourier inversion formula holds at every point:

f(x) = / F()ePedg

whenever f € S(R") and x € R"; we also have the duality

/ ()7 (x)d = / B ()dx for all £, € SR,

» As a result, by duality one can define the Fourier transform of
a tempered distribution v on R":

@, f) = (u,f), feSR.

» We sometimes also write Fu for the Fourier transform of v if
ueS'(R").



~

e.g. Oy is a function, given by e=27<¢: also

_ Ma/2) (n—

Flr|x|)™] = 2072 =20 _|g|=(=) for 0 < o < 1.
M((n—a)/2)

If uis a homogeneous tempered distribution of degree «, then

U is a homogeneous tempered distribution of degree —n — «.

The Fourier transform defines a bijection on S’'(R"). Thus
one can take the inverse Fourier transform of any tempered
distributions on R".

We sometimes also write F~1u for the inverse Fourier
transform of v if u € §'(R").



» If g € S(R") and u € S'(R"), we can define the convolution
of g with u, by

(uxg,f)y:=(u,gxf), feSR")

where g(x) := g(—x). This works because g * f is also
Schwartz when both f, g € S(R").

» Indeed if g € S(R") and v € S'(R"), then u * g agrees with a
C function on R", given by

(u*xg)(x) = (u,7xg), xeR".
» Furthermore, if g € S(R") and v € S'(R"), then

—

uxg=g-u.



The Laplace equation on R”

» We use the above technology of tempered distribution and
Fourier transform to study the equation —Au = f, where A is
the Laplacian on R” given by

n 82

A= —.
.Z Ox?
Jj=1 J

> The equation —Au = f is equivalent, via the Fourier
transform, to the equation 472|¢|2%(€) = (€).



v

v

v

v

For n > 2, let m be a tempered distribution on R” such that

6
me= [ ez

for every G € S(R") with G(0) = 0.

An explicit such m is given by

G() :
(m, G) = {fR" Corle de N ifn=3,
Jiez=1 @rep e + S “may 96 ifn=2

Such m is not unique; one can for instance always add a
multiple of the § function at 0.

We fix any such m in the next slide.



» If f € S(R") and n > 2, then
u:=F Y(mf) e S'(R")

solves —Au = f in the sense of tempered distributions.

» This is because then for any g € S(R"), we have

i, (2r <))
(2[€1)*F(©)g ()

@
= {m
_ [ Cre)F©s©)
‘/gn Crlge
{f.g)

(47%|¢%1, g) =

(the second-to-last equality uses (27|¢])2f(£)g(€) € S(R™)
and vanishes at 0), which shows that

ar?|ela =¥



» This shows that if f € S(R") and n > 2, then
u:=fx(F1m)e S (R

solves —Au = f in the sense of tempered distributions.

» The above worked for a class of multipliers m; we may choose
m suitably so that we have

L Jog |x]| if n=2

—1 .
F m—{r((n 2)/2)’ - (n—2) ifn>3
47n/2 -7

(Actually just take m as explicitly displayed two slides ago,
and add a suitable multiple of dg when n =2.)
These are called the fundamental solution to —A on R”.

» Thus we obtain a formula for a solution to —Au = f in the
sense of tempered distributions if f € S(R") and n > 2.

» On the other hand, note that the solution to —Awu = f is not
unique in 8’(R™): if u is a solution, then so is u + P for any
harmonic polynomial P on R" (of which there are plenty).



Riesz potentials, Riesz transforms and Hilbert transform

» Motivated by the previous computation, given a tempered
distribution m € S'(R"), we consider operators of the form

f e S(R") — F(mf) e S'(R").

This is called the multiplier operator associated to m.

» We specialize to the case when m(§) agrees with the locally
integrable function (27(¢])™ on R"” where a € (0, n).

» We define the Riesz potential of order ac on R" by
Tof = FH((2rl€)F(€)
if f € S(R") and a € (0, n). Z, is also sometimes written
suggestively as (—A) /2.

» The distributional solution to —Au = f we constructed on R”
in the last section is then just Iof = (—A)~1f if n > 3.



» By taking the inverse Fourier transform of (27|£])™® on R”
when « € (0, n), we see that

MNn—a)/2) 1

T.f =
* 2oarn/2[ (o /2) | x| "=

for all f € S(R").
» The mapping properties of Z,, on R”, for a € (0, n), will be
studied in the next lecture.



Now we move on to the Riesz transforms on R”.

Let n>2 and f € S(R").

Recall the distributional solution to —Awu = f given by the
fundamental solution of —A.

If 1 <j, k <n, then

—— & &k~

Oy, Oy, U =
T €] €]

This motivates us to study on R” the multiplier operators
with multiplier — |£| for1<j<n.



» Such are called the Riesz transforms on R": the j-th Riesz
transform on R” is given by

for f € S(R") and 1 < j < n, if n > 2. Equivalently,

(n+1) XJ'
RJf:f* ﬂ.";l p.-v |X’”+1'

» Thus if f € S(R") and u is the distributional solution to
—Au = f given by the fundamental solution of —A, then

Oy, O U = RiRyf.



» The study of Riesz transforms on R” is reduced to the study
of the multiplier isgn(¢) on R if n = 1.

» This is called the Hilbert transform H on R. More concretely,

HF(€) = —isgn(€)f

if f € S(R), or equivalently

1 1
Hf = f % —p.v.—.
7T X



The multiplier —isgn(§) is, up to scalar multiplication, the
unique homogeneous tempered distribution of degree 0 that is
odd (i.e. that satisfies mo R = —m where R is the reflection
about the origin, given by Rx = —x).

One can then give a characterization of the Hilbert transform
along this line, using invariance properties.

Beginning the next slide, we will see how the Hilbert
transform also arises naturally from the study of conjugate
harmonic functions on the upper half space Ri.

A similar discussion will be given for the Riesz transforms on
R" n>2.

The mapping properties of the Hilbert transform (on R) and
the Riesz transforms (on R") will be deferred to Lecture 4.



Harmonic functions on the upper half space
» R arises as the boundary of the upper half space
R% == {(x,y) e R?: y > 0}.
» Given f € S(R), one may try to find a harmonic extension u
of f into the upper half space R2, namely a continuous
function u on the closure Ri that solves the Dirichlet problem

Au=20 onR%r
u="f on R.

» By taking partial Fourier transform in x and solving an
ordinary differential equation in y, we are led to one candidate
for such a function u, namely

u(x,y) = A?(g)ezﬂy£|e2ﬂiX£d§.



One easily verifies that then u is the Poisson integral of f,
given by
u(x,y)=f*Py(x), y>0
where
1 vy
X2+ y2?

Py(x) =

is the Poisson kernel on RR.

Hence one also sees that then u solves the Dirichlet problem
on the last slide (since P,(x) forms an approximate identity).
In addition, such u(x,y) is bounded on R2, and is the unique
bounded solution of the aforementioned Dirichlet problem.

We now determine a suitable conjugate harmonic function v
to u on R%r, and consider its boundary value as y — 0.



Conjugate harmonic functions

» Let f € S(R) and

u(x,y) = /R F(€)e 2 IEle?nine g

be the Poisson integral of f.

» We seek a harmonic conjugate of v, i.e. a harmonic function
v(x,y) on the upper half space R%r that satisfies

Oxv = 0yu, 0Oyv = —0u.

» Taking partial Fourier transform in x, we see that one such v
is given by

v(x,y) = —I'/ngn@)?(g)e2wy£|e27er§d€;

this is indeed the unique such v that is bounded on ]R%r.



v(x,y) = —i/RSgn(g)/f:(é')e—Zﬂ'nye27rix§d£;

v(x,y) can also be written as v(x,y) = f * P,(x) where

~ 1 X

P =———
y(X) T X2 + y2

is the conjugate Poisson kernel.

We study the boundary behaviour of v(x,y) as y — 0.

Since f € S(R), the dominated convergence theorem shows
that

lim v(x,y) = —i/ngn(f)?(f)e%"Xédﬁ

y—0+
for every x € R.
The right hand side is precisely the Hilbert transform of f.



» Alternatively, for f € S(R), we also have

1 1
li =f*x—p.v.—
lim v(xy) = 5 Zpv

since

~ 1 1
P,(x) — —P.V.
in §'(R) as y — 0". Again we recognize the Hilbert
transform of f in the limit.
» Hence if f € S(R), then the Hilbert transform of f is the

boundary value of a harmonic conjugate of the Poisson
integral of f.



» A similar characterization can be given for the Riesz
transforms in higher dimensions.

> Let RT™ = {(x0,x1,...,%n): X0 > 0},
» For f € S(R"), the Poisson integral of f is given by

/ F(€)e 2okl EdE = £ 4 Py (x)

where P, (x) is the Poisson kernel on R’/*! given by

r(") X0
r'z (G + [x[2)lrt D2

Py (x) =

This Poisson integral is the unique bounded solution of the
Dirichlet problem on the upper half space Rflz

Au=0 on Rffl
u="f on R".



» A vector-valued function (Up, ..., U,) defined on ]Rﬁ’fl is said
to be a system of conjugate harmonic functions, if

{axjuk —0,U; forall0<j<k<n

(If we let U be the differential 1-form on Rﬁ’fl given by
U= ZJ'-’:O Ujdxj7 then the above system is equivalent to

saying that U is a harmonic form on Rfl, i.e.
dU=0 and d*U=0

where d and d* are the divergence and curl operators
respectively. Note that when n =1 the above system is just
the Cauchy-Riemann equations.)



Now let f € S(R") and Uy be the Poisson integral of f
defined on ]Rfl.

We then observe that (Up, ..., U,) form a system of
conjugate harmonic functions on R} if

for1<j<n.

The boundary values of such are given by

lim Uj(xo,x) = _,'/ ﬁ’f((s)e%ix.gd&
R

xo—}0+ n ’5‘

which we recognize to be the j-th Riesz transform R;f of f.



> Alternatively, the U; on the previous slide can be written as
Ui(x) = f = Pg)(x) where

1) Xj
5 (g [x[2) (D)2

P9(x) =

is the j-th conjugate Poisson kernel for 1 < j < n.

» The boundary values of such are given by

(n+1) Xj
xoli?) Uj(xo,x) = f x o pv| =y

which we recognize again to be the j-th Riesz transform R;f
of f, since

1) Xj
i bV x|

PO (x) -

s
in '(R™) as xo — 0*.



