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Fourier series on T: L? theory

v

Let T = R/Z be the unit circle.
{Functions on T} = {periodic functions on R}.

v

The n-th Fourier coefficient of an L! function on T is given by

v

f(n) = / f(x)e ?™™dx, neZ.
T

v

A remarkable insight of J. Fourier was that perhaps ‘every’
function f on T can be represented by a Fourier series:

§ :ane271'lnx.
nez

» One can make this rigorous, for instance, when one restricts
attention to L2 functions on T (which form a Hilbert space).



» The claim is that for every f € L?(T), the Fourier series of f
converges to f in L?(T) norm.

» In other words, for every f € L?(T), we have
Z F(n)e*™™ — f(x)  in L3(T) as N — oo.
n=—N

» Underlying this claim are two important concepts, namely
orthogonality and completeness.



» Clearly {€>™™} 7 is an orthonormal system on L2(T), and

F(”) = (f(x), e2ﬂinX>L2(1r)~

» General principles about orthogonality then shows that for
every N € N,

Snf(x) =Y F(n)e*™™

[n|<N

is the orthogonal projection of f onto the linear subspace Vy
of L2(T) spanned by {e*™: |n| < N}. In other words,

f:(f—SNf)+5Nf

with Syf € Vi and (f — Syf) L Vi, and hence

ST < [ lFomy-

nezZ

(The last inequality is sometimes called Bessel's inequality.)



The aforementioned property about orthogonal projection can
be rephrased as

27rinX}|

IF=Suflizgry = min {1 — pwllizry: P € span{e™cn}

On the other hand, one can show that the set of all finite
linear combinations of {7}, 7 (i.e. the set of all
trigonometric polynomials) is dense in L?(T) (more to follow
below).

Thus {e?™™¥} <7 form a complete orthonormal system on
L2(T).
It follows that for every f € L2(T), we have

Snf—f  in [3(T)as N — oo.

To see this desired density, we study convolutions and
multiplier operators.



Convolutions

» The convolutions of two L! functions on T is another L!
function, given by

frg(x)= /T f(x = y)g(y)dy.

» Convolutions are associative and commutative:
fx(gxh)=(fx*g)=xh, frg=gxf.
» If f € LP(T) for some p € [1,0c] and g € L}(T), then

fxge LP(T).
» More generally, if p, g, r € [1,00] and
1 1 1
1+-=>+=
r p q
then

1 gllLrery < (1l oery gl Lamy-
(Young's convolution inequality)



» For f € LY(T), let

f(n) = /T F(x)e™ 2" dx

as before. Then

~

fxg(n) = f(n)g(n)
whenever f, g € L1(T).
» So if K € L}(T), then the convolution operator

f=fxK

can be understood via the Fourier transform of K: indeed

fxK(x)= Z f(mK n)ezﬂinx

nez

whenever f is in (say) L?(T).



The Dirichlet and Fejer kernels

» For each N € N, let Dy and Fp be the Dirichlet and Fejer
kernels respectively, defined by

- 1 if|n[ <N — 1- b e < N
Dn(n) = , Fn(n) = N .
w(n) {0 £ Il > N n(n) { .

Then



If f € LY(T), then

Snf = f % Dy,
and
Sof + S1f + -+ Sy_1f
=fx Fp.
N
One has a closed formula for Fp: indeed
1 /sin Nmx\?2
F = — .
w(x) N < sin Tx )

From this we see that Fp > 0 for all N,
[ Fnllr = Fu(0) =1,

and
/ Fn(y)dy -0 as N — oo.
0<|y[<1/2

Thus {Fn}nen form a family of good kernels.



» As a result, if f is continuous on T, then f x Fy —
uniformly on T.

» Hence by approximating by continuous functions, we see that
trigonometric polynomials are dense in L?(T).

» This establishes in full the elementary L? theory of the Fourier
transform on T. In particular, now we have Plancherel’s

theorem: R
S () = 11122 ()
nez

whenever f € L%(T).



Pointwise convergence of Fourier series

» We can now prove the Riemann-Lebesgue lemma: for
f € L1(T), we have

sup [£(n)| < |l (r)-
neZ
Indeed f(n) — 0 as n — +o0.
» This allows one to show that
lim > f(n)e*™™ = f(x)

N—o0
[ <N

whenever f is Holder continuous of some positive order at
x € T (actually we only need a Dini condition at x: indeed

the condition
[ ey,
It)<1/2 ]

will suffice.)



On the other hand, there exists a continuous function on T
whose Fourier series diverges at say 0 € T. So mere continuity
of f does not guarantee everywhere pointwise convergence of
Fourier series!

On the pathological side, there even exists an L! function on
T, whose Fourier series diverges everywhere (Kolmogorov).

However, a remarkable theorem of Carleson says that the
Fourier series of an L? function on T converges pointwise
almost everywhere (a.e.).

(Later Hunt showed the same for LP(T), 1 < p < c0.)

We will come back to this briefly towards the end of this
lecture.



Other modes of convergence

>

To sum up, we have considered L2 norm convergence,
pointwise convergence and a.e. pointwise convergence of
Fourier series.

Other modes of convergence of Fourier series also give rise to
interesting questions.

Examples include LP norm convergence, uniform convergence,
absolute convergence, and various summability methods.

If f € C?(T), then clearly the Fourier series of f converges
absolutely and uniformly (since \f(n)\ < |n|72).

However, indeed the Fourier series of f converges absolutely
and uniformly already, as long as f is Holder continuous of
some order > 1/2 on T.

The question of LP norm convergence on T, for 1 < p < o0, is
also well understood, and will be considered in Lecture 4.

It is interesting to note that an analogous question in higher
dimensions (for T, n > 1) is much deeper, and is related to
some excellent open problems in the area.



Multiplier operators: a prelude

» Given a bounded function m: Z — C, the map

f(X) — Tmf(X) = Z m(n)f(n)e%rinx
neZ

defines a bounded linear operator on L?(T).

» Examples: convolution with the Dirichlet or the Fejer kernels.

» The analysis of such operators often benefit by taking the
inverse Fourier transform of m, as we have seen in the case of
convolution with the Fejer kernel.

» We will be interested, for instance, in the boundedness of
many multiplier operators on LP(T) for various p € [1, o¢].

» e.g. The uniform LP boundedness of convolutions with the
Dirichlet kernels is crucial in the discussion of LP norm
convergence of the Fourier series of a function in LP(T).

» We note in passing that all multiplier operators commute with
translations (and so do all convolution operators).



The role played by the group of translations

> Let's take a step back and look at Fourier series on L?(T).
» There we expand functions in terms of complex exponentials
2minx
{e }nez.
» But why complex exponentials?

» An explanation can be given in terms of the underlying group
structure on T = R/Z.

» Recall T is an abelian group under addition.

» Thus if y € T, then the operator 7, : L2(T) — L?(T), defined
by
Tyf(X) = f(X+y)7

is a unitary operator on L?(T), and the group homomorphism
y € T 1, € B(L*(T))

is continuous if we endow the strong topology on B(L?(T)).



Thus the map y — 7, defines a unitary representation of the
compact group T on the (complex) Hilbert space L3(T).

The Peter-Weyl theorem then provides a splitting of L?(T)
into an orthogonal direct sum of irreducible finite-dimensional
representations.

Since T is abelian, all irreducible finite-dimensional
representations are 1-dimensional, by Schur’s lemma.

In other words, there exists an orthonormal family of functions
{fn}neZ of LZ(T), such that

L*(T) = P Ch,

nez

and such that f, is an eigenfunction of 7, for all y € T.



» For n € Z, let xn(y) be the eigenvalue of 7, on f,, i.e. let
Xn: T — C* be a continuous function such that

Tyfn = xn(y)f, forally € T.

> Then xa(y + ') = Xa(y)xn(y') forall y,y" € T, ie. X, is a
character on T.

» But if x: R — C* is a continuous function with

X(x +x") = x(x)x(x)

for all x,x” € R, then there exists a € C such that y(x) = e®*
for all x € R (just show that x(x) = e holds for x = mxp/2"
whenever m € Z, n € N and xp is sufficiently close to 0, and
use continuity); if in addition  is periodic with period 1, then
the a above must be in 27/Z.

» Thus without loss of generality, we may label the f,’s, so that
xn(y) = €™ foralln€ Z and all y € T.



This gives '
folx +y) = €T h(x)

forallneZ and all x,y € T, so

f(x) = 2mwinf,(x),

n

from which we conclude that f,(x) = ce?™™™ for some |c| = 1.

In other words, for each n € Z, the function €>™™ is an
eigenvector of 7, for all y € T, with eigenvalue e2miny.

To recap: we have a family {7y} et of commuting unitary
operators on L2(T), and the complex exponentials {€27"™} 7
provide a simultaneous diagonalization of these operators:

Ty e27rm>< — e27rlny e27rln><

foralln€Z, and all y € T.

Note that the orthogonality of the complex exponentials
follows from the Peter-Weyl theorem!



» Also, the equation

Ty e27rmx — e27rmy e27rmx

implies that €™ are eigenfunctions of the derivative
operator:
ie2winx
dx
This is not too surprising since derivatives are infinitesimal
translations!

» Another way of saying the same thing is that

7 (n) = "™ F(n)

= 2mine®™nx.

for all y € T and n € Z; hence differentiation and
multiplication are interwined by the Fourier transform:

fi(n) = 2minf(n) if f € CY(T).

» The fact that the Fourier series constitutes a spectral
decomposition of the derivative operator is what makes it so
powerful in the study of differential equations.



Analogue on R”

» The Fourier transform of an L! function on R" is defined by

o~

F(&) = / (e tdx, £ ER".

» We have R
£l Loomny < Il 2oy

indeed the Fourier transform of an L! function is continuous
on R".

» If f,g € L}(R"), their convolution is defined by

fxg(x)= / f(x —y)g(y)dy-
» We have f x g = g x f and

Fxg(€) = F()E(E)
if f,g € LY(R").



» The space of Schwartz functions on R” is defined as the space
of all smooth functions, whose derivatives of all orders are
rapidly decreasing at infinity. It is denoted S(R").

» One can restrict the Fourier transform on S(R"); indeed the
Fourier transform maps S(R") into itself.

» If £, g are Schwartz functions on R”, then Fubini's theorem
gives

[ e = [ Fesede
Replacing g(&) by g(&)e?™™¢, it follows that
R ORI GE G

for all x € R".



FeE00 = [ FOR©)™de

» Applying this with g(¢) = e ™I” (the heat kernel) and
letting t — 0, one can show that the Fourier inversion formula
holds for Schwartz functions:

) = [ o)<

for every x € R", whenever f € S(R").

» Hence the Fourier transform defines a bijection on Schwartz
functions on R", and we have

Frgt) = [ FOBEO™de

whenever f, g € S(R").



We now also have

[ gt = [ Fleg@a

whenever f, g € S(R").

This allows one to show that the Fourier transform, initially
defined on S(R"), extends as a unitary operator on L2(R"),
and the Plancherel formula holds:

11l i2gey = 1F ]l 2oy

whenever f € L2(R").

A multiplier operator on R is of the form f — (mf)* where
m is a bounded measurable function on R".

We will come across examples of such in Lecture 2.

These are automatically bounded on L2(R"). We will study
their mapping properties on LP(R") in Lecture 4.



The groups of modulations and dilations

» R" is an abelian group under addition.

v

It acts on (say, L?) functions on R” by translation (as in the
case of the unit circle T):

T f(x) =f(x+y), yeR"

v

But it also acts on functions on R” by modulation:

Nef(x) == e27rix'§f(x), e R

v

The actions are interwined by the Fourier transform F:

Fry=NF forally e R".

v

In particular, at least for Schwartz functions f on R", we have

— o~

0;f(&) =2migf(§), for1<j<n.



The multiplicative group R = (0, c0) also acts on functions
on R" by dilations:

D:f(x) := f(tx), teRT.
It interacts with the Fourier transform as follows:
FDy =t""Dy)eF forall t > 0.

In harmonic analysis we often study operators that commutes
with translations.

Examples include derivative operators (such as f +— Af), and
convolution operators (such as f — f  |x|~("=2)).

Such operators often come with some invariance under
dilations: e.g.
AD,f = t>D;Af,

(D¢ f) \x|7(”*2) = t*2Dt(f * \x|7(”*2)).



» Operators that exhibit modulation invariance (on top of
translation and dilation invariances) are harder to analyze;
they typically require rather refined time-frequency analysis.

> An example of such an operator is the Carleson operator,
studied in connection with pointwise a.e. convergence of
Fourier series of a function on L?(T):

Cf(x) = sup Z f(n g2minx x €T,
Nez n>N

note that C commutes with both translations and
modulations, i.e.

Cry =1, forally €T, and

CANy =NC forall ke Z.

» Most of the operators we will encounter in this course will not
be modulation invariant.



