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Fourier series on T: L2 theory

I Let T = R/Z be the unit circle.

I {Functions on T} = {periodic functions on R}.
I The n-th Fourier coefficient of an L1 function on T is given by

f̂ (n) :=

∫
T
f (x)e−2πinxdx , n ∈ Z.

I A remarkable insight of J. Fourier was that perhaps ‘every’
function f on T can be represented by a Fourier series:∑

n∈Z
ane

2πinx .

I One can make this rigorous, for instance, when one restricts
attention to L2 functions on T (which form a Hilbert space).



I The claim is that for every f ∈ L2(T), the Fourier series of f
converges to f in L2(T) norm.

I In other words, for every f ∈ L2(T), we have

N∑
n=−N

f̂ (n)e2πinx → f (x) in L2(T) as N →∞.

I Underlying this claim are two important concepts, namely
orthogonality and completeness.



I Clearly {e2πinx}n∈Z is an orthonormal system on L2(T), and

f̂ (n) = 〈f (x), e2πinx〉L2(T).

I General principles about orthogonality then shows that for
every N ∈ N,

SN f (x) :=
∑
|n|≤N

f̂ (n)e2πinx

is the orthogonal projection of f onto the linear subspace VN

of L2(T) spanned by {e2πinx : |n| ≤ N}. In other words,

f = (f − SN f ) + SN f

with SN f ∈ VN and (f − SN f ) ⊥ VN , and hence∑
n∈Z
|f̂ (n)|2 ≤ ‖f ‖2L2(T).

(The last inequality is sometimes called Bessel’s inequality.)



I The aforementioned property about orthogonal projection can
be rephrased as

‖f−SN f ‖L2(T) = min
{
‖f − pN‖L2(T) : pN ∈ span{e2πinx}|n|≤N

}
.

I On the other hand, one can show that the set of all finite
linear combinations of {e2πinx}n∈Z (i.e. the set of all
trigonometric polynomials) is dense in L2(T) (more to follow
below).

I Thus {e2πinx}n∈Z form a complete orthonormal system on
L2(T).

I It follows that for every f ∈ L2(T), we have

SN f → f in L2(T) as N →∞.

I To see this desired density, we study convolutions and
multiplier operators.



Convolutions

I The convolutions of two L1 functions on T is another L1

function, given by

f ∗ g(x) =

∫
T
f (x − y)g(y)dy .

I Convolutions are associative and commutative:

f ∗ (g ∗ h) = (f ∗ g) ∗ h, f ∗ g = g ∗ f .

I If f ∈ Lp(T) for some p ∈ [1,∞] and g ∈ L1(T), then
f ∗ g ∈ Lp(T).

I More generally, if p, q, r ∈ [1,∞] and

1 +
1

r
=

1

p
+

1

q

then
‖f ∗ g‖Lr (T) ≤ ‖f ‖Lp(T)‖g‖Lq(T).

(Young’s convolution inequality)



I For f ∈ L1(T), let

f̂ (n) =

∫
T
f (x)e−2πinxdx

as before. Then
f̂ ∗ g(n) = f̂ (n)ĝ(n)

whenever f , g ∈ L1(T).

I So if K ∈ L1(T), then the convolution operator

f 7→ f ∗ K

can be understood via the Fourier transform of K : indeed

f ∗ K (x) =
∑
n∈Z

f̂ (n)K̂ (n)e2πinx

whenever f is in (say) L2(T).



The Dirichlet and Fejer kernels

I For each N ∈ N, let DN and FN be the Dirichlet and Fejer
kernels respectively, defined by

D̂N(n) =

{
1 if |n| ≤ N

0 if |n| > N
, F̂N(n) =

{
1− |n|N if |n| ≤ N

0 if |n| > N
.

Then
DN(x) =

∑
|n|≤N

e2πinx

FN(x) =
∑
|n|≤N

(
1− |n|

N

)
e2πinx



I If f ∈ L1(T), then
SN f = f ∗ DN ,

and
S0f + S1f + · · ·+ SN−1f

N
= f ∗ FN .

I One has a closed formula for FN : indeed

FN(x) =
1

N

(
sinNπx

sinπx

)2

.

I From this we see that FN ≥ 0 for all N,

‖FN‖L1 = F̂N(0) = 1,

and ∫
δ≤|y |≤1/2

FN(y)dy → 0 as N →∞.

Thus {FN}N∈N form a family of good kernels.



I As a result, if f is continuous on T, then f ∗ FN → f
uniformly on T.

I Hence by approximating by continuous functions, we see that
trigonometric polynomials are dense in L2(T).

I This establishes in full the elementary L2 theory of the Fourier
transform on T. In particular, now we have Plancherel’s
theorem: ∑

n∈Z
|f̂ (n)|2 = ‖f ‖2L2(T)

whenever f ∈ L2(T).



Pointwise convergence of Fourier series

I We can now prove the Riemann-Lebesgue lemma: for
f ∈ L1(T), we have

sup
n∈Z
|f̂ (n)| ≤ ‖f ‖L1(T).

Indeed f̂ (n)→ 0 as n→ ±∞.

I This allows one to show that

lim
N→∞

∑
|n|≤N

f̂ (n)e2πinx = f (x)

whenever f is Hölder continuous of some positive order at
x ∈ T (actually we only need a Dini condition at x : indeed
the condition ∫

|t|≤1/2

|f (x + t)− f (x)|
|t|

dt <∞

will suffice.)



I On the other hand, there exists a continuous function on T
whose Fourier series diverges at say 0 ∈ T. So mere continuity
of f does not guarantee everywhere pointwise convergence of
Fourier series!

I On the pathological side, there even exists an L1 function on
T, whose Fourier series diverges everywhere (Kolmogorov).

I However, a remarkable theorem of Carleson says that the
Fourier series of an L2 function on T converges pointwise
almost everywhere (a.e.).
(Later Hunt showed the same for Lp(T), 1 < p <∞.)

I We will come back to this briefly towards the end of this
lecture.



Other modes of convergence
I To sum up, we have considered L2 norm convergence,

pointwise convergence and a.e. pointwise convergence of
Fourier series.

I Other modes of convergence of Fourier series also give rise to
interesting questions.

I Examples include Lp norm convergence, uniform convergence,
absolute convergence, and various summability methods.

I If f ∈ C 2(T), then clearly the Fourier series of f converges
absolutely and uniformly (since |f̂ (n)| . |n|−2).

I However, indeed the Fourier series of f converges absolutely
and uniformly already, as long as f is Hölder continuous of
some order > 1/2 on T.

I The question of Lp norm convergence on T, for 1 < p <∞, is
also well understood, and will be considered in Lecture 4.

I It is interesting to note that an analogous question in higher
dimensions (for Tn, n > 1) is much deeper, and is related to
some excellent open problems in the area.



Multiplier operators: a prelude

I Given a bounded function m : Z→ C, the map

f (x) 7→ Tmf (x) :=
∑
n∈Z

m(n)f̂ (n)e2πinx

defines a bounded linear operator on L2(T).

I Examples: convolution with the Dirichlet or the Fejer kernels.

I The analysis of such operators often benefit by taking the
inverse Fourier transform of m, as we have seen in the case of
convolution with the Fejer kernel.

I We will be interested, for instance, in the boundedness of
many multiplier operators on Lp(T) for various p ∈ [1,∞].

I e.g. The uniform Lp boundedness of convolutions with the
Dirichlet kernels is crucial in the discussion of Lp norm
convergence of the Fourier series of a function in Lp(T).

I We note in passing that all multiplier operators commute with
translations (and so do all convolution operators).



The role played by the group of translations

I Let’s take a step back and look at Fourier series on L2(T).

I There we expand functions in terms of complex exponentials
{e2πinx}n∈Z.

I But why complex exponentials?

I An explanation can be given in terms of the underlying group
structure on T = R/Z.

I Recall T is an abelian group under addition.

I Thus if y ∈ T, then the operator τy : L2(T)→ L2(T), defined
by

τy f (x) = f (x + y),

is a unitary operator on L2(T), and the group homomorphism

y ∈ T 7→ τy ∈ B(L2(T))

is continuous if we endow the strong topology on B(L2(T)).



I Thus the map y 7→ τy defines a unitary representation of the
compact group T on the (complex) Hilbert space L2(T).

I The Peter-Weyl theorem then provides a splitting of L2(T)
into an orthogonal direct sum of irreducible finite-dimensional
representations.

I Since T is abelian, all irreducible finite-dimensional
representations are 1-dimensional, by Schur’s lemma.

I In other words, there exists an orthonormal family of functions
{fn}n∈Z of L2(T), such that

L2(T) =
⊕
n∈Z

Cfn,

and such that fn is an eigenfunction of τy for all y ∈ T.



I For n ∈ Z, let χn(y) be the eigenvalue of τy on fn, i.e. let
χn : T→ C× be a continuous function such that

τy fn = χn(y)fn for all y ∈ T.

I Then χn(y + y ′) = χn(y)χn(y ′) for all y , y ′ ∈ T, i.e. χn is a
character on T.

I But if χ : R→ C× is a continuous function with

χ(x + x ′) = χ(x)χ(x ′)

for all x , x ′ ∈ R, then there exists a ∈ C such that χ(x) = eax

for all x ∈ R (just show that χ(x) = eax holds for x = mx0/2n

whenever m ∈ Z, n ∈ N and x0 is sufficiently close to 0, and
use continuity); if in addition χ is periodic with period 1, then
the a above must be in 2πiZ.

I Thus without loss of generality, we may label the fn’s, so that
χn(y) = e2πiny for all n ∈ Z and all y ∈ T.



I This gives
fn(x + y) = e2πiny fn(x)

for all n ∈ Z and all x , y ∈ T, so

f ′n(x) = 2πinfn(x),

from which we conclude that fn(x) = ce2πinx for some |c | = 1.

I In other words, for each n ∈ Z, the function e2πinx is an
eigenvector of τy for all y ∈ T, with eigenvalue e2πiny .

I To recap: we have a family {τy}y∈T of commuting unitary
operators on L2(T), and the complex exponentials {e2πinx}n∈Z
provide a simultaneous diagonalization of these operators:

τye
2πinx = e2πinye2πinx

for all n ∈ Z, and all y ∈ T.

I Note that the orthogonality of the complex exponentials
follows from the Peter-Weyl theorem!



I Also, the equation

τye
2πinx = e2πinye2πinx

implies that e2πinx are eigenfunctions of the derivative
operator:

d

dx
e2πinx = 2πine2πinx .

This is not too surprising since derivatives are infinitesimal
translations!

I Another way of saying the same thing is that

τ̂y f (n) = e2πiny f̂ (n)

for all y ∈ T and n ∈ Z; hence differentiation and
multiplication are interwined by the Fourier transform:

f̂ ′(n) = 2πinf̂ (n) if f ∈ C 1(T).

I The fact that the Fourier series constitutes a spectral
decomposition of the derivative operator is what makes it so
powerful in the study of differential equations.



Analogue on Rn

I The Fourier transform of an L1 function on Rn is defined by

f̂ (ξ) =

∫
Rn

f (x)e−2πix ·ξdx , ξ ∈ Rn.

I We have
‖f̂ ‖L∞(Rn) ≤ ‖f ‖L1(Rn);

indeed the Fourier transform of an L1 function is continuous
on Rn.

I If f , g ∈ L1(Rn), their convolution is defined by

f ∗ g(x) =

∫
Rn

f (x − y)g(y)dy .

I We have f ∗ g = g ∗ f and

f̂ ∗ g(ξ) = f̂ (ξ)ĝ(ξ)

if f , g ∈ L1(Rn).



I The space of Schwartz functions on Rn is defined as the space
of all smooth functions, whose derivatives of all orders are
rapidly decreasing at infinity. It is denoted S(Rn).

I One can restrict the Fourier transform on S(Rn); indeed the
Fourier transform maps S(Rn) into itself.

I If f , g are Schwartz functions on Rn, then Fubini’s theorem
gives ∫

Rn

f (y)ĝ(y)dy =

∫
Rn

f̂ (ξ)g(ξ)dξ.

Replacing g(ξ) by g(ξ)e2πix ·ξ, it follows that

f ∗ ĝ(x) =

∫
Rn

f̂ (ξ)g(ξ)e2πix ·ξdξ

for all x ∈ Rn.



f ∗ ĝ(x) =

∫
Rn

f̂ (ξ)g(ξ)e2πix ·ξdξ

I Applying this with g(ξ) = e−πt|ξ|
2

(the heat kernel) and
letting t → 0, one can show that the Fourier inversion formula
holds for Schwartz functions:

f (x) =

∫
Rn

f̂ (ξ)e2πix ·ξdξ

for every x ∈ Rn, whenever f ∈ S(Rn).

I Hence the Fourier transform defines a bijection on Schwartz
functions on Rn, and we have

f ∗ g(x) =

∫
Rn

f̂ (ξ)ĝ(ξ)e2πix ·ξdξ

whenever f , g ∈ S(Rn).



I We now also have∫
Rn

f (x)g(x)dx =

∫
Rn

f̂ (ξ)ĝ(ξ)dξ

whenever f , g ∈ S(Rn).

I This allows one to show that the Fourier transform, initially
defined on S(Rn), extends as a unitary operator on L2(Rn),
and the Plancherel formula holds:

‖f̂ ‖L2(Rn) = ‖f ‖L2(Rn)

whenever f ∈ L2(Rn).

I A multiplier operator on Rn is of the form f 7→ (mf̂ )ˇ where
m is a bounded measurable function on Rn.

I We will come across examples of such in Lecture 2.

I These are automatically bounded on L2(Rn). We will study
their mapping properties on Lp(Rn) in Lecture 4.



The groups of modulations and dilations

I Rn is an abelian group under addition.

I It acts on (say, L2) functions on Rn by translation (as in the
case of the unit circle T):

τy f (x) := f (x + y), y ∈ Rn

I But it also acts on functions on Rn by modulation:

Λξf (x) := e2πix ·ξf (x), ξ ∈ Rn.

I The actions are interwined by the Fourier transform F :

Fτy = ΛyF for all y ∈ Rn.

I In particular, at least for Schwartz functions f on Rn, we have

∂̂j f (ξ) = 2πiξj f̂ (ξ), for 1 ≤ j ≤ n.



I The multiplicative group R+ = (0,∞) also acts on functions
on Rn by dilations:

Dt f (x) := f (tx), t ∈ R+.

I It interacts with the Fourier transform as follows:

FDt = t−nD1/tF for all t > 0.

I In harmonic analysis we often study operators that commutes
with translations.

I Examples include derivative operators (such as f 7→ ∆f ), and
convolution operators (such as f 7→ f ∗ |x |−(n−2)).

I Such operators often come with some invariance under
dilations: e.g.

∆Dt f = t2Dt∆f ,

(Dt f ) ∗ |x |−(n−2) = t−2Dt(f ∗ |x |−(n−2)).



I Operators that exhibit modulation invariance (on top of
translation and dilation invariances) are harder to analyze;
they typically require rather refined time-frequency analysis.

I An example of such an operator is the Carleson operator,
studied in connection with pointwise a.e. convergence of
Fourier series of a function on L2(T):

Cf (x) = sup
N∈Z

∣∣∣∣∣∣
∑
n≥N

f̂ (n)e2πinx

∣∣∣∣∣∣ , x ∈ T;

note that C commutes with both translations and
modulations, i.e.

Cτy = τyC for all y ∈ T, and

CΛk = ΛkC for all k ∈ Z.

I Most of the operators we will encounter in this course will not
be modulation invariant.


