
MATH6081A Homework 8

1. Prove the Hausdorff-Young inequality, namely∥∥∥f̂∥∥∥
Lp′

. ‖f‖Lp for all f ∈ Lp(Rn) and all 1 ≤ p ≤ 2.

In addition, when 1 < p ≤ 2 the above inequality can be refined using Lorentz
spaces: ∥∥∥f̂∥∥∥

Lp′,p
. ‖f‖Lp for all f ∈ Lp(Rn) and all 1 < p ≤ 2.

2. (a) In Homework 1 we gave a direct proof of Young’s convolution inequality, namely

‖f ∗ g‖Lr ≤ ‖f‖Lp‖g‖Lq if p, q, r ∈ [1,∞] with 1 +
1

r
=

1

p
+

1

q
.

Can you now give an alternative proof using interpolation?

(b) We now give a refinement of Young’s convolution inequality in the scale of
Lorentz spaces.

(i) Suppose 1 < p <∞. Show that if f ∈ Lp,∞ and g ∈ Lp′,1, then

‖f ∗ g‖L∞ . ‖f‖Lp,∞‖g‖Lp′,1 .

(Hint: Use Question 16 of Homework 3.)

(ii) Hence show that

‖f ∗ g‖Lr,q . ‖f‖Lp,∞‖g‖Lq and ‖f ∗ g‖Lr . ‖f‖Lp,∞‖g‖Lq,r

if p, q, r ∈ (1,∞) with 1 + 1
r

= 1
p

+ 1
q
. In particular, for the same range of

p, q, r, we have
‖f ∗ g‖Lr . ‖f‖Lp,∞‖g‖Lq .

This proves the last theorem in Lecture 3.

3. In Question 6 of Homework 6 we proved a Schur’s lemma. We mentioned that there
is an interpolation proof. Can you carry that out now? More generally, suppose T
is an integral operator defined by Tf(x) =

´
K(x, y)f(y)dy, where

sup
x
‖K(x, y)‖L1(dy) ≤ A and sup

y
‖K(x, y)‖L1(dx) ≤ B.

Show that if p ∈ [1,∞], then T is bounded on Lp with norm ≤ A1/p′B1/p.

4. Let p ∈ (0,∞), r ∈ (0,∞], and f be a measurable function. Show that

|||f |||Lp,r ' ‖2
kW

1/p
k ‖`r(Z)

where Wk := |{2k−1 < |f | ≤ 2k}|. (Hint: Since |{|f | > 2k}| ≤
∑

`∈NWk+`, when
r <∞, the essence is in showing that

∑
k∈Z

2kr

(∑
`∈N

Wk+`

)r/p

. 1
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when
∑

k∈Z 2krW
r/p
k = 1. If r/p ≥ 1, use the triangle inequality for `r/p, to bound

this by ∑
`∈N

(∑
k∈Z

2krW
r/p
k+`

)p/r
r/p ;

on the other hand, if r/p ≤ 1, just observe that(∑
`∈N

Wk+`

)r/p

≤
∑
`∈N

W
r/p
k+`.

The case r =∞ is easier.)

5. (a) Show that Lp,r1 ⊆ Lp,r2 if p ∈ (0,∞) and 0 < r1 < r2 ≤ ∞.

(b) Show that Lp0,∞ ∩ Lp1,∞ ⊆ Lp,r if 0 < p0 < p < p0 ≤ ∞ and r ∈ (0,∞).

6. Let (X,µ) be a measure space. In Question 16 of Homework 3, we effectively showed
that if p ∈ (1,∞), then

|||f |||Lp,∞ ' sup

{ˆ
X

fgdµ : |||g|||Lp′,1 ≤ 1

}
,

and the right hand side is a norm on Lp,∞ that is comparable to |||·|||Lp,∞ . In this
question, we will adapt the approach taken there, and show that if p ∈ (1,∞),
r ∈ [1,∞), then

|||f |||Lp,r ' sup

{ˆ
X

fg dµ : |||g|||Lp′,r′ ≤ 1

}
.

In particular, the right hand side defines a norm on Lp,r that is comparable to the
quasi-norm |||·|||Lp,r on Lp,r. (With a bit more work one can also show that the
dual space of Lp,r is Lp

′,r′ , when p ∈ (1,∞), r ∈ [1,∞). See also Stein and Weiss’
Introduction to Fourier Analysis, Chapter V.3, for another approach of defining a
norm on Lp,r, which proceeds via Hardy’s inequality.)

(a) Show that if p ∈ (0,∞) and r ∈ (0,∞), then

|||f |||Lp,r =

(ˆ ∞
0

[
t1/pf ∗(t)

]r dt
t

)1/r

where f ∗ is the decreasing rearrangement of f , namely the unique decreasing
non-negative right-continuous function on [0,∞) so that

µ{|f | > α} = |{|f ∗| > α}|

for all α > 0. (Hint: Approximate by simple functions.)

(b) Show that ∣∣∣∣ˆ
X

fgdµ

∣∣∣∣ ≤ ˆ ∞
0

f ∗(t)g∗(t)dt.
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Hence show that if p ∈ [1,∞] and r ∈ [1,∞], then∣∣∣∣ˆ
X

fgdµ

∣∣∣∣ ≤ |||f |||Lp,r |||g|||Lp′,r′ .
(Hint: For the first part, it suffices to consider non-negative f and g’s. Use

f(x) =

ˆ ∞
0

χf(x)≥udu

and similarly for g, to evaluate the integral on the left hand side; then manipu-
late using Fubini’s theorem, and note that

dµ{x : f(x) ≥ u and g(x) ≥ v}
≤ min {dµ{x : f(x) ≥ u}, dµ{x : g(x) ≥ v}}
= min {|{t : f ∗(t) ≥ u}|, |{t : g∗(t) ≥ v}|}
= |{t : f ∗(t) ≥ u and g∗(t) ≥ v}|

the last line following because either the set {t : f ∗(t) ≥ u} is contained in
{t : g∗(t) ≥ v}, or vice versa. Reverse the manipulation done earlier, but to f ∗

and g∗ instead of to f and g, to finish the proof of the first inequality. The
second part now follows from the first part by Hölder’s inequality.)

(c) Suppose now p ∈ (1,∞) and r ∈ [1,∞). Let f be a non-negative function in
Lp,r with |||f |||Lp,r = 1. For j ∈ Z, let Ej = {x : 2j < f(x) ≤ 2j+1}. Let also

g(x) =
∑
j∈Z

(
2jµ(Ej)

1/p
)r−1

µ(Ej)
−1/p′χEj(x).

Show that |||g|||Lp′,r′ . 1, and that
´
X
fgdµ & 1. Together with the previous

part, we prove the desired comparison of |||f |||Lp,r with a genuine norm.
(Hint: Note that

g(x) ≤
∑
k∈Z

2kχFk where Fk =
⋃

2k−1<(2jµ(Ej)1/p)
r−1

µ(Ej)−1/p′≤2k

Ej.

We want to show that |||g|||Lp′,r′ . 1. Suppose now r = 1. It suffices to show
µ(Fk) . 2−kp

′
for all k ∈ Z. But since |||f |||Lp,r = 1, we have µ(Ej) . 2−jp for

all j ∈ Z. Hence for any k ∈ Z, we have

Fk =
⋃

µ(Ej)'2−kp′
Ej ⊂

⋃
2−jp.2−kp′

Ej,

which shows that

µ(Fk) ≤
∑

2−jp.2−kp′

µ(Ej) ≤
∑

2−jp.2−kp′

2−jp . 2−kp
′
,

as desired.
Next suppose r ∈ (1,∞). If r = p then g(x) =

∑
j∈Z 2jp

′
χEj . f(x)p

′/p, so
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|||g|||Lp′,r′ = ‖g‖Lp′ . ‖f‖Lp = |||f |||Lp,r = 1. Hence we may assume r 6= p. We
want to show that

∑
k∈Z 2kr

′
µ(Fk)

r′/p′ . 1. But when r 6= p,

Fk =
⋃

µ(Ej)'(2k2−j(r−1))
p
r−p

Ej,

so
µ(Fk) ≤

∑
µ(Ej)'(2k2−j(r−1))

p
r−p

µ(Ej).

The right hand side is a sum of a subset of an essentially geometric series, so

µ(Fk)
r′
p′ .

∑
µ(Ej)'(2k2−j(r−1))

p
r−p

µ(Ej)
r′
p′ .

(We used p, r ∈ (1,∞) here to ensure that the exponent r′/p′ is finite; indeed

the implicit constant here blows up like 1/(p−1) as p→ 1+.) Since µ(Ej)
r′
p′−

r
p =

µ(Ej)
p−r
p
r′ = 2−kr

′
2jr when µ(Ej) ' (2k2−j(r−1))

p
r−p , the right hand side above

is bounded by

2−kr
′ ∑
µ(Ej)'(2k2−j(r−1))

p
r−p

2jrµ(Ej)
r
p .

It follows that ∑
k∈Z

2kr
′
µ(Fk)

r′
p′ .

∑
j∈Z

2jrµ(Ej)
r
p . 1,

as desired.)

7. Show that there is no norm on L1,∞ that is comparable to |||·|||L1,∞ . (Hint: We have∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
N∑
n=1

1

|x− n|

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
L1,∞

' N logN, while
N∑
n=1

∣∣∣∣∣∣∣∣∣∣∣∣ 1

|x− n|

∣∣∣∣∣∣∣∣∣∣∣∣
L1,∞
' N.

Obtain a contradiction as N →∞.)

8. Following the notes for Lecture 8, establish the cases of the Marcinkiewicz interpo-
lation theorem when one of the pi’s is infinite, and/or when one of the qi’s is infinite.
(Hint: There are 4 cases to consider:

(i) p0, p1, q0 ∈ (0,∞) and q1 =∞;

(ii) p0, q0, q1 ∈ (0,∞) and p1 =∞;

(iii) p0, q0 ∈ (0,∞) and p1 = q1 =∞;

(iv) p0, q1 ∈ (0,∞) and p1 = q0 =∞.

For each of the 4 cases above, one needs to consider two subcases, namely r ∈ (0,∞)

and r =∞. For case (i), the key is to observe that for ε < 1/β, if 2kW
1/p1
k & 2jck,j,

then kα ≥ jβ; indeed, if jβ > kα, then for ε < 1/β, we have(
2

1
β
−ε
)kα
≤
(

2
1
β
−ε
)jβ

,
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which rearranges to (2k)
α
β ≤ 2j2−ε(jβ−kα) = 2jck,j, so

2kW
1/p1
k = (2kW

1/p
k )

p
p1 (2k)

1− p
p1 . (2k)

α
β ≤ 2jck,j,

where in the second inequality we used that 2kW
1/p
k . 1, and that

α

β
=
p( 1

p0
− 1

p1
)

q( 1
q0
− 1
∞)

=
p(1

p
− 1

p1
)

q(1
q
− 1
∞)

= 1− p

p1
;

in the penultimate equality we used the fact that (1/p0, 1/q0), (1/p1, 1/q1) and
(1/p, 1/q) are collinear. This proves the key observation, which in turn implies that
µ{|Tfk| ≥ ck,j2

j} = 0 whenever kα < jβ, so

µ{|Tf | > 2j} ≤
∑

k : kα≥jβ

µ{|Tfk| ≥ ck,j2
j}

≤
∑

k : kα≥jβ

(c−1k,j2
−j2kW

1/p0
k )q0

for all j ∈ Z, and one can finish the proof in this case as in the lecture notes.)

9. (a) Prove the following Phragmén-Lindelöf principle: Suppose f is a holomorphic
function on the right half-space H := {Re z > 0} that extends continuously to
the closure H of H. Assume |f(z)| ≤ 1 on the boundary of H, and that there
exist α < 1, and constants C, c, such that

|f(z)| ≤ Cec|z|
α

for all z ∈ H. Then |f(z)| ≤ 1 on the half-space H.
(Hint: It is crucial that α < 1 here, for this allows one to rule out the ‘enemy’
ez. We turn this enemy to our advantage: for ε > 0, consider

gε(z) := f(z)e−εz
β

where β ∈ (α, 1) and zβ is defined using the principal branch of logarithm.
Then gε(z) tends to zero as z tends to infinity within the closed half-plane.
Thus the maximum modulus principle shows that |gε(z)| ≤ 1 for all z in the
closed half-plane. It remains to let ε→ 0+ to obtain the desired conclusion.)

(b) Prove the following extension of the result in the previous part: Suppose f
is a holomorphic function on the half-space H := {Re z > 0} that extends
continuously to H \ {0}. Assume |f(z)| ≤ 1 on the boundary of H except
possibly at 0, and that there exist α < 1, and constants C, c, such that

|f(z)| ≤ Cec(|z|
α+|z|−α)

for all z ∈ H. Then |f(z)| ≤ 1 on the half-space H.
(Hint: Consider

gε(z) := f(z)e−ε(z
β+z−β)

instead; note that gε(z)→ 0 as z → 0 within H.)
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(c) Prove the following three-lines lemma: Suppose F is a holomorphic function
on the strip S := {0 < Re z < 1} that extends continuously to the closure of
the strip. Assume |F (z)| ≤ A0 when Re z = 0, and |F (z)| ≤ A1 when Re z = 1.
If that there exist α < 1, and constants C, c, such that

|F (z)| ≤ Cece
πα|z|

for all z ∈ S, then |F (z)| ≤ A1−Re z
0 ARe z

1 on the strip S.

(Hint: By considering A
−(1−z)
0 A−z1 F (z) in place of F (z), we may assume A0 =

A1 = 1. The conformal map z 7→ w defined by w = −ieπiz maps S conformally
onto the right half-spaceH, with inverse z = 1

πi
Log(iw). It remains to apply the

result of the previous part to the holomorphic function f(w) = F ( 1
πi

Log(iw))
defined for w ∈ H. Another way of presenting the same proof is to directly
consider F (z) exp

(
−ε cosh(πi(z − 1

2
)β)
)

for z ∈ S.)

10. Let (X,µ), (Y, ν) be measure spaces. Let 0 < p0, p1, q0, q1 ≤ ∞, and

T : (Lp0 + Lp1)(X)→ (Lq0 + Lq1)(Y )

be a linear operator. Suppose there exist constants A0, A1 such that

‖Tf‖Lq0 ≤ A0‖f‖Lp0 and ‖Tf‖Lq1 ≤ A1‖f‖Lp1

for all f ∈ Lp0 ∩ Lp1 . Show that if θ ∈ (0, 1) and

1

p
=

1− θ
p0

+
θ

p1
,

1

q
=

1− θ
q0

+
θ

q1
,

then
‖Tf‖Lq ≤ A1−θ

0 Aθ1‖f‖Lp for all f ∈ Lp.

This extends the Riesz-Thorin complex interpolation theorem to Lebesgue expo-
nents below 1. (Hint: Pick q− ∈ (0,∞) such that q− < min{q0, q1}. Let r ∈ (0,∞)
be such that 1

r
= 1

q−
− 1

q
. For all f ∈ Lp, we write

‖Tf‖Lq = ‖|Tf |q−‖1/q−
Lq/q−

=

 sup
g∈Lr simple
‖g‖Lr=1

ˆ
|Tf |q− |g|q−


1/q−

so that

A
−(1−θ)
0 A−θ1 ‖Tf‖Lq =

 sup
g∈Lr simple
‖g‖Lr=1

ˆ
|A−(1−θ)0 A−θ1 Tf(x)g(x)|q−dx


1/q−

.

Now given simple functions f and g, let {fz}, {gz} be holomorphic families of
functions on {0 ≤ Re z ≤ 1} such that fθ = f , gθ = g,

‖fz‖Lp0 ≤ ‖f‖Lp and ‖gz‖Lr0 ≤ ‖g‖Lr when Re z = 0,
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‖fz‖Lp1 ≤ ‖f‖Lp and ‖gz‖Lr1 ≤ ‖g‖Lr when Re z = 1,

where
1

r0
=

1

q−
− 1

q0
,

1

r1
=

1

q−
− 1

q1
.

In other words,

fz(x) =
f(x)

|f(x)|
|f(x)|p

(
1−z
p0

+ z
p1

)

‖f‖
p
(

1−z
p0

+ z
p1

)
Lp

‖f‖Lp , gz(x) =
g(x)

|g(x)|
|g(x)|r

(
1−z
r0

+ z
r1

)

‖g‖
r
(

1−z
r0

+ z
r1

)
Lr

‖g‖Lr .

Then for each ε > 0, the following function of zˆ
|A−(1−z)0 A−z1 eεz

2

Tfz(x)gz(x)|q−dx

is subharmonic in the strip {0 < Re z < 1}, continuous up to the boundary of
the strip and decays to 0 as z tends to infinity along the strip. Now invoke the
maximum modulus principle for subharmonic functions; letting ε → 0+ and then
taking supremum over all simple functions f and g, we see that A

−(1−θ)
0 A−θ1 ‖Tf‖Lq ≤

‖f‖Lp for all f ∈ Lp, if p 6= ∞; if p = ∞ then an easy adaptation of the above
argument works since then p0 = p1 = p.)

11. Let 0 < p0, p1, q0, q1 ≤ ∞, and S be the strip {0 < Re z < 1}. Suppose {Tz}z∈S is
a family of linear operators mapping compactly supported simple functions on Rn

to locally integrable functions on Rn. Assume that for every compactly supported
simple function f , the following conditions are satisfied:

(a) for almost every x ∈ Rn, the map z 7→ Tzf(x) is holomorphic on S and contin-
uous up to S;

(b) there exists some locally integrable function ϕ(x) on Rn such that for every
z ∈ S, we have |Tzf(x)| ≤ ϕ(x) for almost every x ∈ Rn.

Suppose further that there exist constants A0, A1 such that for all compactly sup-
ported simple functions f on Rn, we have

‖Tzf‖Lqj ≤ Aj‖f‖Lpj whenever Re z = j, for j = 0, 1.

Show that for any θ ∈ (0, 1), and any compactly supported simple functions f on
Rn, we have

‖Tθf‖Lq ≤ A1−θ
0 Aθ1‖f‖Lp ,

where
1

p
=

1− θ
p0

+
θ

p1
,

1

q
=

1− θ
q0

+
θ

q1
.

In particular, Tθ extends to a continuous linear map from Lp(Rn) to Lq(Rn). (Hint:
As before, pick q− ∈ (0,∞) such that q− < min{q0, q1}. Let r ∈ (0,∞) be such that
1
r

= 1
q−
− 1

q
. For a compactly supported simple function f , we have

A
−(1−θ)
0 A−θ1 ‖Tθf‖Lq =

 sup
g simple, compactly supported

‖g‖Lr=1

ˆ
|A−(1−θ)0 A−θ1 Tθf(x)g(x)|q−dx


1/q−

.
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Now given compactly supported simple functions f and g, let {fz}, {gz} be holo-
morphic families of functions on {0 ≤ Re z ≤ 1} such that fθ = f , gθ = g,

‖fz‖Lp0 ≤ ‖f‖Lp and ‖gz‖Lr0 ≤ ‖g‖Lr when Re z = 0,

‖fz‖Lp1 ≤ ‖f‖Lp and ‖gz‖Lr1 ≤ ‖g‖Lr when Re z = 1,

where
1

r0
=

1

q−
− 1

q0
,

1

r1
=

1

q−
− 1

q1
.

Then for each ε > 0, the following function of z

ˆ ∣∣∣A−(1−z)0 A−z1 eεz
2

Tzfz(x)gz(x)
∣∣∣q− dx

is subharmonic in the strip {0 < Re z < 1}, continuous up to the boundary of
the strip, and decays to 0 as z tends to infinity along the strip. Now apply the
maximum modulus principle for subharmonic functions; letting ε → 0+ and then
taking supremum over all compactly supported simple functions g, we see that
A
−(1−θ)
0 A−θ1 ‖Tθf‖Lq ≤ ‖f‖Lp , as desired.)

12. Let (X, dx), (Y, dy) be measure spaces, and S be the strip {0 < Re z < 1}. Let

f(x, y) =
∑
j,k

cj,kχAj(x)χBk(y)

be a simple function on X × Y . Suppose 0 < p0, p1, q0, q1 ≤ ∞, θ ∈ (0, 1) and

1

p
=

1− θ
p0

+
θ

p1
,

1

q
=

1− θ
q0

+
θ

q1
.

Show that there exists a family of simple functions {fz(x, y)}z∈S, holomorphic for
z ∈ S, continuous and bounded as z varies on S, such that fθ(x, y) = f(x, y), and

‖fz‖Lp0x L
q0
y
≤ ‖f‖LpxLqy when Re z = 0,

‖fz‖Lp1x L
q1
y
≤ ‖f‖LpxLqy when Re z = 1.

Here
‖f‖LpxLqy := ‖‖f(x, y)‖Lq(dy)‖Lp(dx).

This allows one to formulate a vector-valued complex interpolation theorem involv-
ing the anisotropic Lebesgue spaces LpxL

q
y. (Hint: Just take

fz(x, y) =
f(x, y)

|f(x, y)|
|f(x, y)|q

(
1−z
q0

+ z
q1

)

‖f(x, y)‖
q
(

1−z
q0

+ z
q1

)
Lqy

‖f(x, y)‖
p
(

1−z
p0

+ z
p1

)
Lqy

‖f(x, y)‖
p
(

1−z
p0

+ z
p1

)
LpxL

q
y

‖f(x, y)‖LpxLqy ;

c.f. Question 10.)
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13. The goal of this question is to prove a bilinear complex interpolation theorem. Let
(X1, µ1), (X2, µ2), (Y, ν) be measure spaces. Let 0 < p0, p1, q0, q1, r0, r1 ≤ ∞, and

T : (Lp0 + Lp1)(X1)× (Lq0 + Lq1)(X2)→ (Lr0 + Lr1)(Y )

be a bilinear operator. Suppose there exist constants A0, A1 such that

‖T (f1, f2)‖Lr0 ≤ A0‖f1‖Lp0‖f2‖Lq0 and ‖T (f1, f2)‖Lr1 ≤ A1‖f1‖Lp1‖f2‖Lq1

for all f1 ∈ Lp0 ∩ Lp1(X1) and f2 ∈ Lq0 ∩ Lq1(X2). Show that if θ ∈ (0, 1) and

1

p
=

1− θ
p0

+
θ

p1
,

1

q
=

1− θ
q0

+
θ

q1
,

1

r
=

1− θ
r0

+
θ

r1
,

then
‖T (f1, f2)‖Lr ≤ A1−θ

0 Aθ1‖f1‖Lp‖f2‖Lq for all f1 ∈ Lp, f2 ∈ Lq.

Also generalize this to a multilinear complex interpolation theorem. (Hint: Mimic
Question 10.)

14. In the last question, we saw an easy extension of the complex interpolation theorem
to the multilinear setting. In this question, we will see that the real method of
interpolation does not extend to the multilinear setting the way one might naively
expect. In particular, we show that there exists a bilinear operator T , such that
T is continuous from (say) L2 × L2 into L2,∞, continuous from L∞ × L1 into L∞,
but does not map Lp × Lp′ continuously into Lp, even if p′ ≤ p. So two endpoints
are not enough, if we only begin with weak-type hypothesis and want a strong-type
conclusion! (The following example is due to Strichartz.)
We will consider the measure space X = (0,∞) with Lebesgue measure dx. The
bilinear operator involved is given by

T (f, g)(x) =

ˆ ∞
0

f(xy)g(y)dy.

(a) Show that

‖T (f, g)‖Lp,∞ ≤ ‖f‖Lp‖g‖Lp′ for all 1 ≤ p ≤ ∞.

Indeed, |T (f, g)(x)| ≤ x−1/p‖f‖Lp‖g‖Lp′ . In particular, T is continuous from
(say) L2 × L2 into L2,∞, continuous from L∞ × L1 into L∞.

(b) Let p ∈ [1,∞). Show that for any non-negative measurable function g on
(0,∞), we have

sup
‖f‖Lp≤1

‖T (f, g)‖Lp =

ˆ ∞
0

y−1/pg(y)dy.

This shows that
sup

‖f‖Lp≤1, ‖g‖Lp′≤1
‖T (f, g)‖Lp =∞.
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Hence T is not continuous from Lp × Lp
′

to Lp. (Hint: By scaling, we may
assume that

´∞
0
y−1/pg(y)dy = 1. The triangle inequality shows that

sup
‖f‖Lp≤1

‖T (f, g)‖Lp ≤ 1.

On the other hand, let α ∈ (0, 1) be sufficiently close to 1, and let ε ∈ (0, 1) be
sufficiently close to 0. Let fε(x) = x−1/pχ[ε,ε−1](x). Then

‖fε‖Lp = [2 log(ε−1)]1/p,

and

T (fε, g)(x) = x−1/p
ˆ ε−1x−1

εx−1

y−1/pg(y)dy.

For x ∈ [εα, ε−α], we have

T (fε, g)(x) ≥ x−1/p
ˆ εα−1

ε1−α
y−1/pg(y)dy.

Thus

‖T (fε, g)‖Lp ≥ ‖x−1/p‖Lp[εα,ε−α]
ˆ εα−1

ε1−α
y−1/pg(y)dy,

which gives

‖T (fε, g)‖Lp ≥ α1/p‖fε‖Lp
ˆ εα−1

ε1−α
y−1/pg(y)dy.

By taking α ∈ (0, 1) sufficiently close to 1, and ε ∈ (0, 1) sufficiently close to 0,
we can make the right hand side > (1− δ)‖fε‖Lp for any δ > 0. Thus

sup
‖f‖Lp≤1

‖T (f, g)‖Lp ≥ 1

as well, as desired.)

15. Suppose 0 < p < ∞, and h ∈ Lp0(Rn) for some 0 < p0 ≤ p. Show that if
M ]h ∈ Lp(Rn), then Mh ∈ Lp(Rn), and

‖Mh‖Lp(Rn) .n,p ‖M ]h‖Lp(Rn).

Here Mh is the Hardy-Littlewood maximal function of h. In particular, we have
h ∈ Lp(Rn), and ‖h‖Lp(Rn) .n,p ‖M ]h‖Lp(Rn).
(Hint: The key is a relative distribution inequality. For any n ≥ 1, we claim that
there exists bn ∈ (0, 1), such that for any b, c > 0 with b ≤ bn, we have

|{x ∈ Rn : Mh(x) > α,M ]h(x) ≤ cα}| .n c|{x ∈ Rn : Mh(x) > bα}|

If this is true, then by taking c sufficiently small, we can use Question 18 of Home-
work 3 to conclude the proof.

To prove the above relative distributional inequality, let b ∈ (0, 1) first. Let h ∈
Lp(Rn). Decompose the open set {x ∈ Rn : Mh(x) > bα} into an essentially disjoint
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union of Whitney cubes {Q}, so that the distance of each Q from the complement
of this set is bounded by 4 times the diameter of Q. Now since {x ∈ Rn : Mh(x) >
α,M ]h(x) ≤ cα} is a subset of {x ∈ Rn : Mh(x) > bα}, we just need to show that
for each Whitney cube Q as above, we have

|{x ∈ Q : Mh(x) > α,M ]h(x) ≤ cα}| .n c|Q|.

This inequality would be trivial if the set on the left hand side were empty. So let’s
assume there exists a point x0 ∈ Q such that M ]h(x0) ≤ cα. Now let Q̃ be any cube
that intersects Q and that has diameter at least that of Q. Then 20Q̃ will contain
a point y where Mh(y) ≤ bα. Hence

ffl
Q̃
|h| ≤ 20nbα for all such cubes Q̃. If x ∈ Q

and Mh(x) > α, then by taking b < 20−n, we see that M(hχ3Q)(x) > α. We also
have

ffl
3Q
|h| ≤ 20nbα. Thus

{x ∈ Q : Mh(x) > α,M ]h(x) ≤ cα} ⊂
{
x ∈ Q : M

(
hχ3Q −

 
3Q

h

)
(x) > (1− 20nb)α

}
,

whose measure is bounded by

Cn
(1− 20nb)α

ˆ
Q

|hχ3Q(y)− h3Q|dy ≤
Cn

(1− 20nb)α
|3Q|M ]h(x0) ≤

3nCn
(1− 20nb)

c|Q|

where Cn is the constant arising in the weak-type (1,1) bound of M : L1(Rn) →
L1,∞(Rn). This proves the desired relative distributional inequality.)

16. The goal of this question is to prove a complex interpolation theorem involving the
Hardy space H1 on Rn (see Homework 7 for its definition). Let p1 ∈ [1,∞]. Suppose
{Tz}z∈S is a family of continuous linear operators from Lp1(Rn) to L1

loc(Rn), analytic
in the sense that for every f and g that are bounded measurable with compact
support, the map z 7→

´
Rn Tzf · gdx is holomorphic on S, continuous up to S and

bounded on S. Let q0, q1 ∈ [1,∞]. Assume

‖Tzf‖Lq0 ≤ A0‖f‖H1 whenever Re z = 0 and f ∈ H1 ∩ Lp1 ,

‖Tzf‖Lq1 ≤ A1‖f‖Lp1 whenever Re z = 1 and f ∈ Lp1 .

Then for any θ ∈ (0, 1), we have

‖Tθf‖Lq . A1−θ
0 Aθ1‖f‖Lp for all f ∈ Lp ∩ Lp1 ,

where
1

p
= (1− θ) +

θ

p1
,

1

q
=

1− θ
q0

+
θ

q1
.

In particular, Tθ extends to a bounded linear map from Lp(Rn) to Lq(Rn), with
norm . A1−θ

0 Aθ1. (Hint: For each z ∈ S and every bounded measurable g with
compact support, let T ∗z g be the Lp

′
1 function on Rn, such that

ˆ
Rn
f · T ∗z gdx =

ˆ
Rn
Tzf · gdx
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for all f ∈ Lp1 . Now let θ ∈ (0, 1), and let g be a compactly supported simple
function on Rn. Let {gz} be a holomorphic family with gθ = g and

‖gz‖Lq0′ ≤ ‖g‖Lq′ when Re z = 0,

‖gz‖Lq1′ ≤ ‖g‖Lq′ when Re z = 1.

Then T ∗z gz is an analytic family of L1
loc function, and satisfies the hypothesis of the

proposition we used in the lecture notes to prove the complex interpolation theorem
for BMO; note in particular that T ∗z gz ∈ Lp1

′
for all z ∈ S,

‖T ∗z gz‖BMO ≤ A0‖g‖Lq′ when Re z = 0,

‖T ∗z gz‖Lp1′ ≤ A1‖g‖Lq′ when Re z = 1.

Thus T ∗θ g ∈ Lp
′
, with

‖T ∗θ g‖Lp′ . A1−θ
0 Aθ1‖g‖Lq′ .

As a result, if f ∈ Lp ∩ Lp1 , then∣∣∣∣ˆ
Rn
Tθf · gdx

∣∣∣∣ . A1−θ
0 Aθ1‖f‖Lp‖g‖Lq′ .

By density of compactly supported simple functions in Lq
′
, this shows that

‖Tθf‖Lp′ . A1−θ
0 Aθ1‖f‖Lp

for all f ∈ Lp ∩ Lp1 , as desired.)


