MATHG6081 A Homework 8

1. Prove the Hausdorff-Young inequality, namely
HJ?H S fllee forall f e LP(R™) and all 1 < p < 2.
Lp

In addition, when 1 < p < 2 the above inequality can be refined using Lorentz
spaces:

Hﬂ‘ S flle forall fe LP(R™) and all 1 < p < 2.
e

2. (a) In Homework 1 we gave a direct proof of Young’s convolution inequality, namely
. . 1 1 1
1f % gllr < 1 fllzellgllze it p,g,r € [1,00] with 1+~ = P
Can you now give an alternative proof using interpolation?

(b) We now give a refinement of Young’s convolution inequality in the scale of
Lorentz spaces.

i) Suppose 1 < p < co. Show that if f € L”»> and ¢ € L', then
g
L * gllzoe S N llzeeellgl s
(Hint: Use Question 16 of Homework 3.)
(ii) Hence show that
1 * gllera S Nflle<llgllee  and ([f % gller S ([ fllzeoe gl zar

if p,q,r € (1,00) with 1+ % = }—17 - %. In particular, for the same range of
p,q,r, we have
1S gllr S N fllzeeellglla-

This proves the last theorem in Lecture 3.

3. In Question 6 of Homework 6 we proved a Schur’s lemma. We mentioned that there
is an interpolation proof. Can you carry that out now? More generally, suppose T'
is an integral operator defined by T'f(z) = [ K(z,vy)f(y)dy, where

sup | K (2, y)l|zray) <A and  sup || K(z,y) L1 < B
T Y

Show that if p € [1, 00], then T is bounded on L? with norm < AP BY/».
4. Let p € (0,00), r € (0,00], and f be a measurable function. Show that
1
A0z = 12 W e

where Wy, := [{2F71 < |f] < 2F}|. (Hint: Since [{|f| > 2*}] < 3 jcny Wite, when
r < 00, the essence is in showing that

r/p
3o (z w) <1

kEZ £eN
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when Y, QkTW,:/p = 1. If r/p > 1, use the triangle inequality for ¢"/?, to bound

this by
T/p

p/r
> (o) |

teN \keZ

on the other hand, if r/p < 1, just observe that

r/p
(Z Wk+e> < Z W;:J/j-

¢eN (eN
The case r = oo is easier.)
5. (a) Show that LP™ C LP"2 if p € (0,00) and 0 < r; < 1y < 0.
(b) Show that LFo:>° N LP1>° C LP7if 0 < pg < p < pp < 00 and r € (0,00).

6. Let (X, i) be a measure space. In Question 16 of Homework 3, we effectively showed
that if p € (1, 00), then

1l e = s { [ Fou: ol < 1} 7
X

and the right hand side is a norm on LP*° that is comparable to |||}y In this
question, we will adapt the approach taken there, and show that if p € (1,00),
r € [1,00), then

£l == sup { [ o ol < 1},

In particular, the right hand side defines a norm on LP" that is comparable to the
quasi-norm |||-[||;,» on LP". (With a bit more work one can also show that the
dual space of LP" is LP""' when p € (1,00), r € [1,00). See also Stein and Weiss’
Introduction to Fourier Analysis, Chapter V.3, for another approach of defining a
norm on LP" which proceeds via Hardy’s inequality.)

(a) Show that if p € (0,00) and r € (0, 00), then

00 1/r
Wl = ([ ey )

where f* is the decreasing rearrangement of f, namely the unique decreasing
non-negative right-continuous function on [0, c0) so that

pIfI > o = {11 > a}|

for all @ > 0. (Hint: Approximate by simple functions.)
(b) Show that

/ fgdu‘ < [ rw o
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Hence show that if p € [1,00] and r € [1, o0], then

‘ /X fgdu‘ < 1Al ol

(Hint: For the first part, it suffices to consider non-negative f and g’s. Use

flz) = / X f(a)zudu
0

and similarly for g, to evaluate the integral on the left hand side; then manipu-
late using Fubini’s theorem, and note that

dp{z: f(r) > u and g(z) > v}
< min{dp{z: f(z) = u}, dp{z: g(z) = v}}
=min {[{t: [*(t) > u}|, |{t: g"() = v}[}
= [{t: f*(t) Z wand g*(t) = v}|
the last line following because either the set {t: f*(t) > u} is contained in
{t: g*(t) > v}, or vice versa. Reverse the manipulation done earlier, but to f*

and ¢g* instead of to f and ¢, to finish the proof of the first inequality. The
second part now follows from the first part by Holder’s inequality.)

Suppose now p € (1,00) and r € [1,00). Let f be a non-negative function in
L7 with || £l o = 1. For j € Z, let E; = {x: 27 < f(x) < 27T}, Let also

9(x) = Z (2 p(E)Y?) ™ () X ().

Show that ||g|l|,».» < 1, and that [, fgdu 2 1. Together with the previous
part, we prove the desired comparison of || f|||,,. with a genuine norm.
(Hint: Note that

g(x) < Z2kXFk where Fj = U E;.

keZ 2k—1<(QjM(Ej)1/p>r—1u(Ej),1/p/SQk

We want to show that ||g||,.» < 1. Suppose now r = 1. It suffices to show
p(Fy) < 275 for all k € Z. But since || f||,,. = 1, we have u(E;) < 2777 for
all 7 € Z. Hence for any k € Z, we have

F, = U Ej - U Ej,
w(E;)~2—kp' 2—ip<2—kp'

which shows that

pF) < >0 wE)< Y 2o

2-ip<2—kp’ 2-ip<2—kp’

as desired.
Next suppose r € (1,00). If r = p then g(x) = Z]EZ 2jp'XEj < flx)PP) so



2017-18 First Term MATHG6081A 4

lgll e = gl S 10w = 171l = 1. Hence we may assume r # p. We
want to show that Y-, , 28" u(F)"/?" < 1. But when r # p,

Fy = U Ej,
p(Bj)=(2b2-3(r=1) ™
SO
u(Fy) < > 1(Ej).
H(By)=(2k2-30—) 77
The right hand side is a sum of a subset of an essentially geometric series, so

W)Y S S wE)

p
H(Ey)=(2k2—3(r=1) 75

~

(We used p,r € (1,00) here to ensure that the exponent r’/p’ is finite; indeed
the implicit constant here blows up like 1/(p—1) as p — 1%*.) Since M(Ej)ﬁ_g =

w(E) 7 = 2789 when p(E;) ~ (26277¢=D)75 | the right hand side above
is bounded by
2—kr’ Z 2]T'ILL(EJ)%
u(Ey)=(2k2(r=0) 7o

It follows that

S 2 ()Y S S 2 (B S 1,

keZ JEZ

as desired.)

7. Show that there is no norm on L** that is comparable to ||||| ;1. (Hint: We have

AR a 1

E ~ Nlog N, while E ~ N.
|z — n| |z = nf ]| 1

n=1 L1:00 n=1

Obtain a contradiction as N — o0.)

8. Following the notes for Lecture 8, establish the cases of the Marcinkiewicz interpo-
lation theorem when one of the p;’s is infinite, and /or when one of the ¢;’s is infinite.
(Hint: There are 4 cases to consider:

(i) po, 1,9 € (0,00) and ¢ = oc;

(ii) po,qo,q1 € (0,00) and p; = oo;

(iil) po,qo € (0,00) and p; = ¢ = oc;

(iv) po,q1 € (0,00) and p; = qo = oc.

For each of the 4 cases above, one needs to consider two subcases, namely r € (0, 00)
and r = co. For case (i), the key is to observe that for ¢ < 1/4, if Qkal/pl > ey,
then ko > jf; indeed, if j8 > ka, then for e < 1/, we have

<2E—E)ka < (Qé—e)jﬁ
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9.

which rearranges to (2F)5 < 2i2-¢(8—ka) — 2 ¢y, j, SO
2kW]j/P1 — (2kW’§/p)£(2k)1*£ SJ (2k)% S 2]'0](;’]‘,

where in the second inequality we used that 2’“W,§ /P < 1, and that

o _PE-2 - 5
CRNRTESEES RapE s

in the penultimate equality we used the fact that (1/po,1/q0), (1/p1,1/q1) and
(1/p,1/q) are collinear. This proves the key observation, which in turn implies that
p{|T fr| > ck 2} = 0 whenever ka < jf3, so

p{ITF > 2y < > {IThH| > e, 27}
k: ka>jB
S SR

k: ka>jp
for all j € Z, and one can finish the proof in this case as in the lecture notes.)

(a) Prove the following Phragmén-Lindel6f principle: Suppose f is a holomorphic
function on the right half-space H := {Re z > 0} that extends continuously to
the closure H of H. Assume |f(z)| <1 on the boundary of H, and that there
exist a < 1, and constants C, ¢, such that

()] < Ce

for all z € H. Then |f(2)| <1 on the half-space H.
(Hint: It is crucial that oo < 1 here, for this allows one to rule out the ‘enemy’
e®. We turn this enemy to our advantage: for € > 0, consider

ge(2) == f(z)e"':zﬁ

where 3 € (a,1) and 27 is defined using the principal branch of logarithm.
Then g.(z) tends to zero as z tends to infinity within the closed half-plane.
Thus the maximum modulus principle shows that |g-(z)| < 1 for all z in the
closed half-plane. It remains to let £ — 07 to obtain the desired conclusion.)

(b) Prove the following extension of the result in the previous part: Suppose f
is a holomorphic function on the half-space H := {Rez > 0} that extends
continuously to H \ {0}. Assume |f(z)] < 1 on the boundary of H except
possibly at 0, and that there exist @ < 1, and constants C, ¢, such that

1f(2)] < Ceclz1%+=17%)

for all z € H. Then |f(z)| <1 on the half-space H.
(Hint: Consider

9:(2) i= f(2)e )
instead; note that g.(z) — 0 as z — 0 within H.)
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(c) Prove the following three-lines lemma: Suppose F' is a holomorphic function
on the strip S := {0 < Rez < 1} that extends continuously to the closure of
the strip. Assume |F(z)| < Ag when Rez = 0, and |F(2)| < A; when Rez = 1.
If that there exist o < 1, and constants C, ¢, such that

Ta|z|

|F(z)] < Ce

for all z € S, then |F(2)] < Ay "°*ARe= on the strip S.

(Hint: By considering Ag(l_z)Al_ZF(z) in place of F(2), we may assume Ay =
A, = 1. The conformal map z — w defined by w = —ie™* maps S conformally
onto the right half-space H, with inverse z = %Log(z’w). It remains to apply the
result of the previous part to the holomorphic function f(w) = F(<Log(iw))

defined for w € H. Another way of presenting the same proof is to directly

consider F(z)exp (—¢ cosh(ri(z — 1)8)) for z € S.)

10. Let (X, u), (Y,v) be measure spaces. Let 0 < po, p1, G0, ¢1 < 00, and
T: (LP° + LP*)(X) — (L™ + L) (Y)
be a linear operator. Suppose there exist constants Ag, A; such that
ITfllzeo < Aol fllzee  and [ Tf|[ra < Ail| fllze

for all f € LPo N LP'. Show that if § € (0,1) and
1 1-6 6 1

1—-60 0

Y

1
p Po b1 q qo q1

Y

then
| T flle < ASPA9Nflle  for all f € LP.

This extends the Riesz-Thorin complex interpolation theorem to Lebesgue expo-
nents below 1. (Hint: Pick ¢_ € (0, 00) such that ¢_ < min{qo, ¢ }. Let r € (0, 00)
be such that % = qi — %. For all f € LP, we write

1/q-
1/g_—
Al = T = | s [ plgl
geL” simple
llgllLr=1
so that
1/q—
A OANT flpe = | sup / Ay AT f () g ()| da
gEHLﬂ sim;fle
gliLr=

Now given simple functions f and g, let {f.}, {g.} be holomorphic families of
functions on {0 < Rez < 1} such that fy = f, g = ¢,

[ fellzre <N fllee and gz < gl when Rez =0,
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11.

[ fllzen < | fllze and  [|g.|len < [lgllzr when Rez =1,

where

In other words,

X p( Z) - . T(l;)z_,’_ﬁ)
|fEx;||f( o) ) [fllees  g:(2) = 9(z) o )J(l’qz) gl

T S

Then for each € > 0, the following function of z

/M£Z>Z%rm><>wm

is subharmonic in the strip {0 < Rez < 1}, continuous up to the boundary of
the strip and decays to 0 as z tends to infinity along the strip. Now invoke the
maximum modulus principle for subharmonic functions; letting ¢ — 0" and then
taking supremum over all simple functions f and g, we see that Ay "~ AT | T f || <
I f||ze for all f € LP, if p # oo; if p = oo then an easy adaptatlon of the above
argument works since then py = p; = p.)

Let 0 < po,p1,q0, 1 < 00, and S be the strip {0 < Rez < 1}. Suppose {T.},.5 is
a family of linear operators mapping compactly supported simple functions on R"
to locally integrable functions on R™. Assume that for every compactly supported
simple function f, the following conditions are satisfied:

(a) for almost every z € R", the map z +— T f(z) is holomorphic on S and contin-
uous up to S,

(b) there exists some locally integrable function ¢(x) on R" such that for every
z € S, we have |7, f(z)| < ¢(x) for almost every x € R™.

Suppose further that there exist constants Ay, A; such that for all compactly sup-
ported simple functions f on R", we have

\T.fllzw < Aj||fllze;  whenever Rez = 7, for j =0, 1.

Show that for any 6 € (0,1), and any compactly supported simple functions f on
R"™, we have
IToflle < A Al 20,

where

1 1-0 46 1 1-60 0

I
In particular, Ty extends to a continuous linear map from LP(R™) to L¢(R"). (Hint:
As before pick g_ € (0,00) such that ¢g- < min{qo, ¢ }. Let r € (0, 00) be such that
1

L= q_, — % For a compactly supported simple function f, we have

1/q—

Aa(lie)AlieHTefHLq = sup /’A A ATy f()g()|" dx

g simple, compactly supported
lgllzr=
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12.

Now given compactly supported simple functions f and g, let {f.}, {g.} be holo-
morphic families of functions on {0 < Rez < 1} such that fy = f, g9 = g,

[follzro < [Ifllze and |lg:|lo <[lgllz-  when Rez =0,

[ fellzes < |[fllee and [[g:][r < [|lgllr when Rez =1,

where

1 1 1 1 1 1

Y

T'o B q9-  qo 1 - ¢
Then for each € > 0, the following function of z

/ ?AJ“‘”A;Zew?Tzfz(x)gz<x> " da

is subharmonic in the strip {0 < Rez < 1}, continuous up to the boundary of
the strip, and decays to 0 as z tends to infinity along the strip. Now apply the
maximum modulus principle for subharmonic functions; letting ¢ — 0 and then
taking supremum over all compactly supported simple functions g, we see that
Ay AN T f e < |1 f]lLes as desired.)

Let (X, dx), (Y, dy) be measure spaces, and S be the strip {0 < Rez < 1}. Let

F@y) = cuxa, ()xs, ()

jik
be a simple function on X x Y. Suppose 0 < po, p1,q0, 1 < 00, 8 € (0,1) and
1 1-0 0

1-0 0

1
p P Mg o @

Show that there exists a family of simple functions {f.(z,y)},c5, holomorphic for
z € S, continuous and bounded as z varies on S, such that fy(z,y) = f(z,y), and

|’fZHL§0LZO < ||fHL£Lg when Rez = 0,

1fllzzrpar < [[fllepe when Rez = 1.
Here
||f||L£L;3, = HHf('ray)HLq(dy)HLP(dx)-

This allows one to formulate a vector-valued complex interpolation theorem involv-
ing the anisotropic Lebesgue spaces L? L. (Hint: Just take

f(.f,g) |f(m7y)|Q<lt;oz+£> ||f(x7y)||};g;02+pzl) Hf(x )H .
9] yr e

fz(xay) =

1-z 4 =z

g(L=2+= P
e AT A

q
Yy

c.f. Question 10.)
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13.

14.

The goal of this question is to prove a bilinear complex interpolation theorem. Let
(X1, 1), (Xo, u2), (Y, ) be measure spaces. Let 0 < po, p1, qo, q1, 70,71 < 00, and

Ts (I + D) (X0) X (L0 + L) (Xa) = (L + L) (Y)
be a bilinear operator. Suppose there exist constants Ay, A; such that
IT(f1, f2)llro < Aol filleeo [ folloo  and | T(f1, fo)ller < Asll fillze | f2ll Lo

for all fy € LPo N L7 (X;) and fo € L% N L?(X,). Show that if § € (0,1) and
I 1-6 0

1
P Po g o @’

1-6 9 1 1-9 4
_ = ,

To 1

then
IT(f1, f)llor < A Al fillo L follpe for all f1 € LP, fo € LY.

Also generalize this to a multilinear complex interpolation theorem. (Hint: Mimic
Question 10.)

In the last question, we saw an easy extension of the complex interpolation theorem
to the multilinear setting. In this question, we will see that the real method of
interpolation does not extend to the multilinear setting the way one might naively
expect. In particular, we show that there exists a bilinear operator T', such that
T is continuous from (say) L? x L? into L**, continuous from L> x L! into L*°,
but does not map L? x L* continuously into L?, even if p’ < p. So two endpoints
are not enough, if we only begin with weak-type hypothesis and want a strong-type
conclusion! (The following example is due to Strichartz.)

We will consider the measure space X = (0,00) with Lebesgue measure dx. The
bilinear operator involved is given by

T(f9)(@) = [ Flan)oto)dy
0
(a) Show that
ITCf, pree < N fllzellgllpy for all 1T <p < oo.
Indeed, |T(f,g)(z)| < 77| f|lzr|lg|l.r- In particular, T is continuous from

(say) L? x L? into L**, continuous from L>® x L' into L.

(b) Let p € [1,00). Show that for any non-negative measurable function g on
(0, 00), we have

sup IIT(f,g)HLpzf yPg(y)dy.
0

IfllLp<1

This shows that

sup IT(f; gl = o0

1£1lp <1, llgll <1
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Hence T is not continuous from L? x L¥ to LP. (Hint: By scaling, we may
assume that fooo y~Y?g(y)dy = 1. The triangle inequality shows that

sup || T(f,9)llzr < 1.
Ifllzp <1

On the other hand, let a € (0, 1) be sufficiently close to 1, and let € € (0, 1) be
sufficiently close to 0. Let f.(z) = x_l/px[ayg_q(x). Then

1 fellze = [21og(e™)] V2,

and
e g1

T(f..q)(x) = &~ / yVPg(y)dy.

ex—1

For = € [e*, %], we have

6(171

T(f.,q)(x) > z7/7 / yPg(y)dy.

817(1
Thus
1T D)l = 2P Lo e / Y7 g(y)dy,
el—a

which gives

Eafl

1T )llzr = & ol / Y g(y)dy.

Elfa
By taking « € (0, 1) sufficiently close to 1, and € € (0, 1) sufficiently close to 0,
we can make the right hand side > (1 — 0)|| f||z» for any § > 0. Thus

sup  ||T(f, 9)llr > 1
Ifllp <1

as well, as desired.)

15. Suppose 0 < p < oo, and h € LP(R"™) for some 0 < py < p. Show that if
Mth € LP(R"), then Mh € LP(R™), and

M| goey Snp [|MPR]| Lo @n).

Here Mh is the Hardy-Littlewood maximal function of h. In particular, we have
h € Lp(Rn)) and ||h||Lp(]Rn) Sn,p HMﬁh”Lp(Rn).

(Hint: The key is a relative distribution inequality. For any n > 1, we claim that
there exists b, € (0, 1), such that for any b,c¢ > 0 with b < b,,, we have

{z € R": Mh(z) > a, M*h(z) < ca}| <, c|{z € R": Mh(zx) > ba}|

If this is true, then by taking c sufficiently small, we can use Question 18 of Home-
work 3 to conclude the proof.

To prove the above relative distributional inequality, let b € (0,1) first. Let h €
LP(R™). Decompose the open set {x € R": Mh(z) > ba} into an essentially disjoint
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union of Whitney cubes {@Q}, so that the distance of each @) from the complement
of this set is bounded by 4 times the diameter of Q). Now since {z € R": Mh(z) >
a, M*h(z) < ca} is a subset of {x € R": Mh(x) > ba}, we just need to show that
for each Whitney cube @) as above, we have

Hz € Q: Mh(z) > a, M*h(z) < ca}| <, ¢|Q|.

This inequality would be trivial if the set on the left hand side were empty. So let’s
assume there exists a point 2o € Q such that M*h(zy) < ca. Now let Q be any cube
that intersects @ and that has diameter at least that of Q. Then 20Q will contain
a point y where Mh(y) < ba. Hence JCQ |h| < 20™ba for all such cubes Q. If z € Q
and Mh(z) > «, then by taking b < 207", we see that M (hxsg)(z) > a. We also
have f,, [k < 20"ba. Thus

{z € Q: Mh(z) > a, M*h(z) < ca} C {x cQ: M (hng — ]iQ h) (z) > (1 — 20”b)a} :

whose measure is bounded by

3"Ch

a—200)°%

Ch c,
(1 —20mb)ax /Q |hxaq(y) — hagldy < mBQ!Mﬁh(xo) <

where C,, is the constant arising in the weak-type (1,1) bound of M: L'(R") —
LY>(R™). This proves the desired relative distributional inequality.)

16. The goal of this question is to prove a complex interpolation theorem involving the
Hardy space H' on R" (see Homework 7 for its definition). Let p; € [1,00]. Suppose
{T.},c5 is a family of continuous linear operators from L' (R") to L; .(R"), analytic

in the sense that for every f and ¢ that are bounded measurable with compact

support, the map z — fRn T.f - gdx is holomorphic on S, continuous up to S and

bounded on S. Let qg, q1 € [, 00]. Assume
|T.flloo < Aol flle  whenever Rez =0 and f € H' N LP,

\Toflloa < Ayl f|leee  whenever Rez =1 and f € LP.
Then for any 6 € (0, 1), we have

ITof|le S Ay A\l flle forall f € LP N LM,

where 1 o 1 1-0 0

-—=1-0)+—, -= + —.

p b g do 1
In particular, Ty extends to a bounded linear map from LP(R") to L(R"), with
norm < AF?A{. (Hint: For each z € S and every bounded measurable g with

compact support, let 777g be the L' function on R”, such that

f-Tigdo = [ 1.f-gis

n

R”
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for all f € LP*. Now let 6 € (0,1), and let g be a compactly supported simple
function on R". Let {g.} be a holomorphic family with gy = ¢ and

19211 zaor < Nlgllze when Rez =0,

|g:ll ;arr < llglly  when Rez = 1.

Then T’g, is an analytic family of L . function, and satisfies the hypothesis of the

proposition we used in the lecture notes to prove the complex interpolation theorem
for BMO; note in particular that T¥g, € L” for all z € S,

177 9:llBro < Aollgll e when Rez =0,

||T,:gz||Lp1’ S Al”QHLq/ when Rez = 1.

Thus Tjg € L, with
1Ty 9l < A~ Alllgll o

As a result, if f € LP N LP*, then

/ Tof - gdx

By density of compactly supported simple functions in L9, this shows that

S AT Al llgll o

ITo Sl < Ag~ ALl 12

for all f € LP N LP', as desired.)



