MATHG6081A Homework 7

1. (a) Let f be a BMO function on R™. Suppose for every 7 € R", there exists a
constant ¢, such that

flx+7)=f(x)+ec, forae xeR"

Show that f is constant, and hence f is identified with 0 in the BMO space.
(Hint: First show that ¢4, = ¢, + ¢, for all 7,75 € R", and that ¢, is
continuous as a function of 7 by noting that

T = dx — d
c ]{9(0,1)f(x+7) x ]i(o,nf(x) x

for all 7 € R™. Hence ¢, is a linear function of 7, which shows f(z) is equal
to an affine function of x a.e. on R™. The only affine functions that are in
BMO are constants, by considering averages of |f(x) — fs(,r)| over B(0, R) as
R — +0.)

(b) Suppose K € S'(R") is a tempered distribution with K € L>(R™). Suppose
also K agrees with a measurable function Ky away from the origin, for which

Sup/ |Ko(x —y) — Ko(x)|dr < oo.
y#0 Jlz|>2y|

Let T: S(R") — S'(R™) be given by T'f = f*x K for all f € S(R™). We knew
already that 7" extends as a continuous linear operator from L>(R") to BMO;
if g € L>*(R™), we write T'g for a globally defined BMO function on R™ with
some fixed normalization (say fB(o,l) Tg(x)dxr = 0).

(i) Show that T' commutes with translation, in the sense that if g € L>(R")
and g.(z) := g(x + 7), then for every 7 € R", there exists a constant ¢,
such that

Tg-(x) =Tg(x+7)+c, forae zeR"

(ii) Show that T'(1) = 0 as a function in BMO. (Hint: Apply part (a) to

f=1T(1))

2. A function a on R" is said to be an Hardy H! atom (associated to a ball B) if a is
measurable, supported on B, |lal|r2s) < |B|7Y/2, and [, a(z)dz = 0. A function f
on R" is in Hardy #H!, if there exists a sequence ay, as, ... of Hardy H' atoms and
a complex sequence Ap, Ag, ... with "7, |[Ag| < oo such that

f = Z )\kak.
k=1

For f in Hardy H', let || f|lz be the infimum of >~ | [Ag|, over all possible decom-
positions of f into > -, Aray, where ay,as, ... are Hardy H' atoms.

(a) Show that Hardy H' is a vector space.
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(b) Show that || f||% defines a norm on Hardy H', and that #' embeds continuously
into L'. (Hint: If f is in Hardy H' then f € L' with || f||z1 < ||f|/7:. Hence if
| fll22 = 0 then f =0 a.e. Now check the triangle inequality.)

(c) Show that Hardy H' is complete. (Hint: Suppose {fi}$>, is a sequence in
Hardy H! with || fi]|%: < 27" for all k > 1. It suffices to show that > "=, fi is
in Hardy H! (why?). But each f, admits a decomposition into sums of atoms,
hence so does >_;~ fx. This completes the proof.)

(d) Show that the dual space of Hardy H' on R" is BMO(R™). (Hint: Let H.} be
the subspace of Hardy H!, that consists of finite linear combinations of Hardy
H' atoms. Then H! is a dense subspace of Hardy H'. Given g € BMO(R"),
define

(f.9)= | f@)gle)da
for all f € H.(R™). Then

(fr9)= lim [ f(z)gn(v)dz

N—o0 R™

for all f € HL(R™), where gy is the truncation of g, given by

N if g(x) > N
gn(z) =qg(x) i -N<g(@)<N
—N if g(z) < —N.

This limit exists by dominated convergence theorem, since |gy| is dominated by
|g|, which is locally L?. Now for f € H! and € > 0, write

=2
k=1
where a1, as, ... are Hardy H! atoms and
1l <) el + e
k=1

Then for every N > 0,

f dx—Z)\k/ ag(z da:—Z/\k/ ar(x)(gn(x) — cp n)dz,

where ¢ v = ka gn and By is the ball associated to ay, so

Zp\k (|B|/ lgn(2) — ckn]| dl‘)

N (”f”?—tl +¢) |lgllBmo

/2

f(
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3. Let
(a)

by the John-Nirenberg inequality and the fact that ||gn||smo S |l9]lBmo uni-
formly in N. Thus letting N — oo and € — 0, we get

[l S I bellgll saro

for all f € H!, and by density this shows every g € BMO defines a bounded
linear functional on Hardy H!.

For the converse direction, suppose L is a linear functional on Hardy H' with
norm 1. For every ball B C R", let L2(B) be the space of L? functions f on
B with [, f(z)dx = 0, and equip L§(B) with the standard L? norm | f| r2(p)
so that L2(B) becomes a Hilbert space. Then L induces a bounded linear
functional on LZ(B) with norm < |B|'?, so there exists ¢®) € LZ(B) with
19| 23y S |B|M? such that

L(f) = /B £ (2)gP (@) de

for all f € L3(B). If By N By # (), then gBY) — ¢(52) is a constant on By N Bs.
Thus one can define a global function g on R", such that for every ball B C R",
there exists a constant cg such that ¢ = ¢'®) + c5. Now

1/2
<sup £ loto) - cBde) — sup [ B¢ 1o < 1.
B B B

Thus g € BMO(R™), and it is easy to check that L(f) = (f, g) for every f € H.,
as desired.)

Tf = f* K be the singular integral operator as in Question 1(b).

Show that T' extends as a continuous linear operator from Hardy H! to L.
(Hint: It suffices to check this on atoms. Let a be an Hardy H' atom associated
to a ball B. Let B* be the ball with the same center as B but twice the radius.
Note that ||T'a||z1p+) < |B|Y?||Tal|12, which can then be estimated by using
L? theory. On the other hand, if z ¢ B*, then

Tar) = | ol =) = Kol = w)la(s)dy

where yo is the center of B. One can then estimate ||Tal[z1(p+)) using the
estimates for the derivative of Kj.)

By symmetry, part (a) also shows that the formal adjoint 7% of T" extends as
a continuous linear operator from Hardy H! to L!. In the lecture we proved
that T" extends as a continuous linear operator from L into BMO. Show that
under these extensions,

| Tf@igi - [ T g

for all f € L™, g € H!.
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(c) Let a be an Hardy H' atom. We saw that T*a € L'. Show that

/ Ta(z)dr =0

This gives an alternative proof of the result in Question 1(b), namely 7'(1) = 0.
(Hint: Since T*a € L', the Fourier transform of 7*(a) is a continuous function,

~

whose value at the origin is limg_, K(=&)a(¢) = 0. This gives the desired
conclusion.)

4. Let T be as in the previous question. Show that 7" extends as a continuous linear
map from BMO(R") into itself, with

1T fllBro Sn |IfllBaro

for all f € BMO. (Hint: Let f € BMO(R™). By dilation and translation invari-

ance, it suffices to show that there exists a constant ¢, such that

[ 1rf=elds S [ lavo
B(0,1)

Split f = f1 + fo + f3 where

fi=(f = feo2)XxBo2, [f:=(f—fBo2)XB02° [3=fB02)

and follow the proof that singular integrals map L*>° into BMO; in particular, use
L? theory to bound T'f;, kernel derivative estimates to bound T'f,, and note that

Tf;=0.)

5. Suppose a € BMO(R"), ® € S(R") with [, ®(z)dz = 0. For t > 0, let ®y(z) =
t"®(tx). Show that a * &, € L>*(R™) for all £ > 0, w1th

la* @¢||L~ Sem |lallppo  uniformly in ¢ > 0.

(Hint: Let ||a||gmo = 1. By dilation and translation invariance, it suffices to bound
la x ®(0)| by a constant that depends only on ® and n. But this follows since

a\xr) — a
§¢>,n/ la(x) B(0,1)|dx

lax ®(0)] = (1+ [z])n

Rn(a(x) — ap,1))P(x)dr

at which point we may invoke Question 8(d) from Homework 5.)
6. Let Ko(x,y) be a measurable function on R™ x R™ that satisfies
|Ko(z,y)| S|z —y|™ forall z,y € R

Suppose
Ko(z,y) = —Ko(y,z) for all z,y € R".

For f,g € S(R™), define

(Tf,g) _hm /| | (x,y)f(y)g(x)dydz.
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(a) Show that for f,g € S(R"), we have

T5.9) =5 [ | Kolwn)iwig(e) - o(o) f(@))dyda:

(b) Hence show that T defines a continuous linear map 7': S(R") — S’(R"), and
that 7" is weakly bounded. (Hint: If f € S(R") and g, — 0 in S(R"), evaluate
(T'f,gn) using (a), and estimate that by splitting the integral into two parts,
one where |z —y| < 1, the other where |z —y| > 1. On the part where
|z —y| <1, write

F@W)gn(r) = gu(y) f(2) = [f(v) — f(2)]gn(y) + f(2)][gn(y) — gn(7)]

and use that [|[Vf|r=|gnllzr + [Vnllze|lfllz: — 0 as n — oo. On the
part of the integral where |x — y| > 1, bound |Ky(z,y)| < 1, and note
that || fullzt|lgllz: — 0 as n — oo. This shows that 7" maps S(R™) into
S'(R™). Reversing the role of f and ¢ in the above argument, we see that
T:S(R") — S'(R") is continuous. Finally, the argument we used to treat the
integral where |z — y| < 1 can be easily modified to show that T' is weakly
bounded.)

7. Let py € (1,00), p2 € (1,00], p € (1,00), and

1 1 1
b P11 P2
Suppose f € LP*(R™), g € LP*(R™). For j € Z, let

-~ ~

Aif =F e f(§)] and  S;f = F[(277) f(9)]

where ¢ is smooth with compact support on the annulus {1/2 < [£| < 2} and ¥ is
smooth with compact support on the ball {|¢| < 2}. Show that the paraproduct
> A f - Sj_s9 converges in LP(R™), with

j=—o00

Z Ajf : ij:';g

j=—o00

S [ llze gl 2oz
Lr

(Hint: Since } ;. A;f — f in L™, it suffices to prove that

Z Ajf-Sjsg|| S lleellgllze

lil<N .

uniformly in N. Note that the function on the left hand side is a priori in LP(R").
By Littlewood-Paley inequality and the fact that A, f - S;_3g has frequency support
on an annulus {2772 < |¢] < 2972} it suffices to estimate

Z Ay Z Ajf-Sj_3g

2\ 1/2
|k|<N+3 li—k|<3

Lp
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But one can take the finite sum out of the LP¢? norm, drop the A, and then
estimate |S;_sg| by Mg, the Hardy-Littlewood maximal function of g. Thus the
above is bounded by
1/2
SN Mgl

|k|<N+3
Lpr

which by Holder’s inequality, the boundedness of M on LP?, and the Littlewood-
Paley inequality is bounded by || f]|ze: [|g||zr2-)



