MATHG6081A Homework 5

1. Suppose v > 0 and f € S'(R™). Show that f € A7, if and only if there exists a
sequence of C* functions {f;};>0 on R", such that

107 fill Loy Sp 27972911 for all j > 0 and all multiindices 3,
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and

with convergence in the topology of S'(R™). (Hint: Adapt an argument from the lec-
ture notes. You will also need to use the fact that the Littlewood-Paley projections
Py, (k> 1) can be chosen to be convolutions against dilations of a Schwartz function
® with zero moments, i.e. one that satisfies [, y°®(y)dy = 0 for all monomials y”.
Then in estimating

Py fi(x) = . fi(z —y)2"e(2%y)dy,

you may Taylor expand f;(x—y) in y up to order ||, and proceed as in the lecture.)

2. (a) Show that A7(R™) embeds continuously into A®(R") if 0 < 3 < .
(b) Show that WP(R") embeds continuously into W#54(R") if
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(c) Show that W®a (R") does not embed into L>(R") if 0 < o < n. (Hint: An
illustrative way of constructing such a function is to take

flz) = g(2" '),
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where g € S(R") is a function such that g is supported on an annulus [£] ~ 1,
and g(0) = 1. Then one easily checks that f ¢ L>(R") because it is unbounded
near the origin. But if I = Z;’io P;j is the standard Littlewood-Paley decompo-
sition, then we have

S (@ Pif()))* <

J=0

o log(2) 2 for [a] < 172,
2|~V for any N for |z| > 1/2.

Since 0 < a < n, one can raise both sides to power -, and integrate; this

shows f € W®a(R"). Alternatively, take f(z) = loglogﬁ if |[z|] < e™!, and
zero otherwise, and mimic the above strategy. One can also avoid the use of
Littlewood-Paley decompositions if a were a positive integer.)

3. Suppose k € N and 1 < p < co. Show that C2°(R") is dense in the Sobolev space
WHFP(R™). (Hint: For f € W*P(R"), consider spatial cut-offs of f x ¥_(z) where
U e SR™) with [¥ =1, and ¥ (z) = "W(c '2).)
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4. (a)

Suppose f € C*(R"), n > 2. Show that

f(@)] S TL(IVI)(=)

for any x € R™. Hence if k € N, 1 < k < n, then |f(z)| < Z.(|V* f|)(x) for any
€ R". (Hint: f(z) = [j"w- Vf(z — tw)dt for every z € R" and w € S"7'.
Average over w € 8" ! and change coordinates y = tw.)

Use this and the mapping properties of Z; to give an alternative proof of the
Sobolev embedding theorem for W*P(R") if 1 < p < n/k.

The above proof can be modified to give an alternative proof of the Sobolev
embedding theorem in the case p = 1. The key is to show that W!(R")
embeds into L®™=Y. To do so, let f € C®(R"). For j € Z, let g; be the
continuous function given by

gj(x) = max{min{| f(x)|, 2]'+1}7 2]‘—1} _gi-1

Then the distributional derivative of g; is given by

V() = {W(x” it 297 < |f(w)] < 27

0 otherwise

Show first

j(n—1)

27 (o € R gy(0) > 27 S Vgl S [ Vi(e)ldo
271<|f (@)| <271

using that 7, is of weak-type (1,-"5). Then sum over j € Z, noting that

{x eR": 27 < |f(x)] <27} C {z e R™: g;(x) > 2771},

Show that if C), is the best constant of the Gagliardo-Nirenberg inequality in
R"™ n > 2, i.e. if C), is the smallest constant such that

11w gy < Call W lliren
for all f € C°(R™), then for any bounded smooth domain 2 C R™, we have

n—1

Q% < 0,09

(Hint: Approximate the characteristic function of Q by C°(R").)

5. (a) Suppose f € C™ on some open ball B C R", n > 2. Show that

1f(z) = el S T(IVfIxs)(z)

for any x € B. Here fp = fo is the average of f on B, and xp is the
characteristic function of B. (Hint: Compute f(z) — f(z) for z € B by writing
z =12 +tw with t > 0, w € 8" ! and applying the fundamental theorem of
calculus in the ¢ variable. Then average over z € B.)
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(b) Hence give an alternative proof of Morrey’s embedding theorem for WH?(R™)
when p € (n/k,o00). (Hint: Without loss of generality, assume k£ = 1 and
p € (n,00). Then

[f(2) = F(y)l < [f(2) = fol +[f(y) = [B]

where B a ball of radius ~ |z — y| containing both = and y. Then apply the
above estimate, and estimate the right-hand side using Holder’s inequality and
the assumption that ||V f||z» < co where p > n.)

(¢) Prove also Poincare’s inequality: if f € C'™ on some open ball B C R", n > 1,
then

I f(x) = fBllra) STIVlwm, 1<p< oo,

where 7 is the radius of the ball B. (Hint: The case n > 2 follows from part
(a) and Young’s convolution inequality. Find a substitute of the proof in the
case n = 1.)

(d) Using the Poincare inequality in (c), give an alternative proof that W1 (R")
embeds into BMO. This also implies that W (R") embeds into BMO for all
a € (1,n) by Question 2(b). (Hint: For any ball B C R", we have

} 1rte)=alas < (]i £(x) - fBr”da:) T (]i er<x>|"dx) " vy

where we have applied Poincare with p = n in the second inequality.)

Ln (Rn)

6. (a) Show that log|z| is a BMO function on R" for all n > 1. (Hint: If |zo| < 2r,
then B(zo,r) C B(0,3r), and

f |log |z| — log r|dx
B(0,3r)

is a finite constant independent of r; on the other hand, if |zg| > 2r, then
|zo| /2 < |x| < 2|z0| for all x € B(xg,r), so

][ |log |z| — log |xo||dx
B(zo,r)

is bounded by log 2.)
(b) Show that

log x ifzx>0
f(x)_{o if 2 < 0

is not a BMO function on R. (Hint: Consider f,|f(z) — fp|dz where B =
(—r,r) and r — 400.)

7. Let H be the Hilbert transform on R.

(a) Show that H is not bounded on L'. (Hint: Consider a sequence of L' functions
converging to the ¢ function in &’'(R").)
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(b) Hence deduce that H is not bounded on L*. (Hint: Use duality.)

(¢) Show that if H is extended as a continuous linear operator from L* to BMO
and f(z) = sgn(x), then Hf(x) = %log |z|. This provides a direct proof that
H is not bounded on L*°.

8. (a) Show that we could have used cubes instead of balls in the definition of BMO.

(b) Show that if f is a BMO function, then so is |f].

(c¢) Show that if f, g are both BMO functions, then so is max{f, g} and min{f,g}.

(d) Show that if f is a BMO function, then

][ F(2) = foldz < (log B)| fllpao  for every R > 10,
Br

and

|f(z) — f5|
T ITERRS f > 0.
/Rn (1 + |z|)mte z S || fllsmo  for every e

In particular, if f is a BMO function, then

|/ ()|
————— < oo foreverye >0,
/]R" (1 4 [[)"*=

so every BMO function on R” is ‘almost in L*°’, and defines a tempered dis-
tribution on R”. (Hint: First recall

]i (@) — fa lde < || llaaro

2

for all non-negative integers k; here Box is the ball of radius 2* centered at the
origin. Then compare this inequality with the one for Byx-1, to see that

\fB — Iy S IfllBMO-

Hence
| fBy — fB| S Kl fll BMro-

This easily gives the first desired inequality when R = 2* for some positive
integer k; the second desired inequality then follows by dividing R™\ By into a
union of dyadic annuli.)

9. The goal of this question is to prove the John-Nirenberg inequalities for BMO func-
tions on R"™.

(a) Show that there exists constants C7, Cy depending only on n, such that for any
BMO function f on R", and any cube @ C R™, we have

{z € Q: [f(z) = fol > A}
Q]

for all A > 0. Here fg = fQ f is the average of f on Q. (Hint: Without loss
of generality, assume ||f||ppyo = 1. Then in particular fQ |f(z) = foldx < 1.

_ G2
< Cye Wismo
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Now perform a Calderon-Zygmund decomposition of f — fo at height 2, by
repeatedly bisecting () into 2" congruent sub-cubes, and keeping only those
over which |f — fg| has average > 2. Then we obtain a family of cubes {Q;, }
so that

2<][ |f — fol < 2" for all j;

QJl
and

f(z) = fol <2 forae z€Q\|JQ).
Ji
Now for each ji, perform a Calderon-Zygmund decomposition of f — fq, at
height 2, by repeatedly bisecting ();, into 2" congruent sub-cubes, and keeping
only those over which |f — fg, | has average > 2. Then we obtain a family of
cubes {Qj, j, } so that

2<f 1f-fo,l <2 forall i
le»]é
and

f(2) = fo,| <2 forae xe€Q;\| Qi
J2
for every j;. Repeat this process k times, and we obtain a family of cubes
{le,j%m,jk} so that

2 < ][ |lf — fQj1,jz,---,jk_1| < 2"t for all jy, jo, ..., Jk (1)
Q

1,92,k
and
’f(.%') - fle,j2,4.4,jk_1‘ <2 for a.e. = € Q]’h]é,m,jkfl \Ule,jmn-,jk (2)
Jk
for every j1,j2, ..., jk—1. (1) shows that

+1
|fQj1J'2 77777 ik fQi17j2a<-<vjk—1| S 2"

for any ji, ..., Jk, so iterating this gives

‘fle,jQ ,,,,, ik fQ’ < k2
for any ji,...,jk. Together with (2) we get
f(2) = fol < k2" forae 2€Q\ |J Qs
J1yeensdk

But (1) also shows that

1 1
Z |Qj1,---7jk| < 5 Z/Q |f - fle,jQ,...,jk_J < 5’@j1,j27~-~7jk—1 )
Jk J1

1 TR A7 S RO ik
so inductively we have
1
Z ‘Qj17~~-7jk| < %|Q|
Tl
Now it suffices to choose k so that A\ ~ k2"™! (which is possible if A > 271 if
not the estimate is trivial). This finishes the desired estimate.)
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(b) Show that for any p € (1, 00), there exists a constant C,, ,, such that

1/p
sup (f ) - f@lpdy> < Copllfllmaro
Q Q

for every BMO function f on R"”, where the supremum is over all cubes () C R".
This is remarkable because the right hand side is certainly bounded by the left
hand side, by Holder’s inequality. This inequality in question is thus sometimes
called a reversed Holder inequality. (Hint: Use

e T e € Q| f(x) — fol > A}
]é!f(y) fal dy—/o pA 0 d\

and use part (a). This shows C? < C1I'(p+1)C;” where Cy, Cy are as in part
(a).)

(¢) Show that there exists constants ¢, C' > 0 depending only on n, such that for
every BMO function f on R™ and every cube () C R", we have

][eXp (C|f(y) - fQ|) < C.
Q | £l Brro

(Hint: Expand exp as a power series, and apply (b) with p = m for every
positive integer m. We also need the explicit bound for C),, as in the hint of
part (b). Indeed, we use that

= O D(m+1)Cym e & _
m=1 m! mZ:1 1

which is finite if ¢ < C5.)

10. The Moser-Trudinger inequality states that if n > 1, and w,,_1 = 1gzrn_"//22) is the surface
area of S"~!, then there exists a constant C' depending only on n, such that for every

ball B C R" and every f € C°(B), we have

o [ (@)l )
]ie p (nwn_l <HVfHL"(Rn) ) de < C.

1
n—1

Moreover the constant nw, ~; is sharp, in the sense that the inequality is false if
that were replaced by any larger constant. The goal of this question is to prove a
version of this inequality with a non-sharp constant.

Suppose 0 < a < n. We will prove that there exist constants u, C' depending only
on « and n, such that for every ball B C R" and every g € C°(B), we have

][ exp | u Hag(@)l dx < C. (3)
B HQHL%(B)

Without loss of generality, assume that B has radius 1/2.
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11.

(a) Show that for every g € [% — 1,00), we have

qan
n—

Wn—1

_an_ q+1 (e
/B\Iag(xﬂ"adxﬁ( g+ 1) gl g

(Hint: Use Young’s convolution inequality.)

(b) Show that (3) holds if p is chosen sufficiently small. (Hint: Expand exp in
power series, use (a) and Stirling’s formula.)

(a) Let n € N, a > 0, p € (2,00). Show that if {f,} is a bounded sequence in
WeP(R™), then there exists a subsequence that converges uniformly on compact
subsets of R™. (Hint: Use Morrey’s embedding and the Arzela-Ascoli theorem.)

(b) LetnEN,1§p<nand1§q<p*where]%:%—%. Let Q be a bounded
subset of R™. Show that if {f,} is a bounded sequence in W'?(R"), then
there exists a subsequence that converges in L9(€2). This is called the Rellich
compactness theorem. (Hint: By interpolation and Sobolev embedding, it
suffices to prove the case ¢ = 1. Fix € > 0. We want to show that there exists
N € N, such that

| fn — meLl(Q) <e€
whenever m,n > N. To do so, fix ¥ € C*(R") with [, ¥ =1, let ¥s(z) =
§"W (6 tz) for § > 0, and choose § so small so that

| fr = frslloie < e/2,

where f, s := f, * Us. This is possible because

Syl
f@)=Fus@) < [ WIS a=dnlay < [ [ W@y

which we may integrate over x € (); the smallness comes from the smallness
of 0. Now for this fixed J, {f.s} is a sequence of uniformly bounded and
equicontinuous functions on €2; indeed

sup (|| fusllze(@) + IV fnslle@)) < Cssup || fusllrr@) S Cssup || fullwrs@n.-
neN neN neN

One then concludes the proof using Arzela-Ascoli.)

12. Prove that if n € N, 1 < p < oo and a > > then W*P(R") is an algebra, and that

I fgllwer@ny S Ifllwar@n l|lgllwer@n-

This is a simple version of the fractional Leibniz rule. (Hint: Let I = Z;’;OP]-
be a standard Littlewood-Paley decomposition, so that if f € W*P(R™), then the
frequency support of Pyf is in |{] < 2, and the frequency support of P;f is in
2771 < |€] < 277 for all j > 1. Then for j > 1,

Pi(fg) = Pi((Pf)(Pug)).
k>0

Many terms in the double sum are zero because of the frequency support consider-
ations. The only ones that survive are the following cases:
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(i) k~j, 03y
(i) k< jt~]
(i) k~0>>j

These are known as high-low interactions, low-high interactions, and high-high in-
teractions respectively. To treat the high-low interactions, we use

|Pi((Pef)(Peg))| S (| PefIMg) * kj;

here k; is the absolute value of the convolution kernel of P;. To treat the low-high
interactions, we use

1P ((Bef)(Peg))l S (M fIPegl) * ks

to treat the high-high interactions, we may use any of the two inequalities above.
Now we need to estimate

~ 1/2
(Z |2°“ij(fg)l2>

Jj=1 Lp(Rn)

Triangle inequality, Question 16 of Homework 4, together with the above consider-
ations allows one to bound this by

- 2\ 1/2 - o\ 1/2
z(zwzwwg) s z@zwmm)
7=1 kg j=1 g
LP(R™) LP(R7)
o\ 1/2
N Z(2ajZ!Pkf!Mg>
j=1 k>>j
LP(R")

The first two terms can be estimated by bounding Mg and M f by their L*° norms,
which are in turn bounded by their W*? norms. The last term can be bounded by
using triangle inequality:

o - 1/2
(S e
r=1 || \j=1 Lo(®™)
which upon shifting summation and bounding Mg by L* is bounded by
o o 1/2
o2 (Z (2“j|ij|)2> gllwer@ny S 1f lwew@mllgllwesmn).
r=1 j=r

LP(R™)

This almost finishes the proof of the desired estimate; one still needs to estimate
| Po(f9) |l Lr®n), but that is much easier.)



