
MATH6081A Homework 3

1. Show that if f is a measurable function on Rn, then∫
Rn
|f(x)|pdx =

∫ ∞
0

pαp−1|{x ∈ Rn : |f(x)| > α}|dα

for any 0 < p <∞. (Hint: Interpret the measure in the integral on the right hand
side as an integral with respect to x, and use Fubini’s theorem.)

2. Show that if 1 ≤ p0 ≤ p1 ≤ ∞ and θ ∈ [0, 1], then

‖f‖Lpθ ≤ ‖f‖1−θLp0 ‖f‖
θ
Lp1

whenever f is measurable and

1

pθ
=

1− θ
p0

+
θ

p1
.

This shows Lp0 ∩ Lp1 ⊂ Lp whenever 1 ≤ p0 ≤ p ≤ p1 ≤ ∞. Show also that

Lp ⊂ Lp0 + Lp1 ,

i.e. every f ∈ Lp can be decomposed as f0 + f1, where f0 ∈ Lp0 , f1 ∈ Lp1 .

3. (a) Let f ∈ Lp(Rn) for some p ∈ [1,∞) and u(x, y) = f ∗ Py(x) be its Poisson
integral. Show that

lim
y→0+

‖u(x, y)− f(x)‖Lp(Rn) = 0.

(b) More generally, suppose k(x) ∈ L1(Rn) with
∫
Rn k(x)dx = 1, and ky(x) =

y−nk(y−1x) for y > 0. Show that we still have

lim
y→0+

‖f ∗ ky(x)− f(x)‖Lp(Rn) = 0.

(c) What happens when p =∞?

(Hint: For parts (a) and (b), use the continuity of translations on Lp(Rn).)

4. For each q > 0, let

Mqf(x) = sup
r>0

(
1

|B(x, r)|

∫
B(x,r)

|f(y)|qdy
)1/q

where B(x, r) is the ball centered at x and of radius r. Show that Mq is of strong-
type (p, p) whenever p ∈ (q,∞], and that Mq is of weak-type (q, q).

5. Define the uncentered maximal function

Muncenteredf(x) = sup
x∈B

1

|B|

∫
B

|f |,

where the supremum is over all balls B that contains x. Compare Muncentered point-
wisely to the Hardy-Littlewood maximal function, and discuss the boundedness of
this operator on Lp, 1 ≤ p ≤ ∞.
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6. What if we replace the balls in the definition of the Hardy-Littlewood maximal
function (or the uncentered maximal function in the previous question) by cubes of
varying side lengths? What if we replace balls by ellipsoids of a fixed eccentricity?

7. A dyadic interval is an interval of the form 2km+ 2k[0, 1) where k,m ∈ Z. A dyadic
cube in Rn is a cube of the form 2km+ 2k[0, 1)n where m ∈ Zn and k ∈ Z (in other
words, products of dyadic intervals of the same lengths). Show that if two dyadic
intervals intersect, then one is contained in the other. Similarly, show that if two
dyadic cubes in Rn intersect, then one is contained in another.

8. Define the dyadic maximal function on Rn by

Mdyadicf(x) = sup
x∈Q

1

|Q|

∫
Q

|f |

where the supremum is over all dyadic cubes in Rn that contain x. Show that

|{x ∈ Rn : Mdyadicf(x) > α}| ≤ 1

α
‖f‖L1(Rn),

and
‖Mdyadicf‖Lp(Rn) ≤ 2(p′)1/p‖f‖Lp(Rn)

for all 1 < p ≤ ∞. Note that the constants are independent of the dimension n.

9. A measurable function f on Rn is said to be in L logL if

‖f‖L logL :=

∫
Rn
|f(x)| log(2 + |f(x)|)dx <∞.

It is easy to see that L logL ⊂ L1. Let M be the Hardy-Littlewood maximal
function on Rn. Show that there exists a constant Cn, such that if f is in L logL
on Rn, then for any set B of finite measure in Rn, we have

‖Mf‖L1(B) ≤ |B|+ Cn‖f‖L logL.

(Hint: Interpolate between L1 and L∞. More precisely,

‖Mf‖L1(B) ≤ |B|+
∫
B

Mf(x)χMf>1(x)dx

and ∫
B

Mf(x)χMf≥1(x)dx =

∫ ∞
0

|{x ∈ B : Mf(x)χMf>1(x) > α}|dα.

Now just observe that

|{x ∈ B : Mf(x)χMf>1(x) > α}| =

{
|{x ∈ B : Mf(x) > 1}| if α ∈ (0, 1]

|{x ∈ B : Mf(x) > α}| if α ∈ (1,∞)

But recall that M is weak-type (1,1). In addition (as in the proof of the boundedness
of M on Lp for p ∈ (1,∞)), we have

|{x ∈ Rn : Mf(x) > α}| ≤ 2Cn
α

∫
Rn
|f |χ|f |>α/2.

Now one just needs to put the estimates together and evaluate an integral in α.)
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10. For each measurable subset E of [−1, 1] and each r > 0, let

χE,r(x) =
1

2r
χE

(x
r

)
where χE is the characteristic function of the set E. For each ε ∈ (0, 1], define the
small set maximal function M (ε) by

M (ε)f(x) = sup
r>0

sup
E⊂[−1,1]

E measurable
|E|<ε

|f | ∗ χE,r(x), x ∈ R.

Show that for every p ∈ (1,∞], there exists a constant Ap such that

‖M (ε)f‖Lp(R) ≤ Apε
1− 1

p‖f‖Lp(R) for all ε ∈ (0, 1].

Extend this result to Rn, n ≥ 1 as well. (Hint: Interpolate between L1 and L∞.)

11. Define, for f : Z→ C, the maximal function

Mdiscretef(n) = sup
N∈N

1

2N + 1

∑
|m|≤N

|f(n+m)|.

Show that Mdiscrete is of weak-type (1,1), and strong type (p, p) for all 1 < p ≤ ∞.
(Hint: Compare it to the Hardy-Littlewood maximal function on R.)

12. On R2, we define the maximal function along rectangles whose sides are parallel to
the coordinate axes by

Mparallelf(x) = sup
R rectangle

R parallel to the axes
x∈R

1

|R|

∫
R

|f(y)|dy.

Show that Mparallel is of strong type (p, p) for all 1 < p ≤ ∞. Also show that Mparallel

is not of weak-type (1, 1). (Hint: For the first part, note that Mparallel is pointwisely
dominated by the composition of the maximal function in the first variable with the
second variable. For the second part, we set f(x) to be (a smoothed out version of)
the δ function at the origin: then Mparallelf(x) ≥ c

|x1||x2| , which is not in L1,∞(R2).)

13. (a) Suppose K is a compact set, and for every x ∈ K, we are given an open ball
B(x, rx) that is centered at x and of radius rx. Assume that

R := sup
x∈K

rx <∞.

Let B be this collection of balls, i.e.

B = {B(x, rx) : x ∈ K}.

Show that given any ε > 0, there exists a finite subcollection C of balls from B,
so that the balls in C are pairwise disjoint, and so that the (concentric) dilates
of balls in C by (2 + ε) times would cover K.
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(b) Let M be the Hardy-Littlewood maximal function on Rn. Using part (a), show
that it is weak-type (1,1) with a constant 2n, i.e.

|{x ∈ Rn : |Mf(x)| > α}| ≤ 2n

α
‖f‖L1(Rn)

for all f ∈ L1(Rn) and α > 0.

14. Let f be a measurable function on Rn. Show that its distribution function λf (α) :=
|{x ∈ Rn : |f(x)| > α}|, defined for α ≥ 0, is right-continuous.

15. Let g : (0,∞)→ [0,∞) be a non-negative decreasing right-continuous function, and
λg(α) := |{t ∈ [0,∞) : g(t) > α}| be its distribution function, defined for α ∈ (0,∞).

(a) Show that g can be reconstructed from λg. (Hint: If g were actually strictly
decreasing and continuous, then λg is essentially the inverse function of g, so
g is essentially the inverse function of λg. In general, one can verify that g is
the distribution function of λg.)

(b) Show that for any p ∈ [1,∞), we have

sup
α>0

αλg(α)1/p = sup
t>0

t1/pg(t).

(Hint: Suppose A = supt>0 t
1/pg(t) < ∞. If α > 0 and λg(α) > 0, then let

t = λg(α) ∈ (0,∞). We have g(t− ε) > α for each ε > 0. This shows

αλg(α)1/p < g(t− ε)t1/p ≤ A
(

1− ε

t

)−1/p
for all ε > 0. Let ε → 0+, we see that αλg(α)1/p ≤ A, and this shows the left
hand side of the desired inequality is bounded by the right hand side there.
The reverse inequality is similar since g is the distribution function of λg.)

16. Suppose f is a measurable function on Rn, and 1 ≤ p <∞.

(a) Show that there exists a unique decreasing non-negative right-continuous func-
tion f ∗ defined on [0,∞), so that

|{x ∈ Rn : |f(x)| > α}| = |{t ∈ [0,∞) : f ∗(t) > α}|

for all α > 0. f ∗ is sometimes called the decreasing rearrangement of f . (Hint:
Use part (a) of the previous question.)

(b) Show that
sup
α>0

[
α|{x ∈ Rn : |f(x)| > α}|1/p

]
= sup

t>0
t1/pf ∗(t)

and

sup
E measurable
0<|E|<∞

1

|E|1/p′
∫
Rn
|f |χEdx = sup

0<t<∞

1

t1/p′

∫ t

0

f ∗(s)ds.

(Hint: Use part (b) of the previous question for the former, and approximate
by simple functions for the latter.)
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(c) Conclude that if in addition p ∈ (1,∞), then

sup
α>0

[
α|{x ∈ Rn : |f(x)| > α}|1/p

]
'p sup

E measurable
0<|E|<∞

1

|E|1/p′
∫
Rn
|f |χEdx.

(Hint: Use part (b). Note that

1

t1/p′

∫ t

0

f ∗(s)ds ≥ t1/pf ∗(t).

Also, if B = supt>0 t
1/pf ∗(t), then

1

t1/p′

∫ t

0

f ∗(s)ds ≤ 1

t1/p′

∫ t

0

Bs−1/pds = Bp′.

Hence the desired conclusion.)

(d) Let 1 < p < ∞. Show that the right hand side of part (c) defines a norm on
Lp,∞(Rn) (in particular, it satisfies a Minkowski inequality).

17. Let 0 < α < n and 1 < p < n/α. From part (d) of the previous question, we saw
that L

n
n−α ,∞(Rn) admits a norm. Give a direct proof that the Riesz potentials Iα is

of weak-type (1, n
n−α) on Rn using this fact. (Hint: Use Minkowski’s inequality for

the norm.)

18. Let F,G be two non-negative measurable functions, and p ∈ (0,∞).

(a) Suppose we have a pointwise inequality F (x) ≤ c1G(x) + c2F (x) for some con-
stants c1 and c2 with c2 ≤ 1. Show that∫

F (x)pdx .
∫
G(x)pdx

provided that the left hand side is finite.

(b) Suppose there exist constants c1 and c2 such that

|{x : F (x) > α}| ≤ c1|{x : G(x) > c2α}|

for all α > 0. Show that ∫
F (x)pdx .

∫
G(x)pdx.

(Hint: Use Question 1.)

(c) Suppose there exist constants a, b, c such that

|{x : F (x) > α,G(x) ≤ cα}| ≤ a|{x : F (x) > bα}|

for all α > 0. If a < bp, show that∫
F (x)pdx .

∫
G(x)pdx

provided that the left hand side is finite. (Hint: Indeed

|{x : F (x) > α}| ≤ a|{x : F (x) > bα}|+ |{x : G(x) > cα}|.

Now use Question 1.)
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(d) Suppose in addition to the conditions in part (c), we also have b ≤ 1. Then
instead of assuming that

∫
F (x)pdx < ∞, we may assume only that F ∈ Lp0

for some 0 < p0 ≤ p, and the conclusion of part (c) continues to hold. (Hint:
Repeat the proof of part (c), except one considers initially only∫ R

0

pαp−1|{x : |F (x)| > α}|dα;

using b ≤ 1, obtain a bound for IR uniformly in R before one lets R→ +∞.)

Remark: Inequalities of the kind in parts (c) or (d) are usually called relative dis-
tributional inequalities.


