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The wave equations

» Joint work with Sagun Chanillo
» Wave Constant Mean Curvature (CMC) equation on R2

u: R xR? - R3
—0%u+ Au=2u, Ay,

(system of equations)

» Wave Liouville equation on S?

u:RxS?> >R

82 e2u
—Ngu=a—ms -1
-tw=o(5m )

(o is a real parameter, g standard metric on S?)



The elliptic analogs

> (Case |ux| = |uy| =1, uyx-u, =0)
Constant Mean Curvature (CMC) equation on R?:

Au=2ux Nuy,

The image of any such v is a surface with mean curvature
H=1inR3

» (Case v =1, f, €2 = 1) Liouville equation on S
~Agu=e*—1

If uis as such, then e2”g is another metric on S2, conformal
to g, that has Gaussian curvature equal to 1 everywhere, and
that has area equal to 4.



The CMC equation

» The static equation:
Au=2u Nuy,

> Energy (H') critical: if u is a solution, then a dilation of u
preserving its H! norm is also a solution.

» (Entire) H!(IR?) solutions classified by Brezis-Coron: All are
of the form P(2)
z
u(z)=m +C
= (ai)

where P, @ are polynomialsin z and 7: C — S?2 C R3 is the
stereographic projection, and C is a constant vector in R3.

» For such u,
|Vul|2, = 87 max{deg P,deg Q};

kinetic energy quantized.



Now let W(z) be a ground state solution to the static CMC
equation; in other words, W(z) is a non-constant solution of

the form P(2)
z
W(z)=m=n + C
@="(o0)
where max{deg P,deg Q} =1 and HVWHiz = 8.

Sobolev inequality: for all functions v € H*(R?) taking values
in R3, we have

1/3
< C|IVV| 2.

/ v - (vx A vy )dxdy
R2

(Compensation compactness/Wente's inequality)

Brezis-Coron (also Caldiroli-Musina): The W we have above
are minimizers of this inequality.

W is also a stationary solution to the wave CMC with initial
data u(0) = W and 0;u(0) = 0.



The wave CMC equation
» The wave CMC equation again:
—d%u+ Au=2u, A uy,
» Conserved energy (for ‘nice’ solutions):
E(u(t)) = /R2 %(|8tu|2 + |Vul?) + %u - (ux A uy)dxdy

is preserved along the flow of wave CMC (hence depends only
on initial data). Sometimes we write

1 2
Elwo.m) = | 5+ [Tw0f)+ S+ (o)< A (e0), )y

» The non-linearity of previous Sobolev inequality arises in this
conserved energy.



Theorem (Failure of global existence)

Suppose u: [0, T) x R? — R3 is a smooth solution to wave CMC
with initial data u(0) = ug, ut(0) = u1, and that u has compact
support at each time slice t. Suppose also that

E(up,u1) < E(W,0) and ||[Vullp2 > [|[VW] 2.

Then T is finite; in fact |[u(t)||;2(r2) cannot remain finite for an
infinite amount of time.

» Analog of the finite time breakdown result of Kenig-Merle for
the energy critical semi-linear focusing wave equation

OPu—Au=u*N2y onRxRN N>3.



Proof of Theorem

» For the moment u will be a map from R? into R3 independent
of time.

» Stationary energy:

1 2
£(u) ;:/ LouP + 20 (uh ).
- 3

» Recall the Sobolev inequality for such u:

/Rzu-(ux/\uy)

> Let C be the best constant of this inequality and

1 2
F(A) =A% — §C)\3 for A > 0.

< C||Vul3,.

2

Then for all u as above, by this Sobolev inequality,

F(IVull2) < E(u).



» Graph of f:

» Any point of the form (||Vul|,;2,E(u)) always lie above the
graph of f.



Now recall the conditions of our theorem: Suppose
u: [0, T) x R? — R3 is a smooth solution to wave CMC with
initial data ug, uy. Suppose also that

E(Uo,ul) < E(W,O) and ||VU0||L2 > ||VW||L2
Then by conservation of energy,
E(u(t)) < E(W) forall t €0, T).

By continuity in t and the above picture, we have the
following observation:

[V u(t, <) 2oy > VW] 2(dx)

forall t € [0, T).
We want to prove that T must be finite.



> Let
y(t) = ”u(t7x)”%2(dx)
for t € [0, T). Then

y'(t) :/ 2u - uy
R2

V() = / 2lue = 2V ulP — du - (ug A uy).
R

» Suppose now E(up, u1) < E(W,0) — ¢ for some € > 0. By
conservation of energy, we have at any time t € [0, T),

and

/—4u-(ux/\uy)2/ 3(|uel? + [Vul?) — 6E(W, 0) + 6e.
R2 R2



With a little more work, this implies
y'(t) > /R2(5|ut|2 + [Vul> = [VW/|?)dx + 6¢
(just use AW =2W, A W,).
But we observed that at any time t € [0, T),
[V u(t, ) 2(ax) > VW 12(d)-

Hence
y”(t) > 5||ut(t7X)Hi2(dx) + 65’

which implies

for sufficiently large t.

Solving the equation, y(t) becomes infinite in finite time, and
therefore T cannot be infinite.



Local well-posedness of the wave CMC in low regularities

» Consider an initial value problem for the wave CMC:
—0%u+ Au=2u, A uy, u(0)=ug, Oru(0)= uy.

Given initial data up € H®, u; € H*1, does this initial value
problem admits a unique solution in CPHE N CLHS=17?

> When s > 2 the answer is yes by standard iteration and
Sobolev inequalities. We are interested going below s > 2.

» Difficulty: non-linearity contains first order derivatives, and
that we are in low (2+1) dimensions

» Fortunately, the non-linearity has a certain null structure.

» Best hope: since the wave CMC is energy critical, we hope to
go as low as s = 1.

» c.f. well-posedness of wave maps in 2 + 1 dimensions in H>;
there one can actually go as low as s = 1.



Null structures

» Given two functions u and v on the Minkowski space R",
define the null forms

Qoo(u, v) = =0y udsv + Vyu - Vyv
Qij(u,v) = Oxu Oxv — Oxu Ox,v
Qoi(u, v) = 0ruOy,v — Oy, u Orv

Here i,j ranges over 1,..., n.

> Qoo arises in the nonlinearity of the wave map equation, while
Qjj arises in the nonlinearity of the wave CMC.

» The null forms are better nonlinearities than things like
OruO¢v. They ‘damp’ the interactions of the waves along the
light cone, which are usually the hardest to control.



The wave Sobolev spaces

v

To proceed further, we need some Sobolev spaces adapted to
the study of wave equations.

A function u(t, x) is said to be in H*?, if

v

[ R+ ] = 1P ot )P < o

Here &i(7,&) is the space-time Fourier transform of u(t, x).
» We say u € HSP if u e HP and 9,u € Ho 1P,

Note that these are L2 Sobolev spaces; s and b refer to
differentiability in two different directions.

v



The iteration scheme

» To solve the initial value problem for the wave CMC, we fix
initial data up and u;. Given a function u(t, x), let S(u) be
the solution of the following linear initial value problem:

—afv + Av = 2ux A uy, v(0) = wp, 0:v(0) = u1.

» We want to show that S has a fixed point, so we want S to
be a contraction mapping in some suitable function space.

» When the initial data has low regularity, say are in H* x H*1,
the correct space to use is H5?, for some b slightly > 1/2.

» In fact, need the localization of H5? to the time interval
[0, T], which we denote 7-[571b.



Energy estimates

» Reason for using H5?: There is the following energy estimate
(when b > 1/2; here [ = 02v — A):

VIl350 S 1v(O)lme + 10:v(O) [ st + (|| prsr5r.
» When applied to v = S(u), we get
HS(U)HHST,b S uollps+lut || gs—1 41 2uxAuy || gs—16-1, b >1/2.

» Good news: if uy A u, here were the null form Quo(u, u), then
we can finish this off by estimating

| Qoo(u, )llps-1.6-1 < T2l e

for some small € > 0 (when b is only slightly > 1/2). If T
were sufficiently small, then S is a contraction map.

» Bad news: uy A uy, is NOT Quo(u, u); it is the null form Qj;
instead, which behaves worse than Qg in 2+1 dimensions.



» At this point, it is instructive to compare the energy estimate
in HSP (b > 1/2):

Vlieze S [V(O)[Hs 4 [10ev(0) [ o=t + [V | pys—r.6-1
to the energy estimate in COHE N CLHSL:
VIl corsncirz—r S IVO)Ims + [[0ev(0) [ et + IOVl 2 g1

» The latter is a gain in integrability in t: it says that to control
v in L2°, one only needs to control (v in Ll. But one needs
the same number of t derivatives of v on both sides.

» The former is better because one gains differentiability in b
there: to control b derivatives of v, one only needs to control
b — 1 derivatives of Ov.

» When the equation says that (v is already one derivative of
v, gain in differentiability is certainly better than gain in
integrability.



Open question

> It is still open whether the wave CMC is locally well-posed in
H® for any s < 2.

» Because of our specific null structures (Qj; instead of Qquo),
some additional difficulties may occur below s > 5/4
(contrary to wave maps)

» One may also need to iterate only in a subspace of H*?, as in
the case of Maxwell-Klein-Gordon, or Yang-Mills, equations.



The wave Liouville equation

» The equation again:

uRxS2>R
) e2u
8tU—AgU:Q<@—1>

(o is a real parameter, and we use standard metric g on S?)

Theorem (local well-posedness in H')

Suppose o € R. For any uy € Hl(S2) and uy € L%(S?) with
Js2 u1 =0, there exists u in COHL N CLL2 that solves the wave
Liouville with initial data u(0) = ug, 0:u(0) = uj.

(Proof by standard iteration; omitted)



» The facts that fo, u; = 0 and (JL o 1) = 0 are useful
in iterating using the Duhamel formula:

sin(ty/—Ag )
u(t,x) =cos(ty/—Ag)u
( ) ( g) o+ \/T
t o t— /_A 2u
+ sin((t — 5) g ( ° 5~ 1> (s)ds.
0 VarAY: foo
» The solution in this theorem is guaranteed to exist for time
T > 0 with T depending only on «, ||ugl|;: and [|u1]],2.

/S2u(t):/82uo

» Furthermore,

for all t € [0, T].



» Conservation of energy:

E(u(t) = ., (9l + [Vuf?) — clog ({209

conserved along the flow, where & = fS2 u. Using this and the
Moser-Trudinger inequality, one can prove:
Theorem (global well-posedness in H* when o < 1)

The solution u(t,x) in the previous theorem exists for all time if
a <1



Recall Moser-Trudinger on S?: if u is a function on S?
satisfying [ [Vu|? < 1, then

][ e477(u—E)2 <C.
S2

This inequality is sharp in that one cannot replace 47 in the
exponent by anything that is strictly bigger. Note that this
inequality can also be stated as

if oo [Vul? < oo.



» What we will usually use is the following corollary of the
above inequality, namely

][ 2= < Cexp <][ |Vu|2> ,
s? s

which holds because pointwise 2(u — ) < f(u\VuuP + fo [ Vul?.

Equivalently, the above inequality can be stated

log <][ e2(”‘_’)> <1 ][ IVul? + log C.
s? s?

Note that the left-hand side above arises in the conserved
energy.

» Onofri: C can be taken to be zero here. But we will not need
this refinement.



> Using Moser-Trudinger and conservation of energy:

E(u(t) = f, (00 + V) — aiog (f 24)

one can then control, as long as the solution exists, the
quantity
[0cu(t) | 2(s2) + IVu(t)l2(s2)

uniformly in t when « is small, and this will prove global
well-posedness when o < 1.



» Moser also proved the following refinement of
Moser-Trudinger: if u is an even function on S? satisfying

sz |Vul? <1, then
f eS7r(u—T1)2 <C.
SQ

It follows that for such functions,

o 1
log (][ e2(”_”)> < 57[ |Vul® + log C.
2 52

» Using this (and conservation of energy), one can prove
Theorem (global well-posedness in H? for even data when
a < 2)

If both initial data ug and uy are even functions on S?, then the
solution u(t, x) of the wave Liouville exists for all time if ax < 2.



» We also mention the analogous results for wave Liouville
systems:

N 2u:
2 e . 2
atUi_AgUi:E aUM_,(m—l), I:].,...,N on S°.
Jj=1

Here (ajj) is a (constant) N by N symmetric matrix, and (M)
is a vector.

» Key is a Moser-Trudinger inequality for systems: c.f. work of
Shafrir-Wolansky, Wang, Chanillo-Kiessling.



Blow-up for (scalar) wave Liouville when 1 < o < 2

» If uis a function defined on S2, define

2u
M) = J2%
sz e2u
where x is the position vector in R (This is the center of
mass of the measure e2“dvoly).
» Thus CM(u) € R3; in fact |CM(u)| < 1.
» Aubin proved the following improved Moser-Trudinger
inequality on S? (see also Chang-Yang and Han): if
|CM(u)] <1 — 06 for some § > 0, then for any p > 1/2, there
exists a constant C = C(u,d) such that

log <][ e2(”_‘_’)> < u][ |Vul?> + log C.
s s

» One should compare this with the improved Moser-Trudinger

inequality for even functions, since when u is even,
CM(u) = 0.



We have the following blow-up criteria.
Theorem (Blow up criteria for scalar wave Liouville)

Let 1 < o < 2. Suppose a local in time solution u to wave
Liouville exists on a time interval [0, To) for some Ty < oo, and
fails to continue beyond Ty. Then there is a sequence of times
ti — Ty such that

lim [CM(u,t;)| =1, lim / e2ult) — oo,
§2

1—00 1—00

and
lim ||Vu(t;)]| 2 = oo,
11— 00

where CM(u, t) is the center of mass of u(t). Furthermore, if
a = 1, then there is some point p € S? such that for any € > 0,

e2u(ti)
[im fB(L >1—c.
I—00 fSQ ezu(ti)

Here B(p, ) = geodesic ball on S? centered at p and of radius ¢.



Proof of Blow-up criteria

» The fact that one can take t; — T~ such that
lim |[CM(u, tj)| =1
1—00

follows from Aubin’s improvement of Moser-Trudinger when
the center of mass stays away from the unit sphere; if
limsup,_,7- |CM(u, t)| < 1 then one can continue the
solution past T.



» The fact that one can take t; — T~ such that

lim e2u(t) — o
i—oo Jg2

follows from conservation of energy:

limsup (||8tU||L2 + ||VU|| )

t—T—

SE(ug, u1) + alog <Iim sup][ e2”(t)> + 2a|(0)]
S2

t—T~

If limsup, ,7- [e e?U(t) < oo then one can continue the
solution past T.



» Since
lim e2u(ti) = oo,
i—00 S2

it follows from Moser-Trudinger that

,Iim HVu(t,-)HLz = Q.
i—00



» The last part of the theorem follows from the following
concentration lemma of Chang-Yang:

Lemma (Chang-Yang)
Suppose v; € H1(82) is a sequence of functions with fSQ e?vVi =1
and sup; f§2(|vvi|2 +2v;) = C < co. We have either

sup][ Vvi|? = C' < oo,
i Js

or there exists a point p € S? and a subsequence of v; (which we
still denote by v;) such that for any € > 0, we have

) 1 .
lim — Vi >1—¢.
i—oo 47 B(p.c)

Here B(p,¢) is the geodesic ball on S? centered at p and of radius
E.



» Remember what we want to prove: let @« = 1 and u solve the
wave Liouville on [0, T) that does not extend past 7. Then
there is some point p € S? such that for any € > 0,

fB(p 9 e2u(ti)
A e 2 TE

» To do so, let m; = £ e?u(t) and vj(x) = u(tj, x) — & log m;.

One can apply Chang-Yang lemma on these v;: it is easy to
check that f, €2 =1, and

sup][ (IVvil> +2v;) = ][ \Vu(t;,x)|* — log <][ ez(”(t")_u(t"))>
i Js? S?

= E(u t,)—][|8tu since a =1
< E(u(0))

independent of /.



Hence we have two scenarios: Either
2 /
][ ‘VV,‘| = (C < oo,
S2

or there exists a point p € S? and a subsequence of v; (which
we still denote by v;) such that for any £ > 0, we have

1
lim —/ i >1—¢.
i—oo 47 B(p,e)

The first alternative cannot happen since
HVV,'||L2 = ||Vu(t,-)||L2 — 00 asi — o0

by the third part of the blow-up criteria. Hence the second
alternative holds, and this is the conclusion of the theorem.



Constructing finite time blow-ups for wave Liouville

» Does one have global existence for the scalar wave Liouville in
the critical case o« = 17 If not, can one exhibit a finite time
blow up of the equation?

» Problem: when oo = 1, there is no initial data of negative
energy, thanks to Onofri. So one cannot easily construct
blow-up as we have done before.

» One could try an ODE blow-up, but it didn’t work either.



Let's borrow some analogy from the study of the energy
critical focussing semilinear wave equation in 3 + 1 dimensions
(c.f. Duyckaerts-Kenig-Merle, 2011, 2012): the equation is

O?u—Au=u® onRxR3
Two kinds of blow-up: (Let T be the blow-up time)
Type I: sup [[Vu(t)lliz + [[0cu(t)lz = o0

tel0,T)
Type Il: otherwise
Krieger-Schlag-Tataru constructed a type Il blow up with
sup [[Vu(t)llz < [[VW||2 +¢
tel0,T)
where W is the groundstate for this equation.

Duyckaerts-Kenig-Merle showed a profile decomposition for
type Il radial blow-ups



» We would be happy to see even just a type | blow-up for the
wave Liouville when o = 1.

» Question: understand ||V u||;> when the Onofri energy of u,

namely
£(u) ::][ Vul? - log (7[ e2(“—ﬂ>> ,
S2? NG

is controlled.



