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Let k be a field with char k = 0. Let sln be the Lie subalgebra of gln over k,
defined by

sln = {x ∈ gln : trx = 0}.
In this note, we present a less computational proof of the following theorem:

Theorem 1. sln is simple.

Let Eij be the elementary matrix whose entry in the i-th row, j-th column is 1,
and zero in all other entries. The key here is to show that any non-zero ideal of
sln contains at least one Eij for some i 6= j. There are various ways of achieving
this, some more elementary, at the expense of being a little more computational;
the argument we present below is more conceptual, and is a variant of one given
by Crystal Hoyt in a very nice set of lecture notes on Lie Algebras. The key is the
following lemma, which is interesting in its own right:

Lemma 1. Suppose V is a finite dimensional vector space, and T : V → V is a
diagonalizable linear map. We write Λ for the set of eigenvalues of T , and Vλ =
{v ∈ V : Tv = λv} be the eigenspace of T associated with λ, so that V = ⊕λ∈ΛVλ.
If W is a T -invariant subspace of V , i.e. if T (W ) ⊆W , then

W = ⊕λ∈Λ(W ∩ Vλ).

Proof. Since V = ⊕λ∈ΛVλ, given w ∈W , one can write

w =
∑
λ∈Λ

wλ, with wλ ∈ Vλ.

We enumerate those λ ∈ Λ for which wλ 6= 0 by λ1, . . . , λm. Then

w = wλ1
+ · · ·+ wλm

Tw = λ1wλ1 + · · ·+ λmwλm

...

Tm−1w = λm−1
1 wλ1 + · · ·+ λm−1

m wλm

Now we consider the coefficient matrix on the right hand side. Its determinant is
the Vandermonde determinant, which is non-zero in our case since the λi’s are all
distinct:

det


1 1 . . . 1
λ1 λ2 . . . λm
...

. . .
...

λm−1
1 λm−1

2 . . . λm−1
m

 =
∏
i>j

(λi − λj) 6= 0.

Thus we can invert this coefficient matrix. As a result, wλ1 , . . . , wλm can all be
written as linear combinations of w, Tw, . . . , Tm−1w, all of which are in W by the
T -invariance of W . It follows that w ∈ ⊕λ∈Λ(W ∩ Vλ), and the lemma follows. �
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We remark that the above lemma works for vector spaces over any field. More-
over, while we will not need this below, there is a version of this lemma involving
r commuting diagonalizable linear maps T1, . . . , Tr : V → V , and a subspace W of
V that is preserved by each of the T1, . . . , Tr.

We are now ready to prove the simplicity of sln.

Proof of Theorem 1. Since gln = sln ⊕ (k · I) where k · I is the set of all scalar
multiples of the identity matrix I, and since k · I is a subset of the center of gln, if
I is any ideal of sln, it is also an ideal of gln. Hence to prove Theorem 1, it suffices
to prove that every non-zero ideal I of gln with I ⊆ sln is equal to sln.

Suppose now I is a non-zero ideal of gln with I ⊆ sln. Let s =
∑n
k=1 2kEkk.

Then ad s is diagonalizable on V := gln: in fact

ad s(Eij) = (2i − 2j)Eij for all i, j = 1, . . . , n.

Hence the distinct eigenvalues of ad s are 0 and ±(2i − 2j), 1 ≤ j < i ≤ n. (Note

that if i 6= j and i′ 6= j′, then 2i − 2j 6= 2i
′ − 2j

′
, unless i = i′ and j = j′. This

is the place where we use our assumption that our base field k has characteristic
zero.) Let Vλ be the eigenspace of ad s : V → V with eigenvalue λ. Then V0 is the
set of all diagonal matrices in gln, and V2i−2j = span {Eij} for i 6= j. Now I is
ad s-invariant, since I is an ideal of gln. By the previous lemma, I is the direct sum
of I ∩ V0 with ⊕i 6=j(I ∩ V2i−2j ). If I ∩ V0 6= {0}, then since I ⊆ sln, one sees that
I contains a matrix t of the form

∑n
k=1 λkEkk, with λi 6= λj for some i 6= j. But

then I contains [t, Eij ] = (λi − λj)Eij , so I contains Eij for some i 6= j. On the
other hand, if I ∩V0 = {0}, then since I is non-zero, we must have I ∩V2i−2j 6= {0}
for some i 6= j. Hence I contains Eij for some i 6= j in either case.

To proceed further, it suffices to note that then I contains Eik whenever k 6= i.
and Ekj whenever k 6= j. This is because

[Ejk, Eij ] = −Eik if k 6= i,

and
[Eki, Eij ] = Ekj if k 6= j,

Repeating this argument, I contains Ekl for all k 6= l. It follows that I contains
Ekk − Ell for all k 6= l, since

[Ekl, Elk] = Ekk − Ell.
One then concludes that I contains sln. Since we assumed I ⊆ sln, we obtain
I = sln as desired. This completes our proof. �


