A PROOF OF THE SIMPLICITY OF sl,

PO-LAM YUNG

Let k be a field with chark = 0. Let sl,, be the Lie subalgebra of gl,, over k,
defined by
sl, = {z €gl,: trx =0}
In this note, we present a less computational proof of the following theorem:

Theorem 1. sl,, is simple.

Let E;; be the elementary matrix whose entry in the i-th row, j-th column is 1,
and zero in all other entries. The key here is to show that any non-zero ideal of
sl,, contains at least one Ej;; for some i # j. There are various ways of achieving
this, some more elementary, at the expense of being a little more computational;
the argument we present below is more conceptual, and is a variant of one given
by Crystal Hoyt in a very nice set of lecture notes on Lie Algebras. The key is the
following lemma, which is interesting in its own right:

Lemma 1. Suppose V is a finite dimensional vector space, and T:V — V is a
diagonalizable linear map. We write A for the set of eigenvalues of T, and V) =
{v e V:Tv = M} be the eigenspace of T associated with A, so that V.= @xea V).
If W is a T-invariant subspace of V', i.e. if T(W) C W, then

W = @rea(WNVy).
Proof. Since V.= ®xca Vi, given w € W, one can write
w = wa, with wy € V.
AEA
We enumerate those A € A for which wy # 0 by Aq,..., Apn. Then

W= Wy, + -+ Wy,
Tw = Mwy, + -+ Anpwy,,

T w = Ny, A+ - ATy

Now we consider the coefficient matrix on the right hand side. Its determinant is
the Vandermonde determinant, which is non-zero in our case since the \;’s are all
distinct:

1 1 e 1
A A cee A
det | ) ° D =TI - #o0.
)\77;71 )\mfl ' )\m.—l >
1 5 cee A
Thus we can invert this coefficient matrix. As a result, wy,,...,wy,, can all be
written as linear combinations of w, Tw, ..., T™ 'w, all of which are in W by the

T-invariance of W. It follows that w € ®xea (W NV)), and the lemma follows. O
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We remark that the above lemma works for vector spaces over any field. More-
over, while we will not need this below, there is a version of this lemma involving
r commuting diagonalizable linear maps 711,...,7.: V — V., and a subspace W of
V that is preserved by each of the T1,...,T;.

We are now ready to prove the simplicity of sl,,.

Proof of Theorem 1. Since gl,, = sl, @ (k- I) where k - I is the set of all scalar
multiples of the identity matrix I, and since k - I is a subset of the center of gl,,, if
I is any ideal of sl,,, it is also an ideal of gl,,. Hence to prove Theorem 1, it suffices
to prove that every non-zero ideal I of gl, with I C sl,, is equal to sl,.

Suppose now I is a non-zero ideal of gl, with I C sl,. Let s = >.7_; 2*Ep.
Then ad s is diagonalizable on V := gl : in fact

ads(Eyj) = (2" = 2)E;; foralli,j=1,...,n.

Hence the distinct eigenvalues of ad s are 0 and +(2¢ — 27), 1 < j < i < n. (Note
that if i # j and i’ # j/, then 2¢ — 29 £ 27" — 29" ynless i = i/ and j = j/. This
is the place where we use our assumption that our base field k has characteristic
zero.) Let V) be the eigenspace of ads: V' — V with eigenvalue A\. Then Vj is the
set of all diagonal matrices in gl,, and Vyi_o; = span{E;;} for i # j. Now I is
ad s-invariant, since I is an ideal of gl,,. By the previous lemma, I is the direct sum
of I NVy with @;;(I NVai_gi). If INVy # {0}, then since I C sl,,, one sees that
I contains a matrix ¢ of the form Y ;_; A\gEgx, with A; # ), for some i # j. But
then I contains [¢, E;;] = (A; — Aj)E;j, so I contains E;; for some ¢ # j. On the
other hand, if INVy = {0}, then since I is non-zero, we must have I NV,i_o; # {0}
for some 7 # j. Hence I contains E;; for some ¢ # j in either case.

To proceed further, it suffices to note that then I contains F;; whenever k # 1.
and Ejy; whenever k # j. This is because

[Ejk, Eijl = =By, if k #1,
and

[Exi, Eij] = Ey;  if k # j,
Repeating this argument, I contains Ey; for all k # [. It follows that I contains
FExy — Ey for all k #£ 1, since

(Ext, Ei] = Exx, — Ey.

One then concludes that I contains sl,. Since we assumed I C sl,, we obtain
I = sl,, as desired. This completes our proof. ([l



