SOME SPECIAL ISOMORPHISMS OF LIE ALGEBRAS
IN LOW DIMENSIONS

PO-LAM YUNG

In this note, we present a more geometric construction of some special isomor-
phisms between Lie algebras in low dimensions. For simplicity our Lie algebras will
be defined over C; the statements and the proofs will all go through if C is replaced
by an algebraically closed field k& with char k # 2.

First we recall the definitions of some standard matrix Lie algebras:

s, ={zegl,: trz =0}
s0, = {z € gl,: x + 2" =0}
SPo, = {7 € gly,, 1 o + Jopzt = 0}

0o I,

and I, is the n x n identity matrix. It follows that

5Py, = {( CC‘ 2 ) :a,b,c,deg[n,a——dt,b—bt,c—ct}.

where

Next, let V be a finite dimensional vector space over C. A symmetric bilinear
form (-,-): V x V — C is said to be non-degenerate, if for every non-zero v € V,
there exists some w € V such that (v,w) # 0. It is known that all non-degenerate
symmetric bilinear forms on V are equivalent: if (-,-); and (-,-)2 are two non-
degenerate symmetric bilinear forms on V', then there exists a linear isomorphism
T:V — V such that (v,w); = (Tv,Tw)s for all v,w € V. In particular, if
(-,): V xV — C is a non-degenerate symmetric bilinear form on V, then there
exists a basis {e1,...,e,} of V such that (-,-) becomes diagonal in this basis, i.e.
(€5, ex) = djk-

Now suppose g is a complex Lie algebra, and V' is a complex vector space with
a non-degenerate symmetric bilinear form (-,-}: V' x V' — C. Suppose we also have
a representation p: g — gl(V') of g preserving (-, ), i.e.

(p(z)v,w) + (v, p(x)w) =0 forall z € gand all v,w € V.

Then picking a special basis {eq, ..., e, } as above, so that (-, -) becomes diagonal in
this basis, one can identify V' with C”, and identify p as a representation p: g — so0,,.
We will make repeated use of this fact below.

Theorem 1. sly = sp, >~ s03.

Proof. From definition of sls and sp,, it is clear that the two are identical.
Now let V =sly. On V there is a non-degenerate symmetric bilinear form

(y,2) = tr (y2).
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(This is a multiple of the Killing form of sly.) The adjoint action ad: sly — gl(sl)
preserves this non-degenerate symmetric bilinear form:

(ad(x)y, 2) + (y,ad(x)z) =0 for all z,y, z € sls.
In fact,
(ad(@)y, z) + (y,ad(x)2) = tr ((zy — yr)z + y(ez — zz)) = tr (2(yz) — (y2)2) =0

for all z, y, z € sly. It follows that the adjoint action ad induces a Lie homomorphism
of sly into s03. This is an injective homomorphism, since its kernel is a proper ideal
of sly, and sl is simple; since both sly and soz are 3-dimensional, it follows that
this is an isomorphism of Lie algebras. (]

Theorem 2. sl ~ sog.

Proof. Let V = A?C* be the vector space of skew-symmetric 2-tensors on C*. In
other words, V is the span of z Aw over all z, w € C*, where zAw = 2Quw—w® 2.
Then V is 6-dimensional. Furthermore, there is a natural non-degenerate symmetric
bilinear form on V: if 1: A*C* — C is an isomorphism of the vector space of
alternating 4-tensors on C* with C, then one can define a non-degenerate symmetric
bilinear form on V by

(u,v)y = tlu Av) foru,v e V.

(Both symmetry and non-degeneracy of the bilinear form can be checked by hand
easily.) Now the vector representation of sl; on C* naturally induces a represen-
tation p: sly — gl(V'). Moreover, this representation preserves the non-degenerate
symmetric bilinear form (-, -):

(p(x)u,v) + (u, p(x)v) =0 for all x € sly and all u,v € V.

In fact, by linearity, it suffices to check this when u = 21 A z5 and v = 23 A z4, where
each z; is one of the standard basis vectors ey, es, e3, es of C*. Then

(p(z)u,v) + (u, p(x)v)
:L[(mzl)/\ZQ/\Zg/\Z4+Zl /\($22)A23AZ4+21/\22/\(.’223)/\Z4+21/\22/\23/\(11524)};
Here z2; is the natural action of = € sly on z; € C*. Hence by skew-symmetry, this

is zero unless {21, 22, 23, 24} is a re-ordering of {ej,es,e3,e4}. By relabelling the
basis {e1, €2, e3, €4}, we may assume that z; = e; for i = 1,...,4. In that case,

(p(x)u,v) + {u, p(x)v) = t[(trx)e; Aea Aeg Aeq) =0

as desired as well. Hence p induces a representation of sly into sog. By simplicity
of sly, the latter is an injective Lie homomorphism; since both sl; and sog are 15
dimensional, it follows that they are isomorphic. O

Theorem 3. sp, ~ so5.

Proof. The isomorphism between sp, and sos is obtained by restricting the iso-
morphism in the previous theorem. In fact, sp, C sly, so if V = A2C%, (-,-) and
p:sly — gl(V) is as in the previous theorem, then it induces a representation
po: sps — gl(V) preserving (-,-). Now let

vg =e1 Nes+ ey N\ey.
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If x € sp,, then po(x)vg is a multiple of vg. Hence if W is the orthogonal complement
of vg in V| i.e.
W ={weV: (w,v) =0},

then po(z) restricts to a map from W into W for all € sp,. It follows that
po induces a representation p;: sp, — gl(W). Furthermore, one can restrict (-, -)
to W, and the restriction gives a non-degenerate symmetric bilinear form (-,-);
on the 5-dimensional vector space W. Since p; preserves (-,-)1, it induces a Lie
homomorphism of sp, into sos. Since sp, is simple, the kernel of this map is trivial;
since sp, and so5 are both 10-dimensional, it follows that they are isomorphic. [

Theorem 4. so4 ~ sly @ sls.

Proof. Let V = gl, be our 4-dimensional vector space. First, sly acts on V' on the
left. In other words, there is a representation p;: slo — gl(V'), given by

p1(z)v=av forall z € sly and all v e V.
Similarly, sl acts on V' on the right. In other words, there is a representation
p2: sly — gl(V), defined by

p2(y)v = —vy forall y € slp and all v € V.
Note [p1(z), p2(y)] = 0 for all z,y € sly. Thus one can define a representation
p: sly @ sly — gl(V), namely

plx,y) = p1(x) + pa(y) for all (x,y) € sly & sls.

More explicitly,
(1) plz,y)v =axv —vy for all (z,y) € slo & sly and all v € V.

Now let
0 1
J_JQ_(—I 0)7

and define a bilinear form on V by!
(2) (v, w) = tr (vJw"J).
This bilinear form is symmetric, since
(v, w) = tr (vJw'J) = tr (vJw'J)" = tr (JwJv') = tr (wJv'J) = (w,v).
Furthermore, this bilinear form is non-degenerate on V', because the bilinear form
(v,w) := tr (vw) is non-degenerate, and the map w + Jw'J is a linear isomorphism
of V onto itself. We claim that p preserves this non-degenerate symmetric bilinear
form (-,-). In fact, by definition of p, it suffices to show that both p; and po
preserves (-, -). To see the latter, note that for any x € sly and any v,w € V, we
have
{p1(z)v,w) = tr (zvJw'J) = tr (vJw'Jz),
and
(v, pr()w) = tr (vJ(zw)'J) = tr (vJw'z"J).

_( a b (A B
"“\e a) " \c D)
then this bilinear form is given by

(v,w) = —aD + bC + cB — dA.

IMore explicitly, if
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But from z € sly = sp,, we have xJ + Jat = 0. Hence
{p1(x)v,w) + (v, p1(z)w) = tr (vJw' (x'J + Jz)) =0
as desired. Similarly, for any y € sls and any v, w € V, we have
(p2(y)v, w) + (v, p2(y)w) = —tr (vyJw'J) —tr (v (wy)" J)
= —tr (v(yJ + Jy")w'J) = 0.

Thus p preserves (-, -), and induces a map sly @ slo — s04. The kernel of this map
is an ideal of sly @ sls, and by simplicity of sly can only be {0}, sly @ {0}, {0} ®slo,
or sly @ sly. It is then clear that the kernel of this map is trivial, and since both
sl @ sly and so4 are 6-dimensional, it follows that they are isomorphic.

We remark that one could rephrase the above proof by identifying V = gl,
naturally as C? @ (C?)*. In fact, from the vector representation of sly on CZ
one can induce naturally an action of sly @ sly on C? @ (C?)*, and that induced
representation agrees with the representation p we defined in (1). Furthermore, the
bilinear form on V' defined by (2) is just the one defined by

(v1 @ wr,v2 @ wa) = —w(v1, v2)w(wi, wa)

for all vy,vy € C? and all wy,wy € (C?)*, where w is the symplectic form on C?
(and on (C?)* by abuse of notation). Now (-, -) is symmetric on V since w is anti-
symmetric on C2, and (-, -) is non-degenerate on V since w is non-degenerate on C2.
Furthermore, (-, ) is preserved by the action of slo @sls, since w is preserved by sly =
spy. This gives us a more conceptual way of presenting the above argument. ([



