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Introduction

v

Part I: Elliptic case

v

Some compensation phenomena that has to do with
divergence, curl and L1

v

Seems quite different from the classical theory of
compensation compactness

v

Part 1I: Subelliptic case



Hodge de-Rham complex on R”

» To say u is a O-form means u is a function; then

du =", 24dx’ (gradient of a function)

» To say uis a 1-form means u = Y 7, u;dx’; then

du_Z(@xf — 8xi> dx' A dx

i<j

(curl of a vector field if n = 3)
» In general d maps g-forms to (g + 1)-forms, and

_ ° au_] _] J
du—zgwdx A dx”.
J:



» Inner product on g forms:

W)=Y [, ur

» We write d* the formal adjoint of d under this inner product

» eg. If uisal-form, then d*u=—>"", % (divergence of a

vector field)



» d forms a complex: d od = 0. Same for d*.
> dd* 4 d*d = A componentwise
» Hodge decomposition: If u € C°(A9), then

u=da+d*s

where @ = A~1(d*u) and B = A~1(du). In particular, u is
determined by du and d*u.



Three pillars of the theory: elementary version

» From now on we work on R”, n > 2.

» First pillar is the solution of the following system of equations.

Proposition (Bourgain-Brezis)
For any f € L", there exists a vector field Y € L™ such that

dvY =f

> C_an always find Y € W1" by Hodge decomposition, but
WLn fails to embed into L.

» But system is underdetermined: if Y is a solution, so is Y
plus any divergence free vector field

» The claim is one can find a solution that is bounded by adding
a divergence free vector field



More generally

Theorem (Bourgain-Brezis)

If g # n—1, then for any f € d*(WL"(A9+1)), there exists
Y € L%°(N9*Y) such that

da'y=f



» Second pillar is the Gagliardo-Nirenberg inequality and its
generalization.

» Recall Gagliardo-Nirenberg: If u € C2°(A%), then

[ull ooy < ClIVul2

Theorem (Lanzani-Stein)
Suppose g # 1 nor n— 1. Then for any u € C°(A9),

[ull oro-n < C(lldul[2 + [[d*ul] 1)

Furthermore, assume n > 3. Then if g = 1, the same inequality
holds if d*u = 0; if g = n— 1, the same inequality holds if du = 0.
» Control of u by du and d*u; since d* of a function is always

zero, when g = 0 this is just Gagliardo-Nirenberg
» On the other hand, when g = 1, du is curl of u, and d*u is

divergence of u, so this is sometimes called a div-curl
inequality.



» Third pillar is the following compensation phenomenon.

Theorem (van Schaftingen)
If ue C(AY) and d*u =0, then for any function ® € C,

/ u1<Ddx

» Inequality would be trivial if W1" embeds into L°°. So this is
some remedy of failure of this critical Sobolev embedding
when one test a W1 function against something divergence
free (inequality fails otherwise).

< Clluf 2 [V




Equivalence of the three pillars

» The three theorems above are all equivalent.

» To illustrate this, assume the following proposition of
Bourgain-Brezis (special case of first theorem):

Proposition
For any f € L", there exists a vector field Y € L* such that

dvyY =f

with ||Y||Loo < CHf”Ln
We deduce from this the usual Gagliardo-Nirenberg inequality
for functions (special case of second theorem).



Let v € CZ° function in R”. We want to prove
[ull o1y < ClIVullr.

Use duality: consider fR,, uf for f € L".
By Proposition, given f € L, there is a vector field Y in L such
that div Y = f with ||Y||;ec < C||f][tr. Then

/uf:/ udiv Y

=— Vu-Y
]Rn

< [IVulla Y=
< Cl[Vul[x][f]]en-



» Conversely, one can deduce the above Proposition from the
Gagliardo-Nirenberg inequality.
Given function f € L", we want to find vector field Y € L™
such that div Y = f. The latter equation can be written

—/ uf = Vu-Y
n Rﬂ

for all functions u € C2°.

Let L'(A!) be the space of vector fields in L, E be the
subspace spanned by Vu where u € C2°(A%) (equipped with
L' norm).

Define a linear functional T on E by

T(Vu) = —/nuf.



By Gagliardo-Nirenberg, T is bounded on E with || T|| < C||f]|n:
this is because

/ uf
for all u € C2°.
By Hahn-Banach, we can extend T to L(A!) without increasing
its norm. But all bounded linear functionals on L(A!) is of the

form v — fRn v - Y for some vector field Y € L°°. Thus there is
some Y € L°° with

IT(Vu)| =

< el [l < ClIV Ul 2] o

T(Vu) = Vu-Y
Rn

for all u e CZ°, as desired.



» Similarly one can prove that the first two theorems above are
equivalent (although | have not shown you how to prove
either of them).



> Next remember there is also a third theorem, which is a
compensation phenomenon for divergence-free 1-forms.

» To illustrate why this third theorem is also equivalent to the
first two, let's try to deduce from it the following special case
of the second theorem:

Proposition
Suppose n > 3. Then ||ul|;n/n-1) < C||dul|r if u is a I-form and
d*u=0.



To prove this, use Hodge decomposition: u = d*A~!(du).

Use duality: Let ¢ be another 1-form, ¢ € L". Consider
(u,¢) = (d"A7(du), ¢) = (du, A™1d)

which is equal to

> / (du);A-1(d¢).

VE

Need to estimate this.

Key: One could do so using the third theorem, because for each
|J| =2, (du), is a component of some divergence free vector field.



Reason: d forms a complex: d(du) = 0. So say 1 is not in
J = (j1,j2) (an index like that exist since n > 3). Then considering

the component 1J of d(du), we get

O(du)y  O(du)yy | O(du)yy _
ox!t OxJ2 Oxh

Arguments like this will prove the second theorem from the third.



» To complete this circle of ideas, van Schaftingen provided an
elementary (but very beautiful) proof of the third theorem
(thus establishes all three theorems).

» Turns out there is a more sophiscated version of the same
story, which we describe below.



Three pillars of the theory: sophiscated version

» First pillar is the solution of the following system of equations.
Proposition (Bourgain-Brezis)
For any f € L", there exists a vector field Y € L>°N WL such that

dvyY =f

with |[ Y[t + [ Y[lyyrn < ClIf[[1n-

> Y not only in L, but also in W1



More generally

Theorem (Bourgain-Brezis)

If g # n—1, then for any f € d*(WL"(A9H1)), there exists
Y € LN Wh(A9FL) such that

d'y =f

with |[ Y[t + [ Y[lyyrn < ClIf[[1n-



» Second pillar is the following generalized Gagliardo-Nirenberg
inequality.

Theorem (Bourgain-Brezis)
Suppose g # 1 nor n— 1. Then for any u € C°(A9),
0l < CUIduls s ggnys + 197 6ls oy )

Furthermore, assume n > 3. Then if ¢ = 1, the same inequality
holds if d*u = 0; if g = n— 1, the same inequality holds if du = 0.



» (WL is the dual space of Wb". If A and B are Banach
spaces, their sum is a Banach space

A+B={a+b:acAbec B}
with norm
Ifllaxs = inf{||al|la + ||bllg: f =a+ b,ac A bec B}.

Note that the dual space of L + (W")* is L% N WL,
which appeared in the previous theorem.



» When g = 0, the current theorem says
lullrrin < CUVull 1 -

for all functions u € CZ°, which is an improvement of the
usual Gagliardo-Nirenberg inequality.



» Third pillar is the following compensation phenomenon.

Theorem (Bourgain-Brezis)
If u € C(AY) and d*u =0, then for any function ® € C,

‘/ Ulq)dX
Rn

< C||U||L1+(W1,n)* Vol .



» Again these three theorems are equivalent. Bourgain-Brezis
gave a constructive proof of the first one directly, thereby
proving all three of them.

» The proof of Bourgain-Brezis uses the following approximation
lemma, which is of independent interest:
Lemma (Bourgain-Brezis)

Given any § > 0, there exists a constant Cs such that for any
function f € WL, there exists a function F € L N W1 such
that

D N0if = 9iF || < [V F|1o
i=2

and
[VEllr + [[Fllee < Csl[VE]|1n-

» F approximates the derivatives of f in all but one direction!



» Proof of this lemma uses heavily the Littlewood-Paley
decomposition of a function, and is highly non-linear. This is
part of the nature of the subject matter; in fact,
Bourgain-Brezis also proved

Proposition (Bourgain-Brezis)

There is no bounded linear operator K: L™ — L*(A) such that
div Kf =f forall f € L".



An approximation lemma for second derivatives

» The original proof of Bourgain-Brezis is restricted to

controlling one derivative. In joint work with Yi Wang, we
proved:

Theorem (Yi Wang-Y)

Given any § > 0, there exists a constant Cs such that for any

function f € W?2n/ 2 there exists a function F € L>® N W2n/2 sych
that

D N0 = O3F |l sz < SIVFll a2
ij=2

and
IV2Fl o2 + | Flliee < Gl V2] o



A hyperbolic version: An improved Strichartz estimate

Theorem (Chanillo-Y)

Suppose u: R1*2 — R? js a (weak) solution of the following
system of wave equations

where f = (f1, f): R2 — R? js a divergence free vector field at
each given time t, i.e.

8X1 f1 + 8X2 =0
for each t. Then

lullcos + 19eullopyr < € (llolliz + lelly-s + 11Fll 32 ) -



Subelliptic case: Heisenberg group

» Heisenberg group H" as the boundary of the upper half space
{Im zpp1 > |Z1?}, (2, 2n41) € C™HE
» H" diffeomorphic to C" x R via
C"xR—H"
[2,t] = (2.t +i[z)
» H" carries the structure of a non-abelian Lie group:
[z1,t1] - [z, 2] = [z1 + 22, t1 + 12 + 2Im (2122)]
» homogeneous in the sense that it carries automorphic dilation

Sx[z, t] := [Az,\%t], A >0



» Haar measure is just Lebesgue measure on C" x R ~ R2"*1:
it is dxdydt if we write a point on H" as [z,t], z=x+ iy
» @ = 2n+ 2 is the homogeneous dimension of H":

8% (dxdydt) = A\ dxdydt

» Left-invariant vector fields on H":

9 9 0 9
Xi=— +2y;— Yi=— —2x—, 1<;<
i T ag Yo T o,  ar TSI
o 1

» Think of Xj, Yj as of degree 1, T of degree 2. Also write
Xitn=Yjif 1 <j < n, and V}, for subelliptic gradient:

Vpf = (Xaf,..., Xonf) for functions f on H"



» Sobolev embedding: V,f € LP implies f € LP",

1 1 1
—=--2, 1<p<Q
Pt P Q

» Fails when p = Q; nonetheless we have

Theorem (Chanillo-van Schaftingen)

Iffi,...,fop and ® are CZ° functions on H" and
X1f+ -+ Xonfan = 0,

then for any j,
'/H qu" < ClFV6®] 0.

2
Here |[f[l2 = 3252 lIfill -



» Result does not make use of any complex structure; in fact
they proved it for more general homogeneous Lie groups

» Proof is more difficult than the abelian case since the vector
fields do not commute

» Analog of the first two pillars of the previous theory?



Application to the 0, complex on H"

» Notations: Zj = X;+iYj, Z;=X; —iY;, 1<j<n
» Write [z, t] coordinate on H". For each multiindex
J=0(01,--,Jq) 1 < jik < nforall k, we write

dz/ = dzj A+ A dZ,

» A (0, q) form on H" is an expression of the form

u= Z quEJ;

[JI=q

then dpu is a (0,q + 1) form given by

Opu := ij(uj)dij A dz?
j=1



» L2 inner product on space of (0, q) forms:
(u,v) = Z/ uyvy
J n

> 52: formal adjoint of J;, under this inner product

»eg fu=3", ujdz/ is a (0,1) form, then

Fpu ==Y Z(w))-
=1



We have the following apriori inequalities: (Recall @ =2n+2.)

Theorem
Ifuisa(0,q) formonH", 2 <q<n-—2, then

ey et
lulliere-n < C([[Opullr + [|Opullr)-

Suppose further that n > 3. If g = 1, the same inequality holds if
abu =0, ifg = n— 1, the same result holds if pu = 0.

Theorem
Assume n > 2. If u is a function orthogonal to the kernel of 9y, in
L2, then

lullterce-n < CllOpull1s;

an analogous result holds if u is a (0, n) form orthogonal to the
kernel of Dy, in L2.



We also have

Theorem 10
OnM", if g # n— 1, then for any f € Jp(NL ™ (A%91)), there
exists Y € L>°(A%971) such that

Y =f
with || Y[ < C||f][ 0.

Here I\]Ll’Q is the space of functions whose V is in L9,



Subelliptic case: Hormander's vector fields

» Question: What happens if there is no group structure? Can
one still have a theorem analogous to the one of Chanillo-van
Schaftingen?

» Setup: Xi,...,X, smooth real vector fields near 0 on RV

» Assume that they are linearly independent at 0, and that their
commutators of length < r span at 0

> Let Vj(0) be the span of restrictions of the commutators of
X1,...,X, of length < j to 0

> Let Q = Y7 j - (dimV;(0) — dimV;_1(0))



Theorem (Y)

Under the assumptions on the previous slide, there is a
neighborhood U of 0 and C > 0 such that if

Xih+-- -+ X, =0

on U with fi,...,f, € CZ(U) and ® € C°(U), then

< ClIfllix oy I1X5®lleqw) + I1®]lLa(u))-
j=1

/ () D (x)dx
U

» Generalizes Chanillo-van Schaftingen

» One difficulty in the current theorem: getting the best (i.e.
smallest) possible value of Q. The one we had given is the
best possible.



A model example

»OnR?%let X =2, V=x2 Q=3
Theorem (Y)
If Xfi + Yfor = 0 on R?, with fi, f, € C2°, then for all ® € C2°,

[
R2

where Vp® = (X, YO).
» Strictly speaking this does not fall under the scope of the
previous theorem, since Y is zero at 0; but it is where the
ideas of the proof is the most transparent.

< Cllfll ey IV b® 13 (r2)




The proof of this model theorem is via lifting to the
Heisenberg group H': there exist a submersion 7: H — R?
such that

dr(X)) =X and dn(Yy) =Y.

One could try to use the result on HY; but this does not work,
since by lifting to the Heisenberg group (which has a higher
dimension), one gets less smoothing in any Sobolev-kind
inequality.

The way out: Imitate the argument on H!; but has to
‘integrate away the additional variable’ that one adds during
the lifting process.

In general, to prove the general theorem, one can still use the

same lifting strategy (Rothschild-Stein), but there will be
errors that one has to handle.



Application to 0, complex on domains of finite type
» M: boundary of a bounded smooth pseudoconvex domain in
(Cn+1' n> 2

» Assume M is of finite commutator type m and has
comparable Levi eigenvalues.

Theorem (Y)
Let g # 1 nor n— 1. Then for any smooth (0, q) form u

orthogonal to Kernel((p),

||U||L S 1Obull iy + [0pull 12(m)

Q.
Q-1(M)
where Q = 2n+ m. In particular

<5
lull, 225 0y = 19bllizean)

(M)

for all smooth functions u orthogonal to Kernel(Op)
(Gagliardo-Nirenberg for Op).



Under the same assumptions on M, we also have

Theorem (YY)
If g # n—1, then for any f € 5Z(NL1’Q(A°7"+1)) on M, there
exists Y € L°(A%971) such that

Y =f

with [|Y || < C||f]| e
Here again Q@ = 2n+ m.



Sophiscated version of the subelliptic story

> Focus again on the Heisenberg group H". We have the
following approximation lemma: (Q = 2n+ 2)

Theorem (Yi Wang-Y)

Given any § > 0, there exists a constant Cs such that for any
function f with Vf € LQ, there exists a function F € L™ with
V,F € LQ such that

2n

D IXiF = XiFllie < 68 VsfllLa
j=2

and
IVoFlle + |Flle < G5l|Vbfll -

» F approximates the derivatives of f in all but one good
direction!



From this we deduce

Theorem (Yi Wang-Y)
If g # n—1, then for any f € EZ(NLI’Q(/\O"’H)) on H", there
exists Y € LN NLLQ(/\O"’H) such that

Y =f
with [[Y || + |V Y]le < Cl[f]l 0.

» This is remarkable since now one has not only Y € L*°, but
also V,Y € L@,



We further deduced the following apriori inequalities:

Theorem (Yi Wang-Y)
Ifuisa(0,q) formonH", 2 <q<n-—2, then

— =~
lullorias < C(Bbtl,s, . + 1Potlle, 10,

§uppose further n > 3. If g = 1, the same inequality holds if
8Zu =0, ifg=n—1, the same result holds if Opu = 0.

Theorem (Yi Wang-Y)
Assume n > 2. If u is a function orthogonal to the kernel of Oy, in
L2, then

lullere-n < CllOsull 2.
an analogous result holds if u is a (0, n) form orthogonal to the

kernel ofgz in L2.



Bourgain-Brezis's approximation lemma again

Lemma (Bourgain-Brezis)
Given any 6 > 0, there exists a constant Cs such that for any
function f € WL, there exists a function F € L N WL such
that .

> |0 = 0iF||ir < 8[| VF 1

i=2
and

IVF[r + [[Flle < Cs[[VE]ln.



Bourgain-Brezis's proof

» First ingredient: Littlewood-Paley theory

Every WL function f can be written

f= 53 Af

j=—o00

v

AT () = <<y (OF (E)

Bernstein inequality:

v

[Ajf|e < CIVF]len for all j

v

Thus if f = Ajf for some j, i.e. if f is frequency localized,
then the approximation lemma is trivial; one can take F = f.

v

In general, while each Ajf isin L*, one cannot sum all of
them in L°° since the L*° norms do not decay in j.



v

v

v

v

Second ingredient: algebraic identity

Given any N numbers a;, ..., ay, we have
N
1= 5[ a)+ ][0
J=1 j'>j Jj=1

This is nothing but

l=any+(1—an)
=ay+an-1(1—an) + (1 —an-1)(1 — an)
=an +an—1(1 —an) + av—2(1 —an—1)(1 — an)
+(1—any—2)(l—an-1)(1—an)...

In particular, if all a; satisfies 0 < a; <1, then

Zaj H(]. — aj/) < 1.

i J'>i



» One is now tempted to take
F= ZAfH 1—|Ajf])
i'>j

as an L° approximation to
F=> A1
J

» But this is too naive, and in particular one does not gain in
any good directions

> Need another controlling function that dominates |A;f|:
Bourgain-Brezis introduced

wi(x) = sup [A;f (x —y)le”MI=2 Wy = (1,y)
yeR?
where o is a large constant depending on 4. (sup-convolution)

» Bourgain-Brezis also used heavily the Fejer kernels, which are
special kernels that one only finds in R”.



Proof of approximation lemma on the Heisenberg group

» Difficulties:
» No notion of frequency space; in particular, no special kernels
like Fejer kernels

» Group is non-abelian: in particular, if X is left-invariant vector

field, then X(f x g) = f % (Xg) but is not equal to (Xf) x g
» Ways to overcome these:

» Simplify the argument at one crucial point so that we can
convolve one fewer times, which allows us to avoid the second
problem

> Price to pay: More errors to control all over the place

» Introduce two different controlling functions w; and &;: the
first one would be a discrete /9 convolution, the second one is
a continuous ordinary convolution



Epilogue

» We return now to the elliptic setting. A special case of the
second theorem of Bourgain-Brezis is the following:

Theorem (Bourgain-Brezis)
On R2, if u is a function in C2°, then

Jull2 < C||vu||L1+(W1,2)*-

» We have discussed how one could prove this by solving d*
(i.e. using the first theorem), but Bourgain-Brezis actually
had another direct proof of this inequality, which works only in
2-dimensions.

» To illustrate this, we use their method to give a new proof of
the Gagliardo-Nirenberg inequality in R?: Suppose
|Vul|r =1. We want to prove |jul;2 < C.



Tool: Riesz transforms Ry, Ry in R?:

Rif(€) = —i%?(ﬁ), j=1,2

Fact: R? + R? = —Id, [Ry, R2] = 0.
Thus given u € C° with [|[Vu|[r = 1, we have

u= (R} — R})?u+4R?R3u
= (Rl — R2)2(R1 + R2)2U + 4-R12R22U

To show u € L2, we consider
(u,u) = ((R1 — R2)*(R1 + R2)?u, u) + 4(RER3u, u).

Suffices to bound both terms; by rotating the coordinate axes,
need only bound the latter



Now

(RZR3u, u) = (A RyR2D1u, Dour).
If one can show that A™1R;R, maps L! boundedly into L,
then we are done.
To do that, let K(x) be the kernel of A"1R;R,. One only
needs to show that K € L*°.

One uses homogeneity: since K(x) is homogeneous of degree
0, it suffices to show that K is bounded on the unit sphere

This one can do by using the integral representation

K(x) = — lim / @eh’*fdg

=0 Jecig<r €

and spliting the integral into integral over small and large ¢'s,

which works since the multiplier % is odd in both &; and &.



Thank you!



