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This is a note on Christopher Sogge’s paper, Concerning the Lp norm of spectral clusters for second-order
elliptic operators on compact manifolds, in J. Funct. Anal. 77, 123-138 (1988).

Let M be a smooth compact connected manifold without boundary of dimension n ≥ 2. Let P be a second
order elliptic self-adjoint operator on M whose coefficients are smooth and whose principal symbol is positive
definite. It is known that L2(M) is the direct sum of the eigenspaces of P . Let

λ1 < λ2 < . . .

be the eigenvalues of P (each of which may repeat with high multiplicities), and for each positive integer k, let

χk =
∑

√
λj∈[k−1,k)

Projλj

be the projection of L2(M) onto the sum of the eigenspaces whose eigenvalues λj satisfy
√
λj ∈ [k − 1, k). We

shall be interested in the sharp bounds of χk on various Lp spaces. The main goal is the following theorem.

Theorem 1 (Spectral Projection). For f ∈ Lp(M),

(a) If 1 ≤ p ≤ 2n+2
n+3 , then

‖χkf‖L2 ≤ Ckn( 1
p−

1
2 )− 1

2 ‖f‖Lp .

(b) If 2n+2
n+3 ≤ p ≤ 2, then

‖χkf‖L2 ≤ Ck
n−1

2 ( 1
p−

1
2 )‖f‖Lp .

The interest of the theorem is in the growth of the bounds with k, since each χk is trivially bounded from
Lp to L2.

This theorem is closely related to the Euclidean restriction theorem that concerns the restriction of the
Fourier transform of a function to a hypersurface, as we will see below. We shall also look at some examples,
some corollaries, and finally get to its proof.

Notation. We will write
pn =

2n+ 2
n+ 3

,

the critical exponent in dimension n, and

δ(p) = n

(
1
p
− 1

2

)
− 1

2

for the sharp power, whenever 1 ≤ p ≤ pn.

1. Examples

Take M = Sn, the standard sphere, and P = −∆ the Laplace-Beltrami operator on Sn. Then it is known
that λj = j(j+n−1) with multiplicity Cn+j

j −Cn+j−2
j−2 ' jn−1, and χk is just the projection onto the eigenspace

corresponding to λk−1 for k large. The theorem in this case was known before Sogge’s paper, and the theorem
can be thought of a generalization of this special case. Recall that by Weyl, if (M,P ) is as above, then the
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number of eigenvalues λj of P with
√
λj ∈ [k−1, k) is ' kn−1 as k →∞. So χk is the projection onto a portion

of the frequency space that ‘has the right size’, and is a ‘correct’ generalization of Projλk−1
on the sphere.

The flat torus is another easy example that we will compute shortly.

2. Relation with the Euclidean restriction theorem

The Euclidean restriction theorem says that if S is a compact hypersurface in Rn with nowhere vanishing
Gaussian curvature, then the Fourier transform of any Lp function on Rn can be restricted meaningfully to the
hypersurface S, whenever 1 ≤ p ≤ pn. This is remarkable since apriori the Fourier transform of such a function
is only defined almost everywhere, and S has measure zero in Rn. More precisely:

Theorem 2 (Euclidean restriction theorem). Let S be a compact hypersurface in Rn with nowhere vanishing
Gaussian curvature. If

1 ≤ p ≤ pn, q ≤
(
n− 1
n+ 1

)
p′

and f is Schwarz, then
‖f̂‖Lq(S) ≤ C‖f‖Lp(Rn).

The geometric assumption that S has nowhere vanishing Gaussian curvature is essential. The usual Cauchy
sequence argument then allows one to define the restriction on S of the Fourier transform of a general Lp

function on Rn for this range of p.

Historically the interest of this theorem was its relation with oscillatory integrals, which we are not going into.
We shall just observe that the spectral projection theorem is a discrete analogue of the Euclidean restriction
theorem, and that indeed the spectral theorem on the flat torus [−π, π]n implies the Euclidean restriction
theorem for spheres upon rescaling.

2a. Discrete analogue of the Euclidean restriction theorem

According to the Euclidean restriction theorem

(1)
∫

S

|f̂(ξ)|2dσ(ξ) ≤ C‖f‖2Lp(Rn)

whenever 1 ≤ p ≤ pn and f is Schwarz. Here dσ is the surface measure on S. Define the continuous spectral
projection operators ρk by

ρkf(x) =
∫

k−1≤|ξ|<k

f̂(ξ)eix·ξdξ

for f Schwarz. This is a spectral projection associated with the usual Laplacian on Rn, and it is roughly the
direct analog of χk that we defined above; note again the size of the annulus {k− 1 ≤ |ξ| < k} is roughly kn−1.
Using (1), one can show

(2) ‖ρkf‖L2(Rn) ≤ Ckδ(p)‖f‖Lp(Rn)

for 1 ≤ p ≤ pn and f Schwarz, which is a direct analogue of the spectral projection theorem.

Proof of (2).

ρkf(x) =
∫

1− 1
k≤|ξ|<1

f̂(kξ)eix·ξkndξ = ρ[1− 1
k ,1]g(kx),
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where g(y) := f(y/k) and ρ[1− 1
k ,1)g(x) :=

∫
1− 1

k≤|ξ|<1
ĝ(ξ)e2πix·ξdξ is the obvious spectral projection onto the

interval [1− 1
k , 1). Hence

‖ρkf‖L2(Rn) = k−
n
2

∥∥∥ρ[1− 1
k ,1)g

∥∥∥
L2(Rn)

= k−
n
2

(∫
1− 1

k≤|ξ|<1

|ĝ(ξ)|2dξ

) 1
2

= k−
n
2

(∫ 1

1− 1
k

∫
rSn

|ĝ(ξ)|2dσ(ξ)dr

) 1
2

≤ Ck−
n
2

(∫ 1

1− 1
k

‖g‖2Lp(Rn)dr

) 1
2

= Ck−
n
2−

1
2 k

n
p ‖f‖Lp(Rn)

= Ckδ(p)‖f‖Lp(Rn).

2b. Spectral projection theorem implies Euclidean restriction theorem

Suppose we have the spectral projection theorem on the flat torus ([−π, π]n,−∆):

‖χkg‖L2([−π,π]n) ≤ Ckδ(p)‖g‖Lp([−π,π]n), 1 ≤ p ≤ pn.

Let T >> 1 and we shall rescale this to the torus ([−πT, πT ]n, −∆).

The eigenvalues of −∆ on [−π, π]n are precisely λj = j2. So

χkg(x) =
1

(2π)n

∑
|m|=k−1

ĝ(m)eim·x

where ĝ(m) =
∫
[−π,π]n

g(x)e−im·xdx. Now on the torus [−πT, πT ]n, the eigenvalues of −∆ are j2

T 2 , so if we write
the spectral projection on [−πT, πT ]n as χ̃k, then

χ̃kf(x) =
1

(2πT )n

∑
(k−1)T≤|m|<kT

f̂
(m
T

)
ei m

T ·x,

where f̂(m) =
∫
[−πT,πT ]n

f(x)e−im·xdx.

Let now f ∈ L2([−πT, πT ]n). Rescale to get g(x) := f(Tx) ∈ L2([−π, π]n). Then

χ̃kf(x) =
1

(2πT )n

∑
(k−1)T≤|m|<kT

f̂
(m
T

)
ei m

T ·x =
1

(2π)n

∑
(k−1)T≤|m|<kT

ĝ(m)eim· x
T
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so by orthogonality,

‖χ̃kf‖L2([−πT,πT ]n) =
1

(2π)n

∥∥∥∥∥∥
∑

(k−1)T≤|m|<kT

ĝ(m)eim·x

∥∥∥∥∥∥
L2([−π,π]n)

T
n
2

≤ 1
(2π)n

 ∑
(k−1)T≤l<kT

‖χlg‖2L2([−π,π]n)

 1
2

T
n
2

≤ C

(
T
(
(kT )δ(p)‖g‖Lp([−π,π]n)

)2
) 1

2

T
n
2

= Ckδ(p)‖f‖Lp([−π,π]n)

independent of T . Let now f ∈ C∞
c (Rn. For T large so that the support of f is contained in [−πT, πT ], we

apply the above inequality: since

‖χ̃kf‖L2([−πT,πT ]n) =

 1
(2πT )n

∑
k−1≤ |m|

T <k

∣∣∣f̂ (m
T

)∣∣∣2


1
2

→

(∫
k−1≤|ξ|<k

|f̂(ξ)|2dξ

) 1
2

as T →∞, we get (∫
k−1≤|ξ|<k

|f̂(ξ)|2dξ

) 1
2

≤ Ckδ(p)‖f‖Lp(Rn)

from which we can recover the restriction theorem for spheres in Rn by running backwards the argument of
Section 2a.

3. Equivalent versions and corollaries

There are several equivalent versions of the spectral projection theorem by duality and the T ∗T lemma:

1. (Duality) T maps Lp to L2 if and only if T ∗ maps L2 to Lp′ , with identical norms. Since χk is self-adjoint,
we arrive at the following equivalent formulation of the spectral projection theorem: for f ∈ Lp(M),

(a) If 1 ≤ p ≤ pn, then
‖χkf‖Lp′ ≤ Ckδ(p)‖f‖L2 .

(b) If pn ≤ p ≤ 2, then
‖χkf‖Lp′ ≤ Ck

n−1
2 ( 1

p−
1
2 )‖f‖L2 .

This is the version that we will prove below.

2. (T ∗T lemma) T maps Lp to L2 if and only if T ∗T maps Lp to Lp′ , with ‖T ∗T‖ = ‖T‖2. Since χ∗kχk = χk,
we arrive at the following equivalent formulation of the spectral projection theorem, although we shall not
need it in sequel: for f ∈ Lp(M),

(a) If 1 ≤ p ≤ pn, then
‖χkf‖Lp′ ≤ Ck2δ(p)‖f‖Lp .

(b) If pn ≤ p ≤ 2, then
‖χkf‖Lp′ ≤ Ck(n−1)( 1

p−
1
2 )‖f‖Lp .

The spectral projection theorem allow us to bound the Lp′ norms of the eigenfunctions of P .
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Corollary 3. If {ej} is an orthonormal basis of L2(M) consisting of eigenfunctions of P , then writing λj for
the eigenvalue of ej (so now the λj’s may repeat), we have

(a) If 1 ≤ p ≤ pn, then
‖ej‖Lp′ ≤ C(1 + |λj |)δ(p).

(b) If pn ≤ p ≤ 2, then
‖ej‖Lp′ ≤ C(1 + |λj |)

n−1
2 ( 1

p−
1
2 ).

The spectral projection theorem also allows one to obtain results concerning Bochner-Riesz summability.
Let (M,P ) be as above. For convenience, assume that all eigenvalues of P are non-negative. Define the
Bochner-Riesz summation operators by

Sδ
Rf(x) =

∑
j

(
1− λj

R

)δ

+

< f, ej > ej(x).

Then using the spectral projection theorem and additional arguments, one can show

Corollary 4. If
1 ≤ p ≤ pn and δ > δ(p),

then
‖Sδ

Rf‖Lp(M) ≤ C‖f‖Lp(M)

uniformly in R, and hence as R→∞,
Sδ

Rf → f

in Lp(M) for all f ∈ Lp(M). The same is true if in the conditions p is replaced by p′.

See Sogge, On convergence of Riesz means on compact manifolds, The Annals of Mathematics, 2nd Ser.,
Vol. 126, No. 3 (Nov. 1987), 439-447.

4. Proof of the spectral projection theorem

4a. Strategy

To study χk, the main idea is to construct a parametrix for the operator P − (k + i)2. We shall show that
around each point there are smooth cut-off functions η1, η2 supported near that point such that

η1(x)u(x) = T1[η2(P − (k + i)2)u](x) + T2(η2u)(x)

for some operators T1 and T2. Here T1 is a parametrix for P − (k + i)2, and T2 is the error. We shall have
control on both: T1 will map L2 to Lp′ with norm Ckδ(p)−1, while T2 will map L2 to Lp′ with norm Ckδ(p),
p = pn. Apply this to χku; it follows that in every sufficiently small open set U we have

‖χku‖Lp′ (U) ≤ Ckδ(p)−1‖(P − (k + i)2)(χku)‖L2(V ) + Ckδ(p)‖χku‖L2(V )

where V is a slightly bigger open neighborhood of U . By a covering argument (now M is compact), we obtain

‖χku‖Lp′ (M) ≤ Ckδ(p)−1‖(P − (k + i)2)(χku)‖L2(M) + Ckδ(p)‖χku‖L2(M).

However, ‖χku‖L2(M) ≤ ‖u‖L2(M) and

‖(P − (k + i)2)(χku)‖L2(M) ≤ Ck‖u‖L2(M)
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by orthogonality; indeed since now P is self-adjoint and has positive definite principal symbol, χk is basically
the projection onto the eigenspaces with eigenvalues (k− 1)2 ≤ λ < k2. Hence if u =

∑
j ajej , where {ej} is an

orthonormal basis of eigenfunctions of P , then

‖(P − (k + i)2)(χku)‖2L2(M) =
∑

(k−1)2≤λ<k2

|aj |2|λj − (k + i)2|2 ≤ Ck2‖u‖2L2(M).

As a result,
‖χku‖Lp′ (M) ≤ Ckδ(p)‖u‖L2(M)

for p = pn, as desired. The result for p = 1 can be proved similarly (and can be established using a different
argument), while the case p = 2 is trivial. The rest then follows by complex interpolation.

So it remains to construct the parametrix T1, the error T2 and obtain their sharp bounds.

4b. Construction of parametrix

The motivation is that if P had constant coefficients in a coordinate chart, then a parametrix of P − z can
be constructed explicitly via the use of the Bessel potentials.

For any unreal complex number z, consider the Bessel potential on Rn

F (x) = F (|x|) =
1

(2π)n

∫
Rn

1
|ξ|2 − z

eix·ξdξ.

(We suppress the dependence of F on z in the notation for a moment.) We have on Rn

(−∆− z)F (x) = δ0(x)

or as measures
(−∆− z)F (x)dx = δ0(x).

Here −∆ is the standard Laplacian with the standard flat metric. Now if we change coordinate on Rn, we can
bring the metric to any desired constant positive definite symmetric matrix gjk. In the new (say y) coordinate,
the Laplacian becomes − ∂

∂yj g
jk ∂

∂yk and the function F becomes F (|y|g) = F ((gjky
jyk)

1
2 ). The volume measure

becomes (det gjk)
1
2 dy, so now (

− ∂

∂yj
gjk ∂

∂yk
− z

)
F (|y|g) (det gjk)

1
2 dy = δ0(y).

More generally, for any x ∈ Rn,

(3)
(
− ∂

∂yj
gjk ∂

∂yk
− z

)
F (|x− y|g) (det gjk)

1
2 dy = δx(y).

So if P on M now had constant coefficients in a certain (say y) coordinate chart, then writing the principal
symbol of P as − ∂

∂yj g
jk ∂

∂yk , we can construct a parametrix of P in that chart as follows: let η1 be a cut-off
function that is supported in that coordinate chart. Then for any u on M , we have∫

M

(P − z)(F (|x− y|g)η1(y)u(y)(det gjk)
1
2 dy = η1(x)u(x)

on M , and thus integrating by parts

η1(x)u(x) =
∫

M

φ(y)F (|x− y|g)(P − z)u(y)dy +
∫

M

(
φ0(y)F (|x− y|g) +

n∑
i=1

φi(y)
∂

∂yi
F (|x− y|g)

)
u(y)dy

for some smooth functions φ and φi supported in the support of η1. Now let η2 be a cut-off function that is 1
on the support of η1. Then the above equation can be written

η1(x)u(x) = T1(η2(P − z)u)(x) + T2(η2u)(x),

6



where
T1f(x) =

∫
M

φ(y)F (|x− y|g)f(y)dy

is the desired parametrix of P − z and

T2f(x) =
∫

M

(
φ0(y)F (|x− y|g) +

n∑
i=1

φi(y)
∂

∂yi
F (|x− y|g)

)
f(y)dy

is the desired error term (both depending on z).

It turns out that when P on M has variable coefficients, as long as we put a suitable metric on M and use
the geodesic normal coordinate, the equation (3) remains approximately true, and the above argument works.
More precisely, in a coordinate chart, let P be

− ∂

∂yj
gjk(y)

∂

∂yk
+ bj(y)

∂

∂yj
+ c,

so that the principal symbol of P is − ∂
∂yj g

jk(y) ∂
∂yk with gjk self-adjoint positive definite, and put a Riemannian

metric on that coordinate chart by setting it to be gjk(y)dyj ⊗ dyk. This is well-defined since the principal
symbol of P is a well-defined (2,0)-tensor on M . Take a totally geodesic normal neighborhood U in this chart.
Then for each point x ∈ U , we adopt the geodesic normal coordinate ỹ in U , so that ỹ = 0 corresponds to the
point x. (Note the definition of ỹ depends on the base point x.) For each point x, write the metric in the ỹ
coordinates as g̃jk(ỹ)dỹj ⊗ dỹk. Then

g̃jk(ỹ)ỹk = ỹj

for all points ỹ in U . This follows from the Gauss lemma, since

g̃jk(ỹ)ỹk = gỹ

(
∂

∂ỹj
, ỹk ∂

∂ỹk

)
and the second vector in the last expression is the tangent vector of a radial geodesic. It follows that if we write
|ỹ|2 =

∑
i(ỹ

i)2, then for any function f defined in U ,

g̃jk(ỹ)
∂

∂ỹk
f(|ỹ|) = g̃jk(ỹ)

ỹk

|ỹ|2
f ′(|ỹ|) =

ỹj

|ỹ|2
f ′(|ỹ|) =

∂

∂ỹj
f(|ỹ|).

Hence if η1 is a smooth cut-off function supported in U , and F is the Euclidean Bessel potential defined as
above, then(

− ∂

∂ỹj
g̃jk(ỹ)

∂

∂ỹk
− z

)
(η1(ỹ)F (|ỹ|)) = η1(ỹ)

(
− ∂2

∂(ỹj)2
− z

)
F (|ỹ|) + φ0(ỹ)F (|ỹ|) +

n∑
i=1

φi(ỹ)
∂

∂ỹi
F (|ỹ|)

= η1(ỹ)δ0(ỹ) + φ0(ỹ)F (|ỹ|) +
n∑

i=1

φi(ỹ)
∂

∂ỹi
F (|ỹ|)

for some smooth cut-off functions φi, and modifying the φi’s if necessary, we have

(P − z)(η1(ỹ)F (|ỹ|)) = η1(ỹ)δ0(ỹ) + φ0(ỹ)F (|ỹ|) +
n∑

i=1

φi(ỹ)
∂

∂ỹi
F (|ỹ|).

If for each pair of points y, x ∈ U we now let ỹ be the normal coordinates of y in the normal coordinate chart
centered at x and define

s(y, x) = |ỹ|
η1(y, x) = η1(ỹ)
φi(y, x) = φi(ỹ)
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then the above reads (upon going back to the y coordinate that we started with, modifying the φi’s if necessary)

(P (y,D)− z)(η1(y, x)F (s(y, x))) = η1(x, x)δx(y) + φ0(y, x)F (s(y, x)) +
n∑

i=1

φi(y, x)
∂

∂yi
F (s(y, x)).

Put in measure form,

(P (y,D)− z)(η1(y, x)F (s(y, x)))(det g(y))
1
2 dy

=η1(x, x)δx(y) +

(
φ0(y, x)F (s(y, x)) +

n∑
i=1

φi(y, x)
∂

∂yi
F (s(y, x))

)
(det g(y))

1
2 dy.

Hence for u defined in U , we have

η1(x, x)u(x) =
∫

M

η1(y, x)(det g(y))
1
2F (s(y, x))(P (y,D)− z)u(y)dy

−
∫

M

(det g(y))
1
2

(
φ0(y, x)F (s(y, x)) +

n∑
i=1

φi(y, x)
∂

∂yi
F (s(y, x))

)
u(y)dy.

Modifying the φi’s again,

η1(x, x)u(x) =
∫

M

φ(y, x)F (s(y, x))[(P − z)u](y)dy

+
∫

M

(
φ0(y, x)F (s(y, x)) +

n∑
i=1

φi(y, x)
∂

∂yi
F (s(y, x))

)
u(y)dy.

Again taking η2(y) to be 1 on the support of η1(y), we have

η1(x, x)u(x) = T1(η2(P − z)u)(x) + T2(η2u)(x)

where
T1f(x) =

∫
M

φ(y, x)F (s(y, x))f(y)dy

is the desired parametrix of P − z and

T2f(x) =
∫

M

(
φ0(y, x)F (s(y, x)) +

n∑
i=1

φi(y, x)
∂

∂yi
F (s(y, x))

)
f(y)dy

is the desired error term. The dependence of T1 and T2 on z is again suppressed in the notation.

4c. Boundedness of parametrix and error

To prove the desired boundedness of T1 and T2, we need some properties of the Bessel potentials F . We
shall now emphasize the z dependence by writing Fk for the Bessel potential with z = (k+ i)2; in other words,

Fk(x) =
1

(2π)n

∫
Rn

1
|ξ|2 − (k + i)2

eix·ξdξ.

Lemma 5. There is an absolute constant C such that for |x| ≤ k−1,

|Fk(x)| ≤ C|x|−(n−2) if n ≥ 3
|Fk(x)| ≤ C| log |x|| if n = 2

|∇Fk(x)| ≤ C|x|−(n−1 ) if n ≥ 2
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Lemma 6. For |x| ≥ k−1, n ≥ 2,

Fk(x) = k
n−1

2 −1|x|−
n−1

2 e−ik|x|a0(kx)
∂

∂xj
Fk(x) = k

n−1
2 |x|−

n−1
2 e−ik|x|aj(kx), j = 1, . . . , n

where the aj’s are smooth radial functions that satisfy∣∣∣∣ ∂m

∂ρm
aj(ρ)

∣∣∣∣ ≤ Cm|ρ|−m.

These can be proved by integrating by parts and using methods of stationary phase.

We shall also need a lemma about oscillatory integral operators on Rn, where the amplitude a(x, y) is
supported off the diagonal.

Lemma 7. Let a(x, y) be a compactly supported smooth function with support inside {(x, y) ∈ Rn × Rn : 1
2 ≤

|x − y| ≤ 2}. Then there is a neighborhood of the function s0(x, y) = |x − y| in the C∞ topology such that for
any function s(x, y) in that neighborhood we have∥∥∥∥∫

Rn

eiλs(x,y)a(x, y)f(y)dy
∥∥∥∥

Lp′ (Rn)

≤ Cλ
− n

p′ ‖f‖Lq′ (Rn),

where 1 ≤ p ≤ pn, q = (n−1
n+1 )p′, λ > 0, and C depends only on s and the bounds of finitely many derivatives of

a.

We are now ready to prove the boundedness of T1 and T2. For simplicity, let n ≥ 3. Write p = pn, and we
shall prove that T1 maps L2 to Lp′ with norm Ckδ(p)−1, while T2 maps L2 to Lp′ with norm Ckδ(p).

Recall that the parametrix T1 is

T1f(x) =
∫

M

φ(y, x)Fk(s(y, x))f(y)dy.

Since φ(y, x) is supported in U×U where U is a small coordinate chart on M , one may identify U with a portion
of Rn; by taking a smaller coordinate chart if necessary, one may then assume s(y, x) ' |y − x| where |y − x|
is the Euclidean distance between y and x. One may also think of this integral as one on Rn, as we shall do
from now on. Now we decompose T1 dyadically based on the distance of (x, y) from the diagonal: Let ϕ(t) be a
smooth function with compact support in [−2, 2] such that it is identically 1 in [−1, 1]. Let ψ(t) = ϕ(t)−ϕ(2t)
be supported in [− 1

2 , 2]. Then ϕ(t) +
∑∞

ν=1 ψ(2−νt) = 1 on R, and

T1f(x) =
∫

Rn

ϕ(ks(y, x))φ(y, x)Fk(s(y, x))f(y)dy +
C log k∑
ν=1

∫
Rn

ψ(2−νks(y, x))φ(y, x)Fk(s(y, x))f(y)dy,

the second sum terminating after roughly the log k-th term when one takes into account the fact that φ has
compact support. We will use our information about Fk to estimate the Lp′ norm of the terms one by one:

• In the first term we use the Hausdorff-Young inequality: since we are to estimate the Lp′ of the first term
in terms of the L2 norm of f , we naturally look at the Lr norm of the kernel, where

1 +
1
p′

=
1
2

+
1
r
.
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Then using the first estimate in Lemma 5, we have

sup
x
‖ϕ(ks(y, x))φ(y, x)Fk(s(y, x))‖Lr(dy) ≤ sup

x

(∫
|x−y|≤k−1

|x− y|−(n−2)rdy

) 1
r

= Ckn−2−n
r

= Ck
n( 1

2−
1
p′ )−2

= Ckδ(p)−1k−
1
2

and
sup

y
‖ϕ(ks(y, x))φ(y, x)Fk(s(y, x))‖Lr(dx) ≤ Ckδ(p)−1k−

1
2 ,

so ∥∥∥∥∫
Rn

ϕ(ks(y, x))φ(y, x)Fk(s(y, x))f(y)dy
∥∥∥∥

Lp′
≤ Ckδ(p)−1k−

1
2 ‖f‖L2 .

• For the ν-th term in the second sum, we use the asymptotic expansion of F in Lemma 6 and the oscillatory
integral operator lemma after rescaling:∫

Rn

ψ(2−νks(y, x))φ(y, x)Fk(s(y, x))f(y)dy

=k
n−1

2 −1

∫
Rn

ψ(2−νks(y, x))φ(y, x)s(y, x)−
n−1

2 e−iks(y,x)a0(ks(y, x))f(y)dy

=k
n−1

2 −1Sν,kg(2−νkx)

where g(y) = f(2νk−1y) and

Sν,kg(x) =
∫

Rn

ψ(s(y, x))φ(2νk−1y, 2νk−1x)(2νk−1s(y, x))−
n−1

2 e−i2νs(y,x)a0(2νs(y, x))g(y)(2νk−1)ndy

= (2νk−1)
n+1

2

∫
Rn

aν,k(y, x)g(y)e−i2νs(y,x)dy

for some aν,k fulfilling the conditions of the oscillatory integral lemma. Note however that the derivatives
of aν,k’s are uniformly bounded independent of ν and k; this is because of the corresponding property of
a0, the uniform support property of aν,k, and that 2νk−1 ≤ C in the range of ν that we can considering.
Hence the Sν,k’s have (L2, Lp′) norm approximately C(2νk−1)

n+1
2 2−ν n

p′ , and∥∥∥∥∫
Rn

ψ(2−νks(y, x))φ(y, x)Fk(s(y, x))f(y)dy
∥∥∥∥

Lp′

≤Ck
n−1

2 −1(2νk−1)
n
p′ ‖Sg‖Lp′

≤Ck
n−1

2 −1(2νk−1)
n
p′ (2νk−1)

n+1
2 2−ν n

p′ ‖g‖L2

≤Ck
n−1

2 −1(2νk−1)
n
p′ (2νk−1)

n+1
2 2−ν n

p′ (2νk−1)−
n
2 ‖f‖L2

=Ckδ(p)−1(2νk−1)
1
2 ‖f‖L2 .

Summing the geometric series, we get

‖T1f‖Lp′ ≤ Ckδ(p)−1

C log k∑
ν=0

(2νk−1)
1
2 ‖f‖L2 = Ckδ(p)−1‖f‖L2

as desired.

The first term of T2 (involving no derivative of Fk) can be dealt with similarly as above. The second term
of T2, which involves the first derivatives of Fk, can be handled by applying the corresponding statements of
Lemma 5 and 6. This concludes the proof of the sharp bounds of T1 and T2 and hence that of the spectral
projection theorem.
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