POINTWISE CONVERGENCE OF FOURIER SERIES

PO-LAM YUNG

Let T = R/Z, and K(y) = p.v.% on [—1/2,1/2) and extend it periodically so that it becomes a distribution
on T. Let N: T — 27N be a measurable function. For f € C°(T), let

Tf(x)= /Tf(x —y)K(y)eN@¥dy  for x € T.

We want to show that T: L*(T) — L?~¢(T) for any € > 0. Below we give a white lie proof of this fact,
following Fefferman [2] (our exposition also draws heavily on Demeter’s points of view in [1]).

First decompose K(y) = Y ¥ (y) where each 14 (y) is an odd C*° function supported on |y| ~ 2.
It follows that

T) = 3 T — N @Y gy,
(1) i) =3 / f(& — )i (y)e N @y

If I C T is a dyadic interval and w C [1,00) is a dyadic interval of length 1/|I|, then the pair (I,w) is
called a tile. (Let’s take all dyadic intervals to be half-open and half-closed, so that all dyadic intervals
contain the left endpoint but not the right endpoint; then the collection of all dyadic intervals of the same
length scale form a partition of the full space.) If p is a tile, we usually denote by I, and w,, the time and
frequency intervals such that p = (I,wp). The set of all tiles is denoted by . It should be thought of as
a 3-parameter family, indexed by the length of the time interval, the position of the time interval and the
position of the frequency interval.

We denote by E, the set N~!(w,) N I,. Note that for every x € T and every k > 0, there exists one and
only one tile p with |I,| = 27% such that = € I, and N(x) € w,. In other words, there exists a unique tile p
with |I,| = 27% such that z € E,. Hence from (1), we have

Tf=3 Tf
pEPB
where

T,f(z) = x5, () / F(@ — y)e(w)e N @vy,

Define a tentative mass of a tile p by

| Ep|
Ap(p .
o)=L
Since ) )
Tpof ()] < xB,(T) 5 flx —y)ldy < xE, (@) 575 fllz2,
Tpf (@) < X, ( )|Ip| |y‘gw| (z =yl B, ( )|I,,|1/2H I3

it follows that
[Tl 222 < Ao(p)'/?.

We upgrade this to a single tree estimate. First we introduce a partial ordering on the set of all tiles. If
p1,p2 are tiles, then we say py is an ancestor of p, written p; < po, if I,, C I, and wp, 2 wy,. This is
a partial ordering on 3; indeed two tiles are either disjoint, or comparable under this partial ordering. A
finite collection p of tiles is said to be convex if p,p’ € p and p < p” < p implies p” € p. If py is a tile, then a
tree with top po is a convex collection p of tiles, such that p < po for all p € p (note that we do not require
po to be in p). We write T}, for 3°  T), whenever p is a finite collection of tiles.

Proposition 1. Let § € (0,1). Ifp is a tree such that Ag(p) < 6 for allp € p, then

I Tpll 222 S 612,
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The idea is that T, is then like a maximally truncated Hilbert transform localized to a set of measure < 6
in T. More precisely, let p be a tree with top py. For every dyadic interval I C T, let p; be the unique tile
with time interval I such that w,, contains wy,. Since p is finite, we may partition T into a disjoint union of
dyadic intervals I, I, ..., such that each I; is a maximal dyadic interval satisfying the following condition:

I; C I, for all p € p with I, N I; # 0.

Here I; is the ‘parent’ of I;, namely the dyadic interval that has length 2|I;| that contains I;. Then every
I, = I, for some unique p; € p, and if we let E; := E(p;) N I;, then |E;| < Ao(pi)|Lp,| < 26|L;]. Also, for
every i, we have E(p)NI; C E; for every p € p (this is trivial if F(p) doesn’t intersect I;; on the other hand,
if E(p) intersects I;, then I, = I; C I, 50 w, C wp,, which implies E(p) N I; € N~ (w,,) N I; = E;). Now
define a maximal function

1 - ) ‘ ;
MPF(z) = {Zup@li i J; [F(y)|dy lfti € ]E'Ez for some j
otherwise.

Then one can show that M: L? — L? with M| 122 < 82, and for every = € T, we have
Tp f(z) S M(f = K)(z) + M ().

Since ||f * K|z < || fllL2, we obtain the conclusion of Proposition 1.

(Indeed the above is adapted from Demeter’s survey [1], and is not exactly Fefferman’s proof. In Feffer-
man’s paper, the mass was defined so that the mass of a tile p is at least the supremum of the Ay mass
of all ancestors of p. We may assume, without loss of generality, that N is bounded. In that case, if |I| is
sufficiently small, then the mass of py is 1. Hence we may partition T into a disjoint union of dyadic intervals
I1, I, ..., such that each I; is a maximal dyadic interval with the mass of p;, being > §. Then because we
are using Fefferman’s definition of mass, where the mass was defined so that the mass of a tile p is at least
the supremum of the Ay mass of all ancestors of p, we still have I; C I, for all p € p with I, N I; # 0. Also,
if we let E; := E(pj.) N 1;, then for every i, we still have |FE;| < 26|, and E(p) N 1; C E; for all p € p. Thus
we can proceed as above, and finish the proof of Proposition 1.)

To proceed further, note that if two tiles p; and p- are disjoint, then at least one of the following happens:
I,, NI, =0 or w, Nwy, = 0. In either case, T}, f(x)Tp,g9(x) = 0 for all f,g € C°(T) and all z € T; in
particular,

T, Tp, =0.
We will pretend that we also have
White lie:

Ty, T,, =0

whenever pq,ps are disjoint tiles; this is based on the heuristic that 7}, f is morally supported on p for all
tiles p and all f € C(T).
Proposition 2. Let p be a convex collection of tiles. Suppose for any p € p, and for any two ancestors
p1,p2 of p with p1,p2 € p, we have py comparable to py. Then
(a) p can be organized into a union of trees, so that any two tiles from two different trees are disjoint.
(b) Hence if Ao(p) < 6 for every p € p, then by Proposition 1 and Cotlar-Stein, we have

Tl 22 S 612

A collection of tiles p satisfying the conditions of Proposition 2 is called a Fefferman forest.
From now on let K be a large positive integer to be determined.

Proposition 3. Let p be a convex collection of tiles, such that Ag(p) < 0 for every p € p. Then there exists
a convex collection p’ C p such that the following holds:

(a) Ao(p') < 6/2 for all p" € p';
(b) p\ p’ can be organized into a union of trees p1,pa, ... with tops p1,pa,..., so that

lepj (2) <ot
J LY(T)
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In particular, there exists a (small) exceptional set Fs C T, such that |Fs5| < 6% /K, and such that for x ¢ Fy,
the number of p;’s with x € I,,, is at most K519,

Indeed, if Ap(p) < §/2 for all p € p, then just set p’ = p. If not, then we pick a maximal p; € p with
Ag(p1) € (6/2,0], and let p; be the set of all p € p with p < p;. Clearly p; is a tree with top p;. Assume
that we have chosen trees pi,...,ps. Then p\ (p1U---Upy) is a convex collection of tiles, and if Ag(p) < §/2
forallp e p\ (p1U---Upy), just set p’ =p\ (p1 U---Upy); if not, we pick a maximal py1 € p\ (p1U---Upy)
such that Ag(pe+1) € (6/2,6], and let pyyq be the set of all p € p\ (p1 U---Upy) with p < pgy1. This process

terminate (since p is finite), and it remains to compute 'Z] X1, (x)‘ Ly But this norm is equal to
J LY(T
2 2
Z'ij| < 7Z|Epj| S 5
, 0 — 0
J J
indeed E,,, Ep,,... are disjoint subsets of T, since the pi,ps,... were chosen to be incomparable. This

proves Proposition 3.
We remark that a small modification of the above proof shows that the dyadic BMO norm of 5 XI,, is
also bounded by §—!. The John-Nirenberg inequality then gives a better control of the size of the exceptional

set, and this is useful when one wants to prove pointwise a.e. convergence of Fourier series for functions in
LP(T), p € (1,2).

Proposition 4. Let p be as in Proposition 3. Let p’ and Fs be as in the conclusion of Proposition 3. Let
p” be the collection of tiles p € p such that I, C Fs. Then p\ (p' Up”) can be reorganized into a union of M
Fefferman forests p(M .. pM) awith M < log(K5—190). Hence

[ Tonp |22\ 1) S Log (K002 £l 2.

Indeed, let M be the smallest integer such that 2M > K§~19; in particular, M < log(K61%). Recall
that we had a list of trees py,pa,... with tops p1,pa,... from Proposition 3. For m = 1,2,..., M, let p(™
be the set of all p € p\ (p’ Up”) such that

2m~1 < the number of tree tops p;’s that are ancestors of p < 2™.

Then p \ (p’ Up”) is the disjoint union of p), ... p(*) because each p € p \ p’ belongs to at least one tree
(hence at least one of the tree tops is an ancestor of p), and if p € p\ (p’ Up”) has at least 2™ > log(K§109)
ancestors that are tree tops, then I, is contained in I,, for more than log(K'¢ —100) tree tops p;, contradicting
Proposition 3.

Furthermore, we check that each p(™ is a Fefferman forest: the key is to show that if p € p(™ and
p',p" € p{"™ are both ancestors of p, then p’ and p” are comparable. Assume not. Then since p/, p”’ € p(™),
there are at least 2! tree tops that are ancestors of p/, and at least 27! tree tops that are ancestors of
p”. Furthermore, these two sets of tree tops are disjoint, since if p’, p” are incomparable ancestors of p, then
p’ and p” cannot have ancestors in common. Hence there are at least 2™~ ! 4+ 2m~1 = 2™ tree tops that are
ancestors of p, contradicting that p € p(™). It remains to apply Proposition 2 to estimate 1 Tycm || 222 for
each forest p("™). Since

M
Ty = Y Tyomy on T\ Fy,
m=1
it follows that ||Tp\p’f||L2(’]l‘\F5) S 10g(K6‘100)61/2||fHL2.
By successively applying Propositions 3 and 4 (with § = 1,271,272,... and p replaced by p’ from the
previous step each time), we obtain the following proposition:

Proposition 5. Let p be a convex collection of tiles. Then there exists a (small) exceptional set F C T such
that |F| < 1/K, with
HTpf||L2(T\F) < log K| f| 2

Hence if ||f||z2 = 1, then for any a > 1, the set { € T: |T}, f(z)| > o} has measure

2
<M+i
~ a2 K
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This is true for all K > 1, so letting K = o? we see that

1

{z € T: [Ty f(z)| > a}| <. P

for any € > 0. It follows that
1Tp fll2—=T) Se 1
for all € > 0, which shows that ||T}||f2—r2-- Se 1.

We remark that in order to deal with the white lie, we need a more complicated definition of mass (namely
A(p) in Fefferman’s paper), that takes into account tiles whose frequency intervals are further away. In that
case, we can only say that |1}, T}, [|z2— > is small whenever A(p;) and A(pz) are small (say < J), and
Wy, ,Wp, are far apart (at least distance ! when measured in the correct length scale). This led Fefferman
to introduce the notion of separated trees; see Lemma 4 in his paper.

Next, let’s have a row of trees where the tops have disjoint time intervals. At some point one needs to
study the orthogonality between separated rows. In order for this to work, we need to localize in frequency
for each tree, and this corresponds to a blurring of the support for each tree on the time side. In order
for this blurring not to ruin things, Fefferman introduced the notion of normal trees, and required that all
trees in a row to be normal. See Lemma 5 in his paper. It is for this reason that Fefferman had to remove
an exceptional set in the conclusion of his main lemma; indeed, to create normal trees, on top of removing
tiles whose time interval lives inside the exceptional set, Fefferman considered what he called central dyadic
frequency intervals, and invoked a convenient inclusion property for these central dyadic frequency intervals.

Another complication that arise because we don’t have perfect frequency localization is that for any
union of trees p, in order to control T}, we need to control the number of rows present in p. This is why in
Fefferman’s main lemma, he needs to assume that each point in T belongs to no more than a certain number
of time intervals of the tops.

Finally, although Fefferman used a more complicated definition of mass, he would still use the exact same
tree selection algorithm we used in the proof of our Proposition 3. In particular, one should still consider
maximal elements whose Ay mass is big (rather than the A mass), and remove all tiles in the remaining
collection that are < than this maximal element. In order to guarantee that one would remove at least one
tile from the collection unless the A mass of all remaining tiles are small, one needs to reconcile between the
A mass and the Ay mass again. This is done again via the convenient inclusion property for central dyadic
frequency intervals. See the first page of Section 7 in Fefferman’s paper.

For reference, our Proposition 1 is basically Fefferman’s Lemma 3. Our Proposition 2 is basically Feffer-
man’s Corollary to his Main Lemma. Our Propositions 3,4 and 5 are in Section 7 of Fefferman’s paper.
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