Partial solution to midterm (revised)

1. (a) We claim that f is differentiable at a for arbitrary a € C. For a € C, there exists

compact set K containing a. Since f,, converge to f uniformly on K, for any

triangle A C K,
/ fn dz —>/ fdz.
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as they are holomorphic. Thus by Moreras theorem, f is holomorphic on K

But

because / fdz=0. So, f is differentiable at a.
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(b) Please refer to solution of HW2
2. Please refer to the tectbook.

3. (a) By cauchy formula,
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If |a| > 2,
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where C' = 1/22°5. So,
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If |a| < 2,

Result follows when we choose B = sup{4, A(1 + 2201%)}.



(b)

Consider the function g(z) = f(z). Since

g is holomorphic. You can also verify it by considering its power series expansion.
Whenever z = x € [0, 1], f is real. That is

f(z) =g(z) Yx €][0,1].
By identity theorem, f(z) = g(z) for all z € C. Thus, f(x) is real for any real .

Apply Weierstrass factorization theorem with a,, = logn, and p, = n. Noted

that the choce of p,, is not unique.

If there exists such function, let s be its order of growth. Then we will have for

any € > 0,
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But logn = O(nl/p) for any p > 0. By comparing it with harmonic series, it is

impossible.

Let f(z) be an entire function which satisfies
f(ogn) =n Vn € N.

Let g(2) = f(z) — e*. Thus g(logn) = 0 for all n € N and g is of finite order of
growth. If g is non-constant function, its zero set is discrete and hence countable.

But as we observe in (b), it is not possible. Thus, g = 0. Hence, f(z) = e*.



