A SUBELLIPTIC BOURGAIN-BREZIS INEQUALITY

YI WANG AND PO-LAM YUNG

ABSTRACT. We prove an approximation lemma on (stratified) homogeneous
groups that allows one to approximate a function in the non-isotropic Sobolev
space N e by L°° functions, generalizing a result of Bourgain-Brezis [BB2].
We then use this to obtain a Gagliardo-Nirenberg inequality for d; on the
Heisenberg group H™.

1. INTRODUCTION

In this paper, we study some subelliptic compensation phenomena on homoge-
neous groups, that have to do with divergence, curl and the space L' of Lebesgue
integrable functions or differential forms. In the elliptic cases they were discovered
by Bourgain-Brezis, Lanzani-Stein and van Schaftingen around 2004. Also lying
beneath our results is the failure of the critical Sobolev embedding of the non-
isotropic Sobolev space N LI’Q into L*°. In particular, we prove an approximation
lemma that describes how functions in N LLQ can be approximated by functions
in L™.

To begin with, let us describe the elliptic results on R™ (n > 2) upon which our
results are based. We denote by d the Hodge-de Rham exterior derivative, and d*
its (formal) adjoint. The theory discovered by Bourgain-Brezis, Lanzani-Stein and
van Schaftingen consists of three major pillars, each best illustrated by a separate
theorem. The first involves the solution of d*:

Theorem 1.1 (Bourgain-Brezis [BB2]). Suppose q # n — 1. Then for any q-form
f with coefficients on L™(R™) that is in the image' of d*, there exists a (q+1)-form
Y with coefficients in L*°(R™) such that

Y =f
in the sense of distributions, and ||Y||pee®ny < C|| f||1n@n)-
In particular, we have

Corollary 1.2 (Bourgain-Brezis [BB1]). For any function f € L™(R™), there exists
a vector field Y with coefficients in L (R™) such that

divy = f

in the sense of distributions, and ||Y || peo@ny < C|| f|

Ln (Rn) .
The second pillar is a Gagliardo-Nirenberg inequality for differential forms:

1By this we mean f is the d* of some form with coefficients in W1 (R™), where W1 (R™) is
the (homogeneous) Sobolev space of functions that have 1 derivative in L™(R"™).
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Theorem 1.3 (Lanzani-Stein [LS]). Suppose u is a q-form on R™ that is smooth
with compact support. We have

[ull Lr/n-v @ny < ClldullLrwny + [[d7ul[ L1 (&)
unless d*u is a function or du is a top form. If d*u is a function, one needs to

assume d*u = 0; if du is a top form, one needs to assume du = 0. Then the above
inequality remains true.

Since d of a 1-form is its curl and d* of a 1-form is its divergence, this is sometimes
called a div-curl inequality.
The third theorem is the following compensation phenomenon:

Theorem 1.4 (van Schaftingen [vS1]). If u is a C° 1-form on R™ with d*u = 0,
then for any 1-form ¢ with coefficients in C2°(R™), we have

[ odz < Clluls oy 60y

If WY (R™) were embedded into L>°(R™), Theorem 1.1 would be trivial by
Hodge decomposition, and so would be Theorem 1.4 by Hélder’s inequality. It is
remarkable that these theorems remain to hold even though the desired Sobolev
embedding fails.

It turns out all three theorems above are equivalent by duality. van Schaftingen
[vS1] gave a beautiful elementary proof of Theorem 1.4, thereby proving all of them.

We mention here that these results seem to be quite different from the more
classical theory of compensated compactness; no connection between them is known
so far.

We also refer the reader to the work of Brezis-van Schaftingen [BvS], Chanillo-
van Schaftingen [CvS], Maz'ya [Ma], Mironescu [Mi], Mitrea-Mitrea [MM], van
Schaftingen [vS2], [vS3] and Amrouche-Nguyen [AN] for some interesting results
related to these three theorems. In particular, Chanillo-van Schaftingen proved in
[CvS] a generalization of Theorem 1.4 to general homogeneous groups.

On the other hand, in [BB2], Bourgain-Brezis proved the following remarkable
theorem, strengthening all three theorems above:

Theorem 1.5 (Bourgain-Brezis [BB2]). In Theorem 1.1 and Corollary 1.2, the
space L=(R™) can be replaced by the smaller Banach space L°°(R™) N WL (R™).
Also, in Theorem 1.3 and 1.4, the spaces L'(R™) can be replaced by the bigger
Banach space L'(R™) 4+ (W' (R™))*. (Here X* denotes the dual of a Banach
space X.)

They proved this by giving a direct constructive proof of the analog of Theo-
rem 1.1, where the space L°(R") is replaced by L (R") N W™ (R"); they then
deduced the rest by duality. In the former they used the following approximation
lemma, which is another remedy of the failure of the critical Sobolev embedding,
and which is of independent interest:

Lemma 1.6 (Bourgain-Brezis [BB2]). Given any 6 > 0 and any function f €
WL (R™), there exist a function F € L>®(R™) N WL(R™) and a constant Cs > 0,
with Cs independent of f, such that

D N0if = 0iF | Lo ey < 0Vl can)

=2
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and
| Fl| oo @ny + IVE Lr@ny < Csl|V fllpn @y

Here one should think of F as an L (R™)N Wl’"(R") function whose derivatives
approximate those of the given f in all but one direction.

In this paper, we prove an analog of the above approximation lemma on any
homogeneous group G. To describe our result we need some notations. First, let g
be a Lie algebra (over R) that is graded, in the sense that g admits a decomposition

into direct sums of subspaces V7, ..., V,, of g such that
[ijvjz] - Vj1+j2

for all j1, j2, where V; is understood to be zero if j > m. We assume that V,,, # {0}.
It is immediate that g is nilpotent of step m. We introduce a natural family of
dilations on g, by letting

Av=Avy + Nvg+ -+ N

ifv=vi4+ - 4vn, v; € V; and A > 0. This defines a one-parameter family of
algebra automorphisms of g. Furthermore, we assume that g is stratified, in the
sense that V; generates g as a Lie algebra. Let GG be the connected and simply
connected Lie group whose Lie algebra is g. Such a Lie group G with stratified g is
then called a homogeneous group. It carries a one-parameter family of automorphic
dilations, given by A - exp(v) := exp(\ - v) where exp: g — G is the exponential
map. In the sequel we fix such a group G.
Now define the homogeneous dimension @ of G by

m
Q=2 i-n;
j=1

where n; := dim Vj;. We also pick a basis X1, ..., X,,, of V;. Any linear combination
of these will then be a left-invariant vector field of degree 1 on G. If f is a function
on GG, we define its subelliptic gradient as the ni-tuple

Vof = (Xaf, .., Xn f).

.1
The homogeneous non-isotropic Sobolev space N L ’Q(G) is then the space of func-
tions on G whose subelliptic gradient is in L?(G). Here in defining the L9 (G)
space, we use the Lebesgue measure on g, which we identify with G via the expo-

.1,
nential map. In the following, we will denote the functional spaces on G by NL "~
L®, L™ etc. for simplicity unless otherwise specified.

po 1, . .
It is well-known that NL @ fails to embed into L>°. Nonetheless, we prove the
1,Q

following approximation lemma for functions in NL ™
Lemma 1.7. Given any 6 > 0 and any function f on G with |Vifllre < oo,
there exist a function F € L with V,F € L9, and a constant Cs > 0 with Cs
independent of f, such that

ni

Z [ Xk f — XpF| Lo < 0|V fllre

k=2
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and
[Flle + [[VoF e < Cs|| Ve fllLe-

Specializing this result to the Heisenberg group H", we deduce, for instance, the
following result about the solution of 0y:

Theorem 1.8. Suppose Q = 2n + 2 and ¢ # n — 1. Then for any (0, q)-form
f on H™ that has coefficients in L% and that is the 5: of some other form with

coefficients in NLI’Q, there exists a (0,q + 1)-form Y on H"™ with coefficients in
L>*nN NL"® such that
Y =f
in the sense of distributions, with |Y||r= + ||VoY||re < C|flle-
We then have a Gagliardo-Nirenberg inequality for 9, on H":

Theorem 1.9. Suppose Q = 2n+2. Ifu is a (0,q) form on H” with2 < ¢ < n—2,
then

(1.1) ull Le/@-1n < CTﬂgbUHL1+(NLLQ)*4*H5bUHL1+(NLLQ)*)
Also, ifn > 2 and u is a function on H" that is orthogonal to the kernel of Oy, then
(1.2) lullsesca-s < ClBuly, o,

There is also a version of this result for (0,1) forms and (0, n—1) forms, analogous
to the last part of Theorem 1.3.
A weaker version of this theorem, namely what one has by replacing L' +

(N LLQ)* above by L', can also be deduced easily from the work of Chanillo-van
Schaftingen [CvS] (c.f. also [Y]).

Several difficulties need to be overcome when we prove Lemma 1.7 on a gen-
eral homogeneous group. The first is that we no longer have a Fejér kernel as in
the Euclidean spaces, which served as the building block of a good reproducing
kernel K; in the original proof of Bourgain-Brezis. As a result, we need to find
an appropriate variant of that. What we do is to adopt the heat kernels S;, and
to use Sjyn, where N is large, as our approximate reproducing kernel. In other
words, we use Sj4nA;f, where NV is large, to approximate A;f, where A, f is a
Littlewood-Paley piece of the function f. Since the heat kernel does not localize
perfectly in “frequency”, we need, in the preparational stage, some extra efforts to
deal with additional errors that come up in that connection.

Our second difficulty, which is also the biggest challenge, is that our homogeneous
group is in general not abelian. Hence we must carefully distinguish between left-
and right-invariant derivatives when we differentiate a convolution (which is defined
in (2.4)): Xp(f * K) is equal to f x (XxK), and not to (Xgf) * K, if X} is left-
invariant and K is any kernel (c.f Proposition 4.1 in Section 4). To get around
that, several ingredients are involved. One of them is to explore the relationship
between left- and right-invariant vector fields, which we recall in Section 4. Another
is to introduce two different auxiliary controlling functions w; and @;. These are
functions that dominate |A; f| pointwisely (at least morally), and both Xjw; and
Xpwj, for k = 2,...,ny, will be better controlled than X w; and X;@;. The key
here, on the other hand, is three-fold: first, @; is frequency localized; second, @;
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dominates wj; finally, one has a good bound on
Isup(27w;)| e
J

as we will see in Proposition 9.8. On the contrary, we wish to point out that w; will
not satisfy the analog of Proposition 9.8, and w; will not be frequency localized.
This is basically why we needed to construct both auxiliary functions w; and @;. In
defining such w; and @;, instead of taking an “L°° convolution” as in the definition
of w; used by Bourgain-Brezis, we will take a discrete convolution in 1€, and an
honest convolution, for w; and @; respectively. (The precise definition of w; and
@; can be found in Section 7.) We then use w; to control the part of f where the
high frequencies are dominating, and use w; to control the other part of f where
the low frequencies are dominating.

Finally, we will need two slightly different versions of Littlewood-Paley theories
on a homogeneous group. One is chosen such that f = > ; A f, and the other
is chosen such that the reverse Littlewood-Paley inequality holds (as in Proposi-
tion 5.5).

We will now proceed as follows. In Section 2-5 we describe some preliminaries
about homogeneous groups. This includes some mean-value type inequalities on G,
some tools that allow us to mediate between left- and right-invariant derivatives,
as well as a refinement of a Littlewood-Paley theory on G. In Section 6 we give
some algebraic preliminaries needed in the proof of Lemma 1.7, and in Section 7
we give an outline of the proof of Lemma 1.7. Section 8-11 contains the details of
the proof of Lemma 1.7. Finally in Section 12 we prove Theorem 1.8 and 1.9.

2. PRELIMINARIES

Let G be a homogeneous group, n; := dim Vj, and X;,...,X,, be a basis of V;
as above. We introduce a coordinate system on G. First write

n:=mni+--+ Nm,

and extend Xi,...,X,, to a basis X1,..., X, of g, such that X,,,_,41,..., X},
is a basis of Vj for all 1 < j < m (with ny understood to be 0). Then for =
[z1,...,2,) € R", we identify z with Y 2;X; € g. We will also identify g with
G via the exponential map. Thus we write z for the point exp(}_ ., z;X;) € G.
This defines a coordinate system on G. The group identity of G is 0 = [0,..., 0],
and the dilation on G is given explicitly by

2 2
A =[AC1, o A s A Ty 1y e s A Ty e A ey AT T

for A >0 and & = [z1,...,2,)].

For z,y € G, we write x - y for their group product in G. By the Campbell-
Hausdorff formula, this group law is given by a polynomial map when viewed as a
map from R"™ x R” — R™. More precisely, the map (z,y) — « -y can be computed
by

T -y = exp (2”: xiX,) - exp (Zn: ini>
i=1

i=1
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It follows that for 1 < k < nq, the k-th coordinate of = - y is xx + yi.
The dilations on G are automorphisms of the group: in particular,

(2.2) A(y)=0A-2) (Ay)

for all A > 0 and all z,y € G.

A function f(x) on G is said to be homogeneous of degree [ if f(\-z) = A f(x)
for all x € G and A > 0. From (2.1) we see that for all n; < k < nj4q, the
k-th coordinate of z - y is equal to xy + yx + Pi(x,y) where Py is a homogeneous
polynomial of degree j on G x G. On G one can define the homogeneous norm

1
2m!

m ot
el = 1> > el

Jj=1n;_1<k<n;

It is a homogeneous function of degree 1 on G, and satisfies a quasi-triangle in-
equality

-yl < C(llll + llyl)

for all z,y € G, where C is a constant depending only on G. We also have ||z| =
|lz=1|| for all z € G, since if x = [z1,...,2,] then 271 = [—z1,..., —2,].

Any element X of g can be identified with a left-invariant vector field on G. It
will be said to be homogeneous of degree [ if X(f(A-z)) = N(Xf)(\-z) for all C*
functions f. Xi,...,X,, is then a basis of left-invariant vector fields of degree 1
on G. We remind the reader that we write V,f = (X1f,...,Xn, f), and call this
the subelliptic gradient of f.

By the form of the group law on G, one can see that if n;_; < k < n;, then X,
can be written as

(2.3) 6% Z > Pl 8;1/

p=j+1lny 1<k/<n,

where Py i/ (z) is a homogeneous polynomial of degree p — j if np,_1 < k' < n,,.

If X is a left-invariant vector field on G, we write X for the right-invariant
vector field on G that agrees with X at the identity (namely 0). We also write
VEf for the nq-tuple (XT¥f, ... ,X,}flf).

The Lebesgue measure dzr on R™ is a Haar measure on G if we identify x € R"
with a point in G as we have always done. It satisfies d(\-x) = A?dz for all positive
A, where ) = Z _1J - nj is the homogeneous dimension we introduced previously.

With the Haar measure we define the LP spaces on G. If f and g are two L'
functions on G, then their convolution is given by

(2.4) fgla /faf v ")g(y)dy,

frgx /f - z)dy.

The non-isotropic Sobolev space NL @ is the space of functions f such that
Vo fllre < oo.

or equivalently
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3. SOME BASIC INEQUALITIES

To proceed further, we collect some basic inequalities that will be useful on a
number of occasions.

In this and the next section, f and ¢ will denote two general C' functions on G.
The first proposition is a mean-value inequality.

Proposition 3.1. There exist absolute constants C' > 0 and a > 0 such that
[f@-y™") = f@) < Clyll sup  |[(Vof)(z- 27

lzl<allyll

for all z,y € G.

For a proof of this proposition, see Folland-Stein [F'S, Page 33, (1.41)].
There is also a mean-value inequality for right translations, whose proof is similar
and we omit:

Proposition 3.2. There exist absolute constants C' > 0 and a > 0 such that
[fly™" - 2) = fla)] < Cl\yll‘ sup (Vi f) (=" - @)

Izl <allyll
for all z,y € G.
Next we have some integral estimates:
Proposition 3.3. If
(3.1) Vof(@)l < 1+ z)™ and |g(z)| < @+ [Jz)™

for all M > 0, then for any non-negative integer k,

(3.2) /G F@y™Y) — F@)llge(y)ldy < C27F(1 + [l2l) ™

for all M, where gy (y) := 2*Qg(2% - y).

The key here, as well as in the next two propositions, is that we get a small
factor 27% on the right hand side of our estimates.

Proof. We split the integral into two parts:

L d— dy + dy=1+1I,
/GIf(w y~ ) = F(@)llgr(y)ldy /”y“@ﬂ / /|y|>c|m| !

where c is a constant chosen such that if ||y|| < c[|z|| and ||z|| < a||y]|| then ||z-271|| >
%||x|| Here a is the constant appearing in the statement of Proposition 3.1, and
such c exists by (3.3) below. We then apply Proposition 3.1 twice. First in I, the
integrand can be bounded by

[f(@-y™h) = F@)lge )] < CO+ 2™ [lylllgx (v)]
for all M, and

/G olllgn(y)ldy = C27*.

Also, in I1, the integrand can be bounded by
[fa-y™") = f@)llor )] < Cllylllgr )],
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and
[ llawlay< [ gl 2l 2y
lylZelll llyllZellll
< C27F (14 [lf) ™
for all M. Combining the estimates concludes the proof. O

We remark here that if we want (3.2) to hold for a specific M, then we only need
condition (3.1) to hold with M replaced by @ + M + 1.
In particular, we have

Proposition 3.4. If f, g are as in Proposition 3.3, and in addition [, g(y)dy =0,
then for any non-negative integer k, we have

|f % gr(x)| < C27F(1 + |||) =
for all M.

Proof. One can write
frota) = [ (Fy™) = 1) aulw)dy
G

since fG g(y)dy = 0 implies fG g (y)dy = 0. Then taking absolute values and using
Proposition 3.3, one yields the desired claim. (I

Similarly, suppose fi(x) := 2FQ f(2* - ). Using the representation

firala) = [ pwat )i
and invoking Proposition 3.2 instead of Proposition 3.1, we can estimate fi * g as
well.
Proposition 3.5. Suppose
[Virg(a)] < L+ flz])™ and  |f(2)] < (1+ [l2])~"

for all M > 0. Suppose further that [, f(y)dy = 0. Then for any non-negative
integer k, we have

| g(z)| < C27F (1 + [|lz)) =
for all M.

Finally, let o be a non-negative integer, and adopt the shorthand z, := 277 - 27,

where 27 := [2921, 29, ..., &, if 2 = [21,...,2,]. We will need the following mean-
value type inequality for ||z]|.

Proposition 3.6. For any z,0 € G,
| (@ - 0)s|l = llzoll | < CI6]].
Here the constant C' is independent of o. Similarly | ||(6 - z).| — l|lzo] | < C||0]|.
In particular, taking ¢ = 0, the norm function satisfies
(3.3) [l - 01 = [lzll ] < Clo]
for all 2,0 € G.
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Proof of Proposition 3.6. We prove the desired inequalities using scale invariance.
The key is that the function z — ||z, || is homogeneous of degree 1 and smooth
away from 0; in fact, (A x)s = A (2,), and the homogeneity of the above map
follows:
[A-2)oll = lIA- (2o)]l = Allzo -

By scaling = and 6 simultanenously, without loss of generality, we may assume
that [|z|| = 2. Now to prove the first inequality, we consider two cases: ||0] < 1
and ||0] > 1. If ||0]] < 1, then the (Euclidean) straight line joining = and z - 6
stays in a compact set not containing 0. Then we apply the Euclidean mean-value
inequality to the function z + ||4||, which is smooth in this compact set and
satisfies |V||z,||| < 1 there uniformly in o. It follows that if ||f|| < 1, we have

[z - 0)sll = llzoll [ S 161 < CJl6]-
Here |6 is the Euclidean norm of §. On the other hand, if ||§]| > 1, then
@0l = llzall | < (@ 0)oll + 2ol < llz- 0l + 2] S CUlzll + [101) < 161l

where the second to last inequality follows from the quasi-triangle inequality. Thus
we have the desired inequality either case. One can prove the second inequality
similarly. O

4. LEFT- AND RIGHT-INVARIANT DERIVATIVES

Next we describe how one mediates between left- and right-invariant derivatives
when working with convolutions on G. First we have the following basic identities.

Proposition 4.1.
Xi(fxg)=f*(Xig), (Xpf)xg=f+(Xig), and Xi(f+g)=(Xif)*g,

assuming f, g and their derivatives decay sufficiently rapidly at infinity.

A proof can be found in Folland-Stein [F'S, Page 22]. Since our groups are not
abelian in general, one has to be careful with these identities; one does not have,
for instance, the identity between X (f * g) and (X f) * g.

We also have the following flexibility of representing coordinate and left-invariant
derivatives in terms of right-invariant ones.

Proposition 4.2. (a) For 1 < i < n, the coordinate derivative -2~ can be written

6Ii
as
0 &
— =) X&Dj
ox; Z k=,
k=1

where D; j, are homogeneous differential operators of degree j —1ifn;_; <7 <
nj.

(b) In fact any 8%,& 1 < i < n, can be written as a linear combination of (V)
with coefficients that are polynomials in x, where a ranges over a finite subset
of the indices {1,...,n;}".

(¢) If X is a left-invariant vector field of degree 1, then for any Schwartz function
¢, there exists ny Schwartz functions é(l), ceey qg("l) such that

niy
X¢=X"p+> X0,
=1
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with
[ 89wy =0
G
for all 1 < j < ny. Schematically, we write
Xo=X"+ V7
with [, ¢(y)dy = 0.

Proof. The crux of the matter here is that our homogeneous groups are stratified.
(a) is rather well-known; see e.g. Proposition (1.26) of Folland-Stein [F'S], and the
discussion that follows there; a similar statement with its proof can also be found
in Stein [S, Page 608, Lemma in Section 3.2.2].

(b) follows immediately by iterating (a).

Finally, to prove (c), note that by (2.3) and its analog for right-invariant deriva-

tives,
" 0
SR L SR S

P=2np,_1<k'<ny

where Qp/(z) is a homogeneous polynomial of degree p — 1 if n,_; < k' < n,
(we suppress, in the notation, the dependence of Qi on X in order to simplify
notations). Hence multiplication by Qx (x) commutes with a%k,, and using (a) for
%k/, we get
m ni
R R
RESLE Sl DD SR E

p=2n, 1<k <n, j=1
As a result, for any Schwartz functions ¢, if we write

oD =3 > Dp,[Qu(z)d(x)]

p=2ny,_1<k'<n,
for 1 < j < nq, then
ny
Xo—Xlp=2 X[,
j=1
also, it is easy to check that

/q3<j>:0 forall 1 <j<mny
G

since all Dy ; arising in the definition of #9) is a homogeneous differential operator
of degree > 1. (c) then follows. O

Next, we have the following lemma that allows one to write the left-invariant
derivative of a bump function as sums of right-invariant derivatives of some other
bumps.

Proposition 4.3. Suppose ¢ is a Schwartz function on G (by which we mean a
Schwartz function on the underlying R™).
(a) If [, ¢(xz)dx = 0, then there exists Schwartz functions eM .. ™) such that

ni

6= o,
k=1
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(b) If furthermore [, zx@(x)de = 0 for all 1 < k < ny, then one can take the
©*)s such that fG ga(k)(x)dx =0 for all 1 < k < my. This will be the case,
for instance, if ¢ is the left-invariant derivative of another Schwartz function
whose integral is zero.

Proof. To prove part (a), first we claim that any Schwartz function ¢ on R™ that
has integral zero can be written as

n 8¢(1
0=2 s

for some Schwartz functions ¢, . gi)("

To see that we have such a 1representat10n7 we use the Euclidean Fourier transform
on R™. First, we observe that since the integral of ¢ is zero, which implies qAS(O) =0,
we have, for all £ € R,

(4.1) o = | %q?(ss)ds—Z@ i)

0 agz

Taking inverse Fourier transform, one can write ¢ as a sum of coordinate derivatives

(s€)ds.

of some functions. The problem is that fo (s€)ds, while smooth in &, does not
decay as & — oo. So the above expression is only good for small £. But for large &,
we have

(4.2) Z& |§|2

(Here |¢| is the Euclidean norm of £.) Hence if we take a smooth cut-off n € C2°(R™)
with n = 1 near the origin, then combining (4.1) and (4.2), we have

(&) =n()d(&) + (1 = 1(€))o(€)
B n ‘ 1 aa \ . B é‘l
f;a (m@ / 5e, (36)ds + (1 <>>§|2¢<5>>.

Taking inverse Fourier transform, we get the desired decomposition in our claim
above.

Now we return to the group setting. Let ¢ be a function on G with integral zero.
Using the above claim, identifying G with the underlying R™, we write ¢ as

(D)
9= Z o0x;

for some Schwartz functions ¢ ,...,(b(”). Now by Proposition 4.2 (a), for all
1 < ¢ < n, one can express the coordinate derivatives % in terms of the right-
invariant derivatives of order 1. Hence by rearranging the above identity we obtain

Schwartz functions ), ... (™) such that

ny
¢=> Xflo),
k=1

as was claimed in (a).
Finally, if we had in addition [, zz¢(xz)dz = 0 for all 1 < k < ny, then one
can check, in our construction above, that fG d)(i)(x)dm =0forall<i<ng.
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It follows that [, 0@ (z)dz = 0 for all 1 < i < ny; in fact ¢ is just ¢() plus a
sum of derivatives of Schwartz functions, which integrates to zero. The rest of the
proposition then follows. O

We point out here that in the above two propositions, left-invariant derivatives
could have worked as well as right-invariant ones. More precisely:

Proposition 4.4. Proposition 4.2 and 4.3 remain true if one replaces all right-
invariant derivatives by their left-invariant counterparts.

In what follows, we will develop the habit of consistently denoting the operator
f— f+«Kby Kfif Kisa kernel. If K is a Schwartz function, then V(K f) =
f*(VpK), where (each component of) V, K is a Schwartz function with integral 0.
Thus Proposition 4.3 can be applied to V,K; then one gets some kernels K®)g
that are Schwartz functions, and satisfy

ni
VoK = Z XER®,
k=1

Schematically we write V, K = fo( , and conclude that
Vi(Kf) = [ *(Vi'K) = (Vo) = K.
Again writing K f for f * K, we obtain the identity
V(K f) = K(V3f).
If in addition [, K(y)dy = 0, then one also has [, K(y)dy = 0, by Proposition
4.3(b). (The above could also be deduced easily from Proposition 4.2(c).)
5. LITTLEWOOD-PALEY THEORY AND A REFINEMENT

We now turn to the Littlewood-Paley theory for G. We need actually two versions
of that. First, let ¥ be a Schwartz function on G such that [, ¥(x)dx = 1, and
such that fG 2¥(x)dxr = 0 for all 1 < k < my. Such a function exists; in fact
one can just take a Schwartz function ¥ on R™ whose Euclidean Fourier transform
is identically 1 near the origin, and think of that as a function on G. Now let
Az) =290(2-2) — U(z), and Aj(z) = 279A(27 - z). Also write A;f = f*A;. We
record here that the assumption fG U (x)dx = 0 for all 1 < k < ny guarantees
that

(5.1) / 2pA(z)dr =0
el
forall 1 <k <n;j.

Proposition 5.1. If f € LP for some 1 < p < oo, then T f = ZIJ’KK A f
converges to f in LP norm as K — oo. In other words,

f=> A,

j=—oc0
where the convergence is in LP norm.

To prove this, we need the following convergence result in L?:

Proposition 5.2. Suppose ® is a Schwartz function. Write ®;(z) = 2/9®(27 - x).
If f € LP for some 1 < p < oo, then:
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(a) f*®; converges to 0 in LP norm as j — —oo.
(b) If fG ®(y)dy = 1, then f * &, converges to f in LP norm as j — +oc.
(c) If [, ®(y)dy = 0, then f * ®; converges to 0 in L norm as j — +oo.

Applying Proposition 5.2 (a) and (b) with ® = ¥ yields Proposition 5.1.

Proof of Proposition 5.2. It suffices to prove these claims when f is continuous with
compact support, since such functions are dense in LP, 1 < p < oo, and the maps
f +— f*®; are uniformly bounded on LP as j varies over the integers. Suppose f
is continuous with compact support. Then for 1 < p < oo,

1F * @500 < Nl @4llze = (122790 = 0

as j — —oo, proving (a).
On the other hand, if [, ®(y)dy = 1, then

f () - flz) = /G Fla- (27 4)™) = f(0)]B(y)dy,
19005 = e < [ 15+ @7 0)™) = F@)sgan|20)ldy = 0
G

as j — 400, by uniform continuity of f, and that f has compact support. This
proves (b).
Finally, if instead [, ®(y)dy = 0, then

f () = /G - (279 — @)@ )dy,
1 %l < / 1@ (27 4)™) = F(@) o an | B(w) dy — 0
G

as j — 400, by uniform continuity of f, and that f has compact support. This
proves (c). O

To put the Proposition 5.2 in context, note that if ® is as in the proposition,
but f is merely a (tempered) distribution, it is not necessarily true that f+®; — 0
in the sense of distributions as j — —oo. In fact, if f is a non-zero constant, then
f*®; = fforall j € Z, which does not converge to zero in the sense of distributions.

We now turn to the analog of such results for functions in N L.
Proposition 5.3. If f is a function with V,f € LP for some 1 < p < oo, then
IVo(f =T f)llzr — 0

as K — oo, where Tk f is as defined in Proposition 5.1.

Proof. First, note that if X is any left-invariant vector field of degree 1, then by
Proposition 4.2(c), X (f*¥;) = f+(X¥;) = fx(XBU;+VEV;) where Ja (y)dy =
0. It follows that R
X(f ;) = (X[)*U; + (Vpf) = U;.

Applying Proposition 5.2(b) for the first term, and Proposition 5.2(c) for the second,
we see that

X(f*¥;) - Xf in LP norm, as j — +oo.
Also, by Proposition 5.2(a), we have

X(f*¥;) =0 in LP norm, as j — —oo.
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Hence our desired conclusion follows. O

Next, we turn to some Littlewood-Paley inequalities. First, for f € LP, 1 <p <
o0, we have

oo

(5.2) > 1af < Cpllf | e
j=—0o0
Lp

This holds because fG A(y)dy = 0. In fact we have the following more refined
Littlewood-Paley theorem:

Proposition 5.4. If D is a Schwartz function on G, fG xz)dx = 0, and A is a
constant such that

ID(z)| < A1+ ||z])~9F?),

AL+ [lz))~@F D ifn, <k <n,, 1<r<m,

‘8$k
then defining D, f = f x D; where D;(x) = 2/9D(2/ - x), we have

oo 2

> ID;fP? < CuA||fllre, 1<p<oo
Jj=—00

Lp

where (), is a constant independent of the kernel D.

Later we will need the fact that the constant on the right hand side of the
Littlewood-Paley inequality depends only on A but not otherwise on the kernel D.
Applying this proposition to A; yields our claim (5.2).

Proof. Without loss of generality we may assume A = 1. The proof of this proposi-
tion relies on a vector-valued singular integral theory on G, which is presented, for
instance, in [S, Chapter 13, Section 5.3]. By our assumptions, it is readily checked
that

1/2
(5.3) Y Di@P)  <Cle)™?,
Jj=—00
and
1/2
(5.4) Z ‘&r < COllzf|=@= ifn,_1 <k<n, 1<r<m;
k

Jj=—00

in fact by scale invariance, it suffices to check this when ||z| ~ 1. For example,
to bound Z]:foo |8wk Dj(z)|* where n,_1 < k < n,, it suffices to split the sum
into ijo and Z]<0’ for the second sum, one bognds each term by C27(Q+7) and
for the first sum, one bounds each term by C27/(Q+7)2-i(Q+7+1) = Pytting these
together yields the desired bound (5.4). (5.3) can be obtained similarly.
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Furthermore, we need to check that for any normalized bump function ® sup-
ported in the unit ball,

1/2

2
(5.5) ’/ Dj(z)®(R - z)dx <C forall R>0.

j=—o00

By scale invariance we may assume that R ~ 1. Now when j < 0,

O(R-z)dx| < 29|D(R - x)|| 0 < C29,

since |D;(z)| < 23Q and R~ 1. When j > 0,

O(R - x)dx

< [ ID,@le(Ra)-0)ds < € [ |D,(a)| Rlajds < 27,

with the first inequality following from [, D(x)dz = 0, and the second inequality
following from Proposition 3.1. Putting these together, we get the desired estimate
(5.5).

From (5.3), (5.4), (5.5), the vector-valued singular integral theory mentioned
above applies, and this gives the bounds in our current proposition. Since none
of the constants C' in (5.3), (5.4), (5.5) depend on the kernel D, neither does the
bound of our conclusion depend on D. O

We will now state and prove the reverse Littlewood-Paley inequality. For that,
we need the second version of Littlewood-Paley projections, given by the following
proposition:

Proposition 5.5. There are 2n; functions A, ..., A®") each having zero
integral on G, such that if A§l)(x) = 27QA(27 . 2) and Ag-l)f =fx* Aél), then

o0 2

2111

l
SIS e ST
=1

j=—00
Lr

whenever f € LP and 1 < p < o0.

Since the sum in [ is usually irrelevant for the estimates, we will abuse notation,
and simply write

o0

>IN P =~ | fllze-
Jj=—o0 I

Note that we do not claim f = Zl,j Ag-l)f here.

We remark that the reversed Littlewood-Paley inequality is false if f is not in
LP to begin with. For instance, if f is a non-zero constant on G, then A;f = 0 for
all j, whereas || f||zr is infinite for any 1 < p < co. Hence one can only control the

LP norm of f by the square function, when one knows a priori that f is already in
LP.

Proof. The key is to construct 2n; Schwartz functions A, ..., A7) and another
2n; Schwartz functions 21, ..., 2271 each having integral zero, such that if
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fELP 1< p<oo, then

2n1 (oo}
(5.6) F=33 Al sEl
=1 j=—o00

1

where A;l)(x) = 209N (27 . ), :g.l)(x) = 2/9=1(27 . ) and the convergence is in
LP norm. Once we have such Schwartz functions, we can write, for f € LP and
geLr,

(f.9)= % i (Eﬁl)A;l)f, g)
.
= j;w <A;l)f’ E§l)*9>
o | 7 1/2 . 1/2
<X j;oo AL P2 j;oo =5 gP :
Lr L

where (f,g) denotes the inner product on L?(G) and =% is the adjoint of E;l)
with respect to this inner product, which is also given by the convolution against
a Schwartz function of integral zero. Here p’ is the dual exponent to p. Hence if

1 < p < o0, we can estimate the L*' norm above by Proposition 5.4, and get

1/2
2n1 [e%e]
l
(fr9) < Collallr SIS a2
=1 j=—00
Lp

which is the desired reverse inequality since g € L¥ s arbitrary. The forward
inequality follows already from Proposition 5.4.

To construct Schwartz functions A, ..., A®") and 21, . 2™ guch that
they have integral zero and they satisfy (5.6), we proceed as follows. Let ¥ be as
in the beginning of this section. Then ¥ * ¥ is a Schwartz function (here * is still
the group convolution), and [, ¥ % W(z)dz = 1. Let ¥;(x) = 279W(2/ - ). Then
by the argument of Proposition 5.1, for any f in LP, 1 < p < 0o, we have

f: Z f*(\I/j*\I/j—\I/jfl*\I/jfl)
j=—o00
(5.7) = D FE (W (T =Wy + (T — W)+ Ty )
j=—o00

with convergence in LP. Note that in the smaller brackets, we have the L! dilation
of Wy — W_;. Now Wy — W_; has integral zero, and the moments [, zx(¥o(x) —
U_y(z))dz =0 for 1 < k < ny. Hence by Proposition 4.3 and Proposition 4.4, we
can write g — W_; as either

ni ni
Vo—-V_; = ZX;&PUC) or VUg—U_; = Zka(k)
k=1 k=1
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for some Schwartz functions ¢, ..., (") and M, ... (™) all of which have in-
tegral zero. Plugging the first identity back to the first term of (5.7) and the second
identity into the second term of (5.7), and integrating by parts using Proposition
4.1, we get

F=3000 e+ o) + ol (XFw); 0 /2).

k=1j=—o0

Renaming the functions, we obtain the desired decomposition of f as in (5.6). O

To proceed further, we consider the maximal function on G, defined by

M (x) = sup — / Gyl

r>0 rQ
We need the following properties of M:

Proposition 5.6. (a) M is bounded on L? for all 1 < p < oo;
(b) M satisfies a vector-valued inequality, namely

2 2
oo

> IMfP <G|l Do 15 :

j=—00 j=—o0
Lp Lp

for 1 <p< 0.

(¢) Moreover, if |¢(y)| < ¢ ([|yl]) for some decreasing function ¢, and A = [, ¢(|ly[)dy,
then |f *x ¢(z)] < CAM f(x) where C is a constant depending only on G but
not on ¢.

(d) In particular,

oo oo 2
> AP <Gl Do 151
j=—o0 j=—00
Lp Lr

=

for all 1 < p < o0.

The proof of these can be found in Stein [S, Chapter 2], once we notice that the
group (G, || - ||, dx) satisfies the real-variable structures set out in Chapter 1 of the
same monograph.

We also need a Littlewood-Paley inequality for derivatives:

Proposition 5.7. Suppose V,,f € LP for some 1 < p < oo. Then
1/2

D RIA P < Gl Vo fllLr-
j=—0o0
e

Proof. Just notice that by Proposition 4.3(b) and (5.1), there exists Schwartz func-
tions o) k =1,2,...,n, such that

ni

Alz) = ZXI&P(IC) (@), with / ©®) (z)dx = 0.
k=1 G

We write schematically A = VFp. Then
VA f =2 (Viig); = (Vof) 5.
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Since [ ¢(x)dz = 0, it follows that

1/2 1/2
(oo} ) [ee]
D121 =l D2 1(Voh) =5
Jj=—00 j=—o00
Lp Lp
< Gl Vo flize
for 1 < p < oo, the last inequality following from Proposition 5.4. O

The following is a Bernstein-type inequality for our Littlewood-Paley decompo-

sition A;:

Proposition 5.8. If f € NLI’Q, then for all j € Z, we have
1A fllze < ClIVefllLe

where C' is independent of both f and j.

Proof. Suppose V,f € L?. Using the notations in the proof of Proposition 5.7,
Ajf = (Vof)*(277¢)).

Since [|277 ;|| Le/@-1) is a constant C independent of j, we see that
1A fllzee < ClIVefllLe

as desired. g

Finally, we need the “heat kernels” which we define as follows. Let S be a
non-negative Schwartz function on G, which satisfies

/ S(y)dy=1 and S(z)~e 7l forallz € G.
G

N
(For instance, S(z) = ce~(H1=IP™) 2 il do for a suitable ¢, since
(L ™) = — o]l = 0

as ||z]| = oc0.) We write . ‘
Si(x) :=2198(27 - 2),
and as usual let S;f := f*.S5;.

6. ALGEBRAIC PRELIMINARIES

In this section we describe some algebraic structures we use in the proof of
Lemma 1.7. First we have the following algebraic identity:

Proposition 6.1. For any sequence {a;}, one has

N N
I:Zaj H (lfaj/)JrH(lfaj) for any N € N.
j=1

i=1 1<57<i
Proof. This is just saying that
l=a1+(1—a)
=a;+azx(l—a1)+ (1 —a)(l—as)
=a;+ax(l—a1)+az(l —a)(l—az)+ (1 —a)(l—a2)(l—as)
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d

Now if {a; } is a sequence indexed by j € Z instead, with a; = 0 for all |j| > K for
some positive integer K, then by letting b; := ax41—;, and applying the previous
proposition to {b;} instead of {a;} with N = 2K + 1, one has

1= a; [ =ap)+ J] 0 -ay.
1<K J<y'<K l7I<K
Hence we have:

Proposition 6.2. If {a;},cz is a sequence of numbers satisfying 0 < a; < 1 for all
4, with only finitely many non-zero terms, then

0<> a; [J[1—a;) <1
J J'>3

Next, suppose we are given a function h on G such that
(6.1) h=> h;
J

for some functions hj, where all h; satisfy |||z < C, and only finitely many
h;’s are non-zero. We will describe a paradigm in which we approximate h by an
L™ function that we will call h. In fact, motivated by the algebraic proposition we
have above, we let

(6.2) h=> h; [Ja-0U;)

J 3>
where U; are some suitable non-negative functions such that
(6.3) C71hj| <U; <1 pointwisely for all 7,

and only finitely many U;’s are non-zero. Then at least ||2[|~ < C because
h(@)| <> 1hy@) [[0=Up(@) <0 Ui@) [T (1 - Uy (@) < C,
J J'>j J J'>3
where the last inequality follows from Proposition 6.2. One would now ask whether
this could be any sensible approximation of h; in particular, let’s try to see whether
| Xx(h — h)||Le is small, for k = 1,...,n;. To understand this, write h = > by
Then

h—h=> h|1-J[Q-Uy)
J J'>j
Using Proposition 6.1 to expand the latter bracket and rearranging the resulting
sum, we get

(6.4) h—h=> UV,
J
where Vj is defined by
(6.5) V; = Z hiji H (1—Ujn).
J'<i §'<5"<g
It follows that ~
Xi(h—h) = (XU;)Vj + U (Xi V).

J J
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By Proposition 6.2 and (6.3), we have
(6.6) |V;| < C pointwisely for all j.
This can be shown using the same argument we have used to bound ||A|g-~. Fur-
thermore, we have
(6.7) I XeVil < C Y (1Xkhy| + XUy ).

J'<j
In fact this follows from
(6.8) XieVy =Y ((Xahy) = (XeUp)Vy) JT (= Up).

3'<j §1<§"<j

(6.8) holds because when one computes X;V;, either the derivative hits h;/, or the
derivative hits U for some j' < j; furthermore, the coefficient of X U;s in XV} is

Vi II a-up).
<<

From (6.6) and (6.7), it follows that

(6.9) [ Xi(h =) < O D IXkU1 + YU Y (1 Xihy| + XUy ) | 5
J J J'<j
we will hope to estimate this in L? norm on G, if we choose U; suitably.
In the following sections, equations (6.1), (6.2), (6.3), (6.4), (6.5), (6.6), (6.7),
(6.8) and (6.9) will form a basic paradigm of our construction.

7. PROOF OF LEMMA 1.7: OUTLINE

We give an outline of the proof of Lemma 1.7 in this section, and we defer the
detailed proof to the next four sections. The proof will be in 4 steps. First, given

po 1, e
0>0and feNL Q, we choose a positive integer K, such that

Tif= > A;f
1<K
satisfies
)
(7.1) IVo(f —Tr f)llre < §||beHLQ-

The existence of such K is guaranteed by Proposition 5.3. Lemma 1.7 then reduces
to finding an F' € NL"9n L%, such that

20
| Xe(Tr f — F)l|Le < §||be||LQ7 k=2,...,n1,

with
[Flle +IVoFl[re < CslIVefllze

for some constant Cs independent of f. The advantage of taking this preliminary
step is so that we will effectively be dealing with finite sums and products, when
we construct our function F’ below. On the other hand, since the K we picked here
by Proposition 5.3 depends on both § and f, in what follows, care must be taken
to ensure that all constants we pick are uniform in K. It is only by doing so that
at the end, our constant C5 can be chosen independent of f.
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Next, we will show the existence of some positive integer N, such that if we
define fy by

(7.2) for=Tif =Y SinAif,
[7ISK
then
1)
(7.3) Ve follpe < g”vbeLQ-

The constant N will be chosen to depend only on ¢, but not on K nor f.

To proceed further, let o be a large positive integer to be chosen, which will
depend only on N but not on K nor f. (In particular, o will depend only on § but
not f.) Suppose from now on f satisfies an additional “smallness” condition:

(7.4) IVsfllLe < cg2 NQ27o(@-D),

Here the constant ¢ depends only on the group G. We will then define the auxiliary
controlling functions w; and @; as follows. For x = [z1,...,%,], we recall 27 :=
[2721, %2, ...,2,] and z, := 27727, Let E be a Schwartz function, defined by

E(:L') = 6*(1+||za\|2’”!)2¢1m '

We write A for the lattice {27V - s: s € Z"} of scale 27 in G, and for j € Z, we
define w; by

1/Q

—j - i Q

(7.5) wj(z) := (Z [Sj+n] A 1277 - ) E(r™ - (27 2))] )
reA

for all z € G. Here N is the positive integer we chose previously. Note that w; is

like a discrete convolution, except that we are using the [? norm in 7 rather than

the sum in r. We also define w;, for j € Z, by

(7.6) ;= 2VOE; S5y N]A; f]

where E;f := f x E;, and E;(y) := 209E(27y). w; and &; will be used to control
the Littlewood-Paley pieces A; f of f; in fact respectively they will control h; and
g; we introduce below. They will also have better derivatives in the X»,..., X},
directions than in the X direction.

Now let fy be as defined in (7.2). We decompose Tk f — fo = ZU\SK SiyNA;f
into the sum of two functions g and h as follows. Let R >> ¢ be another positive
integer to be chosen, which will again depend only on N but not on K nor f. Let
¢ be a smooth function on [0, 00) such that ( =1 on [0,1/2], and ¢ = 0 on [1,00).
For |j| < K, let

2w, ()
G(a) = ¢ J .
’ Z—ngq, k=j(mod R) 2kwy (x)
We remark here that (;(x) is not the L! dilation of ¢, i.e. (j(x) # 2/9¢(27 - x);
it is a smooth approximation of the characteristic function of the set {27/w; <
> K<k<jk=j(mod R) 2Fwy.}. We then define two functions h and g such that

h::Zhj, g::Zgj;

jez JET
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here we define, for |j| < K,
hj(x) == (1= ¢(@))Sien (B ) (@),
9 () == () S n (A f)(x)
and we define h; := g; := 0 if |j| > K. It follows that
(7.7) Txf=fot+g+h

By (;’s definition, we can think of h as the part where morally “the high frequencies
dominate the low frequencies”, and g as the part where morally the reverse happens.
We will now approximate h and ¢ separately by functions in L*°.

First, we will approximate h by some L function h using the paradigm of
approximation we discussed in the previous section. Namely, we define

=Y [T 0
JeLZ  §'>3
where we define
Uj = (1= Gy, for |j| < K,
and U; := 0 if |j| > K. We will prove that
(7.8) Az~ < C,

(7.9) | Xi(h—h)||lre < Cn277R|Vyfllre +Cn27OR|IVo fl20, k=2,...,n4,
and
(7.10) 1X1(h = h)||Le < CN27OR||Vof| Le-

Furthermore, using the same paradigm, we approximate g by some g € L,

where -
g=>. > 9 I a-G;

c=0 j= d R A
j c(mO ) j/z(;](mjd R)

here we define

Gi= > 2%, forlj<K,
t>0,j—t>—K
t=0(mod R)
and we define G, := 0 for |j| > K. We will prove that
(7.11) 19l < CR,
(7.12) IV6(9 = 9)llze < Cn2*7CTVR?27F|V, f| Lo

Note that one can estimate the full V; of the error here (rather than only the
“good” derivatives Xy for k = 2,...,n1). We will see in later sections that the
“smallness” assumption (7.4) on our given f is used, in the proofs of (7.8), (7.9),
(7.10), (7.11) and (7.12). Also, all constants C and C in (7.8), (7.9), (7.10), (7.11)
and (7.12) will be independent of K and f.

We now put everything together. Define F' by

F:=g+ h.
Then by (7.8) and (7.11),

(7.13) |FllL=~ < CR.
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Also, by (7.7),

Tgf—F=fo+(9—39) + (h—h).
By (7.3), (7.9) and (7.12), for k =2,...,n4,

| Xe(Tx f — F)l| e
< Vofollze + 1Xe(h = Al e + V(g — )l e
5
g§||v,,f||m + Cn2779R||VyfllLe + CN27CR| Vi f] 20
+ Cn22 @V R2E| Y, f| o

If one now chooses R = Bo where B is a constant > 2(Q+1) (say B = 2(Q +2) will
do), and chooses o to be sufficiently big with respect to N, then this is bounded by

)
(7.14) SIVoflize + A5 Vo flia

where Aj is a constant depending only on G and ¢ (but not on K nor f). Hence
combining with (7.1), we get

(115) XS - Flle < 20Vflse + AslVflar K=2,.0m.
Similarly, one can show that

(7.16) 1X1(f = F)llLe < A5l Vi fllre,

and from (7.13), we get

(7.17) |Fllo < As.

Let’s summarize what we have got so far. Given 6 > 0, we have picked positive
integers N, o, R, and a constant Ag, all depending only on §, such that whenever
fe NL"? satisfies (7.4), namely ||V f|lre < cq2~N9277(@=1 then (7.15), (7.16),
(7.17) holds.

Finally, if now a general f in N L? is given, and ¢ is sufficiently small, one will
rescale f (by multiplication by a small constant) so that

Hvbf”LQ = min{cG2_NQQ—U(Q—1)75(6146)_1}.

This is possible because the right hand side is a number depending only on §. More
precisely, let’s call the number on the right hand side above ¢s, and let

f = csf

T IVeflle’
so that

[Vofillza = cs.

In particular, then f, satisfies our smallness assumption (7.4). One then construct,
using the process described above, an approximation F, for this rescaled f,. From
(7.15), for k =2,...,n1, we have

[ Xk(fs = F)llre <0l Vafulle
as desired. Also, by (7.16),
IVo(fs = F)llLe < Asl[Vofsllre,



24 YI WANG AND PO-LAM YUNG

and by (7.17),

Vo fellLe
min{cg2-NQ2-o(Q-1) §(24,)~1}
If one now undo the rescaling we have done, and let
IV fllreF

Cs ’

[Fl[ze < As

- Cé||vbf*HLQ'

F =

then the above shows that F satisfies all the desired conclusions in Lemma 1.7.
Hence this completes the proof of Lemma 1.7, modulo the proof of the estimates
(7.3), (7.8), (7.9), (7.10), (7.11), (7.12). These will be proved in the next four
sections.

In the sequel, C' will denote constant independent of §, K, N, o and R. All
constants will be independent of K, and all dependence of constants on N, ¢ and
R will be made clear in the notations.

8. ESTIMATING fj

We now begin the proof of our approximation Lemma 1.7. We fix 6 > 0, and let

fe NLLQ, K € N. Let N be a large positive integer to be chosen. Define fj as in
(7.2). First,

fo= D (T =Sium)Aif = D> Y (Sjrkr1 — Sin)Aj f
liI<K li|I<K k>N

where [ is the identity operator, and the convergence in the second equality is in
s 1 .
NL Q. Now let P be the kernel of the operator S1 — Sy. Then P is a Schwartz

function, and
/ P(y)dy = 0.
a
Furthermore, if we define Py f = f * P, where Py (y) = 2QP(2* - y), then

fo=Y_ > Pur(Aif),

l71<K k=N

sl . . .
with convergence in N L @ . Using the notation at the end of Section 4, one gets

Vofo= Y D Pirli(Vof),

l71<K k=N

where the convergence in the sum in k is in L9, the kernels P and A are Schwartz,

and satisfy
/p@@=/5@@:
G G

since fG P= fG A =0. Now V, fo € L9, since it is a finite sum (over j5) of functions
in L?. Tt follows from Proposition 5.5 that

1/2
oo

2
IVofollce = || D A D D Pind;(Vef)
r=—co| [j|<K k>N
e
To proceed further, we replace, in the right hand side of the above formula, the
index j by 7 + r, and then pull out the summation in j and k. We can also at
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this point let K — +o00 on the right hand side of the formula. Then we obtain the
following bound for ||V, fo||re, namely

> yi(x

j=—o0c k>N r=—00

)\ /2
T j+r+kAj+T(vbf)‘ ) )
LR
which is equal to

(8.1) i > (i

j=—oc0 k>N r=—00

,\ 172
AT'+jp7'+kAr(vbf)‘ )

Le
if we first replace the index r by » — j, and then replace j by —j. Now we split the
sum into two parts, one where j < 0, and one where j > 0, and show that both
of them are bounded by C2~ NHbeHLQ The sum where j < 0 can be estimated
using Proposition 3.5: in fact Ay ; Pk Ar(Vif) = (Ar(Vif)) # (Pryk % Ay ), and
by Proposition 3.5,

1Py % Ayl (2) = (P*Ak_j)rﬂ-\ () < C2~(=D2R0+)) (1 4 2r+d )~ @Y
since k —j > 0, A, P are Schwartz, and fG y)dy = 0. From this we infer, using
Proposition 5.6 (c ) that

A Prsk A (Vi )] < C27FDMAL(V, f).
It follows that the sum where j < 0 is bounded by

oo 1/2
SN oo tD ( > (MAr(vbf)F) < C27V|[Vyflle

j<OE>N r=—00 70
as desired. Next, for the sum where j > 0, one defines an auxiliary kernel D by
D:A*]Sk*Aj ifj>0and k> N.
We claim that
Proposition 8.1. D is a Schwartz function,

|D(2)] < 02797 (1 + [laf]) @+,

<O R 4 |z|)~@FHY ifp,_ <i<m,, 1<r<m,

/GD(x)d:r =

Assume the proposition for the moment. Then one can apply the refinement of
Littlewood-Paley theory in Proposition 5.4 and conclude that

- 1/2
( > |Dr(be)|2> < C2777H| Vo f| e,

rT=—00

‘8$1

LQ
i.e.

0o 1/2
( Z |Ar+jpr+kAr(vbf)|2> S O2ij7k”vbf”LQ-

T=—00

LR
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Summing over j > 0 and k > N, we see that the sum over j > 0 in (8.1) is bounded
by C27N||V,f||lLe as well. This can be made < 2|V, f|| e, by picking N to be
a large constant depending only on § (but not on K nor f). Hence our desired
estimate (7.3) for fo follows.

Proof of Proposition 8.1. 1t is clear that D is Schwartz and [, D(x)dz = 0. To
prove the estimate for |D(z)|, first consider A % P, with k > N. From Proposition
4.1, we have VE(A x Py) = (VEA) % Py, so by Proposition 3.4, we get
(Vi) (A By)(@)] < Canr2 (1 + )~

for all multi-index o and all M > 0. It follows that

L 9 - .

A% Py(z)| + |5 (A * Py (2)

1z

for any M > 0 and all 1 <! < n. Here we applied Proposition 4.2 (b), which says
that each 8%1 can be written as a linear combination of (V{)® with coefficients
that are polynomials in z. Applying Proposition 3.4 again, we get

|D(x)| < Car277 (1 + )~
for all M > 0, since j > 0. Similarly
(Vi) D ()] < Con27?7F (1 + [lf) =
for all multi-index « and all M > 0. It follows that
‘3
o0x;
for all 1 <1 <n and all M > 0, from which our proposition follows. (]

<Owv27 ¥+ |z))~M

D(z)| < Cr27 775 (1 + [ll) ™

9. PROPERTIES OF w; AND W;
Suppose § > 0 is given, and let N be chosen as in the previous section. Let o be a
very large positive integer, to be chosen depending only on N (and thus only on §).

Suppose f € NL"? is given, and (7.4) holds, i.e. |Vyf|re < cg2 NQ2-(@=1),
where c¢ is a sufficiently small constant depending only on G.
Define w; and @; by (7.5) and (7.6) as in Section 7, namely

1/Q
wj(r) := (Z [Sj+nIAf1277 - ) B - (2 'l‘))]Q>

reA
and
0j(x) = 2V9E; SN fl(2)
First, we want a pointwise bound for w;. To obtain that we observe:
Lemma 9.1. Let S; and Ej be defined as in Section 7. Then whenever z,0 € G
with ||0|] <277, we have
Si(x-0)~S;j(z) and E;(0-x)~ E;(x).
In particular, we have
Sjf(x-0) = S;f(x)

if f is a non-negative function and ||| < 277.
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Proof. First we observe that

BE(z) ~e 2ol for all 2 € G.
This is because

(Lt (o) 7 — [l = 0
as ||y || = oo. Now by Proposition 3.6, we have

HI(0- 2)o |l = llzoll | < € if [0 < 1.

Hence from E(z) ~ e~ %ol and E(# - z) ~ e~ 1102)s1l | we get

E@-z)~ E(x) if]6] <1.

Scaling yields the desired claim for Ej.

Next, suppose ||6]] < 1. We claim that S(z - 6) ~ S(z) for all + € G. This holds
because S(z - 0) ~ e 10l and S(x) ~ e~lI*l for all 2, and one can apply (3.3) to
compare the latter. Scaling yields the claim for S;. O

Now comes the pointwise bound for w;, from both above and below.
Proposition 9.2.

1/Q
wj(x) = <Z [Sin|A; fl(z - 2jT)E(T1)]Q> :

reA
Here the implicit constant is independent of N and o.

Proof. Recall that by (7.5),

1/Q
wj(x) = (Z [Sjen1A; 1277 ) Bt (2 -m))]Q>

reA
1/Q
i 1@
= X [Senlaflee @7 )BT
se(24-x)~ LA
The last identity follows from a change of variable: if s = (27 - x)~! -7, then we

have r = (27 - 2) - 5,80 277 - = - (277 - 5), the last identity following because
dilations are group homomorphisms (c.f. (2.2)). Now recall that A is the lattice
{27N.s5: 5 € Z"}. Hence every s € (27-z)71-A can be written uniquely as r-(27V.9)
for some r € A and 6 € G, such that if § = [0y,...,0,], then all 8 € [0,1). This
defines a map from the shifted lattice (27 -z)~1- A to the original lattice A, and it is
easy to see that this map is a bijection. Hence if the inverse of this map is denoted
by s = s(r), then

1/Q
wj(r) = (Z [Sjn1A; fl(z- (277 - S(T)))E(S(T)_l)]Q> :

reEA
But s(r) =r- (27" - 0) for some [|f]| < 1. Thus by Lemma 9.1, we get
E(s(r)™ ) ~E(r™).

Also, from the same relation between s(r) and r, we have 277 - s(r) = (277 . r) -
(2=U+N) . 9) with ||270U+N) . 9| < 270UFN), Thus by Lemma 9.1 again, we get

SNl fl(- (277 - s(r))) = Spen|As fl(a - (279 7).
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Hence the proposition follows. O

By a similar token, one can prove that

Proposition 9.3.
@i(x) =D SjpnlA fl(z- (277 - r)E@TY,
reA

with implicit constants independent of N and o.

Proof. This is because by (7.6),
@j(z) =29 /G Sjen|A;fl(z - (277 y) By~ )dy

= Z/{O e SN A (- (277 r) - (270N L) E(2N - 0)"t ) de

reA

The second equality follows from the fact that every y € G can be written uniquely
asr-(27N-0) for some r € A and @ € [0,1)", which we have already used in the proof
of Proposition 9.2. Note again that if y = 7- (27" -0), then by the fact that dilations
are group homomorphisms, we have 277.y = 277.(r-(27N.0)) = (277.r)-(2=U+N).g).
Also, we used dy = 27 V2d# in the change of variables. Now one can mimic the
proof of Proposition 9.2. In fact, one observes that whenever ||f|| < 1, one has

E(@N.o . r ) ~EFrY

and
Sy Al (277 ) (27U 0)) 2 5 A fl(e - (277 7).

One then concludes that

Oj(@) 2 SjanlAfl(a- (277 - r)E(r).

reA

This completes the proof. [l
From the two propositions above, it follows that

Proposition 9.4.
Sien|A; fl(x) < Cwj(x) < Ca;(x).

Proof. The first inequality holds because the term corresponding to 7 = 0 in the
right hand side of the equation in Proposition 9.2 is precisely Sj+n|A; f|(z). The
second inequality holds by the previous two propositions, since the € norm of a
sequence is always smaller than or equal to its I! norm. O

Next we have
Proposition 9.5.
Jwillz < Clla o < C2¥927 @D, flpq < 1
if ¢ in assumption (7.4) is chosen sufficiently small.

We fix this choice of ¢ from now on.
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Proof. The first inequality follows from the previous proposition. The second in-
equality follows from

@il < 2YCIE( L |S|Le 18 f ]|,
B = C20@—1),

and Bernstein’s inequality as in Proposition 5.8. The last inequality holds since
Ve fllre < cq27NR277(@=1) and ¢ is sufficiently small. O
Proposition 9.6.
|X1Wj| S CQj(.Oj
and
| Xpwj| < C27 7w, fork=2,...,n;.

Proof. One just needs to recall the definition of w; from (7.5), namely

1/Q
wj(x) = <Z [Sj+n|A; 1277 - E@ - (2 ~x))]Q>

reA

and to differentiate it. Here it is crucial that the variable z is in the argument of E
and not in Sj; n|A; f]; in other words, we could not have taken the expression in
Proposition 9.2 to be the definition of w;, because while it is true that the continuous

convolution f * g can be written as [, f(y~")g(y - z)dy or [ f(x -y~ ")g(y)dy via
integration by parts, the analogous statement fails for discrete convolutions. Hence
if w; was defined by the expression in Proposition 9.2, then there would be no way
of integrating by parts and letting the derivatives fall on E here.

More precisely, first we observe

X (14 [Jzo||>™) 7w | < C277 ifk=2,...,m
and
1
X1 (14 g |*™) 7| < C.
Thus
| X1E(z)| < CE(z), and |XpE(x)|<C27°E(x) iftk=2,...,n;.

Now since we are using left-invariant vector fields, they commute with left-translations.
It follows that

Xp(E(r=" - (27 - 2))) = 2 (X4 E)(r~' - (27 - 2))

forall k =1,...,nq, and using the above estimates for X F, one easily obtains the
desired inequalities. O

Proposition 9.7.
| X @;] < C27@;
and
| Xyl < C27770; fork=2,...,n.

Proof. Note that @; can be written as
3 =24 [ Sy IA 17y B (2 a))dy

The proof is then almost identical to the previous proposition. ([
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Proposition 9.8.
lIsup(2’e;)llze < Cn27@ V9|V, f| e
Jje

Proof. This is because

/(s‘up2jwj x)dx <Z/ (27w;)@
el

JEZL jez
SHIPIN:Alaw /2JSJ+N|A fl(z - 2797,
JELZreA

the last line following from Proposition 9.2. Now by the translation invariance of
the Lebesgue measure (which is the Haar measure on G), the integral in the last
sum is independent of r. Furthermore,

> EB(r Q~Z/ (2N 9))Qd0—2NQ/ E(y)®dy < C2N@27(@-1),
reA ren Y OE0 )N

here we used Lemma 9.1 in the first inequality, that every y € G can be written
uniquely as 7 - (27 - 0) for some r € A and 6 € [0,1)" in the middle identity, and
that ||EQ|,1 < €299~ in the last inequality. Altogether, this shows

sup 2w v <(2NQ9r(Q-1) j
/G< p2;)?(x)dz <C2NQ2 /Z2|Af| 2)%d

jet jez
Q/2
<(CaNQ97(@-1) / S @A )| de
G \jez
<C2N927 @V, £ s,
the last inequality following from Proposition 5.7. g

10. ESTIMATING h — h

In this section we estimate h — h. First, we recall our construction: we have

h =73, h;, where
hj(x) == (1= ¢(@))Sjn (A f) (@) if | < K,
and h; := 0 if |j| > K. We also have
h=> h; [Ja-U;)
J J'>j
where
Uj =1 =¢w; if|j| <K,
and U; := 01if |j] > K. We will estimate h following our paradigm of approximation
in Section 6. By Proposition 9.4 and 9.5, we have
C'h;| <U; < 1.

It follows from Proposition 6.2 that ||A|z~ < C, proving (7.8).

Next, following the derivation of (6.9), we have

(Xk(h =) <C Y 1XkUsl+ Y UG Y (IVshy e + 1V3Ue[l2=)

l7]1<K l7I<K J'<dg
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for k =1,...,n;. But U; can be estimated by
U5 ()] < wi(Z)X{200,>(1/2) S e coes o semoary 25w ()
where x denotes the characteristic function of a set. This is because 1 — (;(z) =0

unless 27w; (x) > (1/2) > K<k<j k=j(modR) 28w (z). Next, fork = 2,...,n1, XU;
can be estimated by

| X6Uj ()] < C2 77w (2)X (230> (1/2) 5 e pm oy 25} ()
because |Xjw;| < C27~%w,; by Proposition 9.6, and

IXkCJl < C2J_UX{2jo>(1/2) P K<kh<j, k=j(modR) 2FWr}"

(The last inequality follows by differentiating the definition of (;, and using | Xjw;| <
C27~%w; again.) Similarly,

| X1Uj(z)| < CQjo(x)X{zmj>(1/z)szgqukzj(modmzkwk}(x)
Finally, we have
IVshsllLoe + | VsUjll e < Cn2797 V27|V, f] Lo

(The estimate on V,U; follows from the above discussion and Proposition 9.5, while
the estimate on Vyh; is similar.) So altogether, for k =2,...,n;, we have

| Xk (h = h)(2)] <C27°6(x) + Cn27 9" VS ()| Vo f| e,
where

S(x) == Z 2jwj(3?)><{2jwj>(1/2)Z_KSKJ.‘E_?A(HMR) kak}(x)'
1<K

Similarly,
|X1(h — h)(z)| < Cn2°@V&(z).

To proceed further, we estimate the L¢ norm of the sum &(x); this sum can be
rewritten as

R-1
Z Z 2ij(x)x{2jwj>(1/2) Z—K§k<j,k'zc(modR) kak}(x)'
¢=0 |j|<K,j=c(modR)

For each fixed ¢, we have

(10.1) D YO 1/ T kcr wmaman Pt | S 3 SUP (2w;).
|§|<K,j=c(modR) 1<K
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This is true because for a fixed x, one can pick the biggest integer jo, with [jo| <
K, jo = ¢(modR) such that 270w, > (1/2) > K<k<jo, k=c(modR) 2Fwy,. Then

Jo . ) )
Z 2 w‘]x{2]wj>(1/2)z—l(§k<j,kEc(modR) 2Fwy }
41<K, j=c(modR)

_ J . ) .
- Z 2 WiX{20w;>(1/2) X _ g chej, kme(moar) 2Fwr}
—K<j<jo, j=c(modR)

SQJOUJJ'O -+ Z 27 w]'
—K<j<jo, j=c(modR)
<3 200w,

<3 sup (27w;),
l7l<K

yielding the inequality (10.1). Hence
&(z) < 3Rsup(2/w;)(w),
J

and from Proposition 9.8 we conclude that
I16]lLe < CR27@™V/Q)V, || o.
Putting these altogether, for k = 2,...,n1, we have
(10.2) | X5 (h = 1)l Le <CN277/CR||VyfllLe + Cn2 ORIV [ <,

and this proves (7.9). )
Using the pointwise bound of X;(h — h), and applying the same method as in
(10.2), one can prove

1X1(h =)l Lo < On27OR( Vs fl| e,
completing our proof of (7.10).

11. ESTIMATING g — g

In this section we estimate g — §g. Again we recall our construction: we have
g= Zj g;, where

9i (@) = Gi(2)Sjn (A f)(x) if [ < K,
and g; := 0 if |j| > K. We also have

R—1
a=> > g JI -6

¢=0 j=c(mod R i'>i
J ( ) j’=c(mod R)

where
Gj = Z 270, for |j| < K,
£>0,5—t>—K
t=0(mod R)
and G; := 0 for |j| > K. Now for |j| < K, by Proposition 9.4,
C7Hgjl < wi¢;-
But then

Cilw](j S Gj § 1.



A SUBELLIPTIC BOURGAIN-BREZIS INEQUALITY 33

In fact, on the support of (;,

w; < E Qkijwk = E 27twj_t < CGJ',
—K<k<j t>0,j—t>—K
k=j(mod R) t=0(mod R)

and the first inequality follows. The last inequality comes from Proposition 9.5.
Thus

C gl <G <1,
and from Proposition 6.2, we have |g| < CR. This proves (7.11).
Next

R—-1
g-g=>. > gl|1- J[ -6
c=0 j=c(mod R) K>j'>j
[iI<K j’=c(mod R)
R—-1

=) D G

c¢=0 j=c(mod R)
liI<K

=Y GiH;
lil<K
where for |j| < K,

(11.1) Hj = Z gj’ H (1—Gj//).

—K<j'<j 3/ <3 <j
j’=j(mod R) j’’=j(mod R)

Note that both G; and H; are C* functions, since the sums and products defining
them are only finite. By Proposition 6.2, an immediate estimate of H; is

Hil< Y gl [ a-Gmy<c > Gy J] a-6Gp)<c
—K<j'<j J'<j"<j —K<j'<j J'<3j"<j

We now collect below some estimates for Vg5, VG and Vi, H; for [j| < K. To
begin with, we have
Proposition 11.1.

@ < Cn2°@TIMM(A; f)
where M is the maximal function defined before Proposition 5.6.
Proof.
E(z) < C(1 4+ [lag|) =@ < €27@FV(1 4 |||~ (@Y

and the latter is an integrable radially decreasing function. Thus

@5 = 2NVE; (SN A, f]) < C2VR27 @IV MM (A, ).

Proposition 11.2.
VoGl < Cn2o @D N~ 2 IV M (A, f).

t>0
t=0(mod R)

Proof. One differentiates the definition of G; and estimates the derivatives of @;
using Proposition 11.1 and 9.7. (]
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Proposition 11.3. ‘

|ngj| < CNZJM(AJf)
Proof. One differentiates g;(z) = (;j(z)S;+n(A;f)(z), letting the derivative hit
either ¢; or 54, and estimates the rest by the maximal function. The worst term
is when the derivative hits S;; n, which gives a factor of 27V, g

Proposition 11.4.
IVoH;| < Cn27 @0 N 2 MM (A f).

t>0
t=0(mod R)

Proof. Following the derivation of (6.8) from (6.5) in Section 6, and using the
definition of Hj; in (11.1), we have

(11.2) Vij = Z (ngj/ - (VbGj/)Hj/) H (1 - Gj//),
—K<j'<j J'<j'"<j
j’=j(mod R) j'=j(mod R)
SO

VoH; < C Y0 (IVogy] +VoGy).

J'<i
j’=j(mod R)

This, with Proposition 11.2 and 11.3, leads to
Cn2°@+D) Z Z 27 I MM(A 1 f).
> >0

>0 >
1=0(mod R) t=0(mod R)
Rearranging gives the desired bound. [

The proofs of the next two estimates are the same as those in Proposition 11.3
and 11.2, except that one differentiates once more.

Proposition 11.5.
IVig;l < Cn2M (A, f).
Proposition 11.6.
VRG] < Cn2o0 @t N 27 20 D MM (A, f).
>0
t=0(mod R)
Finally we estimate second derivatives of Hj:
Proposition 11.7.

IVeH;| < Cn22° @D N 220D MM(A;_.f).

t>0
t=0(mod R)

Proof. Differentiating (11.2) once more, again using the way we derived (6.8) from
(6.5), we get

ViHi= Y. (VolVegy — (VoG )Hyl = (VoG ) (VoH)) [ (1=Gjo).

—K<j'<j J'<i'<j
j'=j(mod R) j’=j(mod R)

Thus |G;| < 1,|H;| < C imply that
IVEH;| <C Y |Vigi—il + IViG—il + VoG-l Vo H 4|

t>0,j—t>—K
t=0(mod R)
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The first two terms can be estimated using Proposition 11.5 and 11.6. For the last
term, Proposition 11.2 and 11.4 give

IVoG;||VpHy| < Cn220@FD 3~ > 272 MMA; L f)(MMA;_f).
tEO(tni?d R) lEO(lm>00d R)

Now we split the sum into two parts: one where ¢ > [, and the other where [ > t,
and use [|A;fllre < C||Vpfllre < 1. In the first sum, we estimate MMA,;_, f
by a constant; this is possible because MMA;_;f is bounded by ||A;_¢f| L,
which is bounded by a constant by Bernstein inequality (Proposition 5.8) and our
assumption (7.4). We then sum ¢ to get a bound

c Y 22U MMA;L L.

1>0
1=0(mod R)

In the second sum, we estimate MMA;_, f by a constant instead, and sum [ to get
a bound

c Z 272U MMA,_,f.

t>0
t=0(mod R)

These two bounds are identical. So
> VGl VeH ] < Cn2%0 @) Y > 27U OMMA; i f.
t>0 >

t>0 >0
t=0(mod R) t=0(mod R) l=0(mod R)

Rearranging we get the desired bound. O

Now we will estimate

V(g — e = || > Vi(GH,)

‘9|§K Le

The argument below will show that V(G H,) € L? for all |s| < K, so we could
use the reversed Littlewood-Paley inequality in Proposition 5.5, and bounded this
by

o\ 1/2
oo

Z Z |Ajvb(GSHS)|

j=—o0 \|s|<K

IN

Le
o\ 1/2
=l > > A V(G Hj )]
j=—00 \s: |[j—s|<K
LQ
1/2
<y > IAV(G - H, )
s=—oc || \j: lj—s|<K
Le
1/2
(11.3) =y > A4 Vi(G; Hy)?
s=—o0 || \|j|<K

Le
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We split the sum into two parts: > _p and > p. We shall pick up a convergence
factor 2715 or |s|2~1*! for each term so that we can sum in s.
To estimate the first sum, we fix s < R. Then for each |j| < K, we split G into
a sum " @
1 2
G;=G;"+G;7,

1 .
Gg ) = Z 27,

0<t<|s|,j—t>—K
t=0(mod R)

¢ = 3 2745, .

t>max{|s|,R},j—t>—K
t=0(mod R)

Note that the splitting of G; depends on s; in particular, if —R < s < R, then
G\ =0and 6P = G;.
Now we estimate

where

and

S A V(G H) P

J
1/2
[JI<K

Le
We have
Ajo(Vo( G5V H) = (Vo(G5VH))) % Ajes
= 270(G5V Hy) + (Vi)
by the compatibility of convolution with the left- and right-invariant derivatives.

Hence from |H;| < C, and

GV < on27@ ) N 2 MM(A; i f)

o<t<]s|
t=0(mod R)

which follows from Proposition 11.1, we have

A4 (W (G Hy))| < On27 @2 N~ 91 MMM (A4 f).

o<t<|s]|
t=0(mod R)

Taking square function in j and then the L9 norm in space, we obtain that, when
s < —R,

1/2 . 1/2
S A V(G H)? < CN2U(Q+1)%2S > (@A, f)?
il<K Lo J=ee L@
(114) < ox @0 Blyyg, g0

Here the last inequality follows from Proposition 5.7. The same norm on the left
hand side above is of course zero when —R < s < R.
Next, we estimate
1/2 1/2

S AV (G H)? <ol 3 VoGP H))

i|<K i|<K
l71< 1o l71< L@
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Now by |H;| < C,

V(G H) < € (196 + |GV, Hy )

We know

(11.5) P <on27@ D) N 2T MM(A; L f)
t>max{|s|,R}
t=0(mod R)

by Proposition 11.1, and \VbGJ(?)\ is bounded by C'Yi>masqis,ny 271207804 by

t=0(mod R)
Proposition 11.2. Therefore by Proposition 11.1 again, we have

|VbG;2)| < ON2<7(Q+1) Z 2_t2j_tMM(Aj,tf).

t>max{|s|,R}
t=0(mod R)

Hence
1/2 1/2
oo
Z ‘VbG;-Q) ‘2 SCNQU(Q-H) Z 9—t Z ‘2jAjf|2
l7I<K t>max{|s|, R} j=—00
LQ t=0(mod R) LQ

<Cn20 @D g maxtlsl. By 7, £|| .
Furthermore, by (11.5) and Proposition 11.4, one can estimate

G|V Hy| < Cy22 @) 3 ST YT MM(A ) MM (A f).

t>max{|s|,R} m>0
t=0(mod R) m=0(mod R)

We split this sum into the sum over three regions of ¢ and m: the first one being
where t > max{|s|, R} and m > t; the second one being where ¢ > max{|s|, R} and
t > m > max{|s|, R}, which is equivalent to say m > max{|s|, R} and ¢ > m; and
the last one being where 0 < |m| < max{|s|, R} and t > max{|s|, R}. The first two
sums are basically the same; each can be bounded by

Z 2" MM (A f) Z 27" MM (A f),

m>max{|s|,R} t>m
m=0(mod R) -

which is bounded by

S e M(A)
m>max{|s|,R}
m=0(mod R)

since we can bound MMA;_,f by a constant (c.f proof of Proposition 11.7) and
take sum in £. The last sum is bounded by

2 max{|s|,R} Z 2j7mMM(Aj7mf)

0<m<max{|s|,R}
m=0(mod R)
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for the same reason. Thus

G|V Hy| < On227@F0 [2 N o7 mal A M(A; L, f)

m>max{|s|.R}
m=0(mod R)

4 9~ max{|s|.R) Z 27 MM (Aj—m f)

0<m<max{|s|,R}
m=0(mod R)

Taking [? norm in j and then L® norm in space, we get

1/2
3 1GP (Vo)) <O 22 QD) max(s|, Ry2 U BY [V, £ Lo
l§I<K
Le
It follows that
(11.6)
1/2
ST A VeGP H)P <Cn2% @) max{|s|, R}2~ LB |7, £l Lo
F159:9

Le
Summing (11.4) and (11.6) over s < R, we get a bound

Cn22 @R RV, £l 1o

for the first half of the sum in (11.3).
Next we look at the second half of the sum in (11.3), that corresponds to the
sum over all s > R. First,

(11.7) 1Aj+s V(G Hj)| < A+ (VoG5 Hj)| + |45 (G5 (Ve Hj))|-
The first term can be written as

/G((VbGj)(x y ) = (VoG (@) Hy(2 -y~ A s (y)dy + (Vo Gy) (@) (N s Hy) ()
=I1+1I

The second term in (11.7) can be written as

/G(Gj (@-y™) = G(@) (Vo) (x -y~ ) Ajes(y)dy + Gj(2)Ajss (Vo Hj) ()
=111+ 1V.
We estimate I, I1, I1I, IV separately.
First, in I, we bound |H;| < C, and write
(V4G (@ - y™) = (V4G (@)
A D /G Sien—tlAj i f(x-271) (VoE)ji(z -y~ ") = (Vo E)j4(2)) d.

t>0
t=0(mod R)

We put this back in I, and thus need to bound

(11.8) /G (VoB)—t(z - y™Y) — (VoE);—t(2)] [ (5)Idy.



A SUBELLIPTIC BOURGAIN-BREZIS INEQUALITY 39

But

C 1
ViE(2)| < CE(x) € e <0278 —————
IVyE(z)] < (z) (1+2-|z)K (1 + [Jz]|) &

for all positive integers K. We will use this estimate with K = 2(Q + 1), and apply
the remark after Proposition 3.3; the integral (11.8) is then bounded by

0220 (@t 9=s—19l=HQ(1 4 927~ 2||)~(@+D),
Hence '
1] < Cn227 (@t 27 N 9 2 MM(A o f) ().

t>0
t=0(mod R)

Taking square function in j and L? norm in space, we get a bound
On277@TD27¢|| T, f|| Le.
For 11, recall the pointwise bound for V,G; from Proposition 11.2:
VoG] < Cn2o @D N 27 I MM(A;, f).
>0
+=0(mod R)

To estimate A4 H;, we use part (a) of Proposition 4.3, and write (schematically)
A as VI . ® where ® is a (2n tuple of) Schwartz function, and integrate by parts.
Then

[AjysHy| = 2777 (Vo Hy) * By < 2777°|| Vi Hj e < On2°(@F 027,
since ||VyH;||p~ < Cn27@+D27. Hence
1] < Cy22(@Fa=s N 27 ll T MM (A f).
>0
t=0(mod R)
Taking square function in j and L? norm in space, we get a contribution
On2*7 @275V, f|| o

Now to bound III, we follow our strategy as in I. First we bound |V,H;| <
Cn2°(@+T127 by Proposition 11.4, and write

Gj(z-y™") = Gj(x)

=2V > 2 /G Sien—tl g f1(@ - 2 ) (Ejalz-y™h) = Ejoi(2))de.

t>0

t=0(mod R)
We put this back in 111, and thus need to bound
(11.9) LBt = B sl
But
|VyE(z)| < CE(z) < ¢ < 029K !
X < < - < -
(1 +277[lz[)X (L + [z[[)*

for all postive integers K. We will take K = 2(Q + 1), and apply the remark after
Proposition 3.3; the integral (11.9) is then bounded by

020 (@1 9=s=t9=0Q(1 4 21 =H||z||)~(@F1),
Hence

IIT| < On220(@t1g—s 2 VT MM(A;_ f) ().
J

t>0
t=0(mod R)
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Taking square function in j and L? norm in space, we get a bound
Cn227@TD27%|| Y, f| e

Finally, to estimate IV, we recall that |G| < 1, as was shown at the beginning
of this section. Furthermore,

(A5 (Vo H)) (@) <|(VoHy) * (ViE®)j4s(2)]
=277V H ) % s ()]
<279 SM(ViHj)(z).

By Proposition 11.7, this is bounded by
Cn227( @27 N 9 I MMM (A f) ().

t>0
t=0(mod R)

Hence
[IV| < Cn22° @027 N 27 I MMM (A f)(2).

t>0
t=0(mod R)

Taking square function in j and then L% norm in space, this is bounded by

Cn227 @027V, | e

Hence
1/2
P 1D A Al < On2 7@ V2RV, f | o
s>R||\[jI<K -

Altogether, (11.3) is bounded by
On22@TVR?27 |V, f e

This proves our claim (7.12), and marks the end of the proof of our approximation
Lemma 1.7.

12. PROOF OF THEOREM 1.8 AND 1.9

In this section we prove Theorem 1.8 and 1.9. We first recall the ; complex on
the Heisenberg group H".

First, H" is a simply connected Lie group diffeomorphic to R?"*1. We write
[x,7,t] for a point on R?*"*! where z,y € R™ and ¢t € R. The group law on the
Heisenberg group is then given by

[y, ] [u, 0, w] = [2 4w,y + v, t + w+ 2(yu — 2v))],

where yu is the dot product of y and u in R™. The left-invariant vector fields of
order 1 on H™ are then linear combinations of the vector fields X1, ..., Xs,, where

0
—2x— fork=1,...,n.

0 0 0
Xp=2—+2uk s ot

8xk &

Thus in this case, ny is equal to 2n, and

Vof = (Xof,..., Xonf).

and Xpy, =



A SUBELLIPTIC BOURGAIN-BREZIS INEQUALITY 41

The one-parameter family of automorphic dilations on H" is given by
A [z,y,t] = [Mx, Ay, A%t] for all A > 0.

The homogeneous dimension in this case is @ = 2n + 2.

Now let
1 . - 1 .
Zkii(kale_i_n) and Zkzi(Xk +2Xk+n)7 k=1,...,n.
For 0 < ¢ < n, the (0,¢) forms on the Heisenberg group H" are expressions of the
form
Z U dZ%,
lal=¢q
where the sum is over all strictly increasing multi-indices o = (a1, . .., ag) of length
q with letters in {1,...,n}; in other words, each oy € {1,...,n}, and a; < ay <

-+ < ag. dz® here is a shorthand for dz,, A -+ A dz,,, and each u, is a smooth
function on H". The 0, complex is then defined by

2n
gbu = Z Z 7k(ua)d§k ANdz®, if Z U dZ®.
k=1]al=q lal=q

By making the above dz* an orthonormal basis for (0, ¢) forms at every point, one
then has a Hermitian inner product on (0,q) forms at every point on H", with
which one can define an inner product on the space of (0, ) forms on H" that has
L? coefficients. One can then consider the adjoint of 9, with respect to this inner

product, namely
EZU = Z Z —Z(ug)dzy o dz%;

la|=q k€a

here the interior product _ is just the usual one on R2"+1!,

Proof of Theorem 1.8. The key idea is that when one computes 5: of a (0,g+ 1)
form on H", only 2(q + 1) of the 2n real left-invariant derivatives of order 1 are
involved. So if ¢+ 1 < n, then for each component of the ¢ form, there will be some
real left-invariant derivatives of degree 1 that are irrelevant in computing 5:, and
we can give up estimates in those directions when we apply Lemma 1.7.

We will use the bounded inverse theorem and an argument closely related to the
usual proof of the open mapping theorem.

Let NLLQ(A(O’QH)) be the space of (0,¢q + 1) forms on H" with NL"? coeffi-
cients, and similarly define L?(A®9)). Consider the map 9 : NLI’Q(A(O"”‘I)) —
L2(A9). Tt is bounded and has closed range. Hence it induces a bounded lin-
ear bijection between the Banach spaces NLl’Q(A(O’q“))/ker(gZ) and Image(d, ) C
L? (A(O’Q)). By the bounded inverse theorem, this map has a bounded inverse; hence

for any (0, ) form f € Image(d,) C L2(A9), there exists o(?) € NLl’Q(A(qu“))

such that
0,00 = f
IVea©@l e < C|fl e

Now for ¢ < n—1, if I is a multi-index of length ¢+ 1, then one can pick 7 ¢ I and
approximate ago) by Lemma 1.7 in all but the X; direction; more precisely, for any
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. (0) ;- 1L,Q 0
d > 0, there exists 8;° € NL =~ N L* such that

; HX]- (a&m _ /3}0)) HLQ <6 Hvbap)HLQ <8 | fll o
and
51, +[708],., < s [7?] < 1o

Then if § is picked so that C§ < %, we have ) .= > ﬁ§0)cﬁj € NL'® N
L (A%9F1) satisfying

If =358l < 51fllza
18 Lo + [IVs8O L < Al fll e

(the first equation holds because || f —, 89 || e = |9, (@@ — )| 1o, and A here
is a fixed constant). In other words, we have sacrificed the property f = 520[(0)
by replacing o(® € NL"? with B which in addition to being in NL'? is in
L*>. Now we repeat the process, with f — EZﬁ(O) in place of f, so that we obtain
B e NLY? A Lo (A4 with

If = 3,89 = 3,80 1o < FIIf —?Zﬁ(o)”w < = lfle
8V~ + V48D s < A7 - TBOlLse < £ lse.

Iterating, we get 3%) € NLLQ N L% (A%9F1) such that

18 =58 + -+ + 8M)llza < el flze
1B®| o + [VuB8)|| e < 2| f]lLe-

Hence
Y = i B
k=0
satisfies Y € NL"9 n Lo (A%9F1) with
0,Y = f
{IIYIILoo +IVeY e < 24| fl Lo
as desired. ]

We mention that by the duality between (0,¢) forms and (0,n — ¢) forms, we
have the following Corollary for solving 0, on H":

Corollary 12.1. Suppose q¢ # 1. Then for any (0,q)-form f on H™ that has
coefficients in L? and that is the Oy, of some other form on H™ with coefficients in

NLI’Q, there exists a (0,q—1)-form'Y on H"™ with coefficients in L™ ANL"® such
that

WY =f
in the sense of distributions, with ||Y||Le + [|VsY|re < C|f||Le-
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Proof of Theorem 1.9. We use duality and the Hodge decomposition for ;. Sup-
pose first u is a C° (0,q) form on H" with 2 < ¢ < n — 2. We test it against a
(0,q) form ¢ € C°. Now

¢ =Dy + 03
by Hodge decomposition for 9, on H", where
Voo + IVeBllze < Cldll e
Apply Theorem 1.8 to 5204 and Corollary 12.1 to 0,3, we get
¢ = 5207 + gbB
where & and B have coefficients in N Ll’Q N L°°, with bounds
IVsdllpe + lldl|z~ < Clldyallre < Cll¢] e,

IVeBlize + 1Bl = < Cl8sBle < Cllg] L.

< ||5buHL1+(N‘L1,Q)*

- = ~
a||LoonNL1=Q + ||abu||Ll+(N'L1'Q)* ||/B||LmeL1’Q

9]l e

< C(Hgbu”[/l_;'_(NleQ)* + ||5bu||L1+(N'L1'Q)*)

This proves the desired inequality (1.1). B
The proof of (1.2) for functions u orthogonal to the kernel of 9, is similar, which
we omit. ]
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