
MATH6081A Homework 2

1. (a) Show that if u is a locally integrable function on Rn that grows at most poly-
nomially at infinity, then

u(f) :=

∫
Rn

u(x)f(x)dx

defines a tempered distribution on Rn.

(b) Show that δx(f) := f(x) defines a tempered distribution on Rn for any x ∈ Rn,
that is homogeneous of degree −n.

(c) Show that the linear functional

f 7→ lim
ε→0+

∫
|x|>ε

f(x)
dx

x

on S(R) defines a tempered distribution on R, that is homogeneous of degree−1.
More generally, on Rn, show that for any 1 ≤ j ≤ n, the linear functional

f 7→ lim
ε→0+

∫
|x|>ε

f(x)
xj
|x|n+1

dx

on S(Rn) defines a homogeneous tempered distribution on Rn of degree −n.
(These are usually referred to as the principal value of 1

x
and

xj
|x|n+1 respectively.)

2. Show that the following linear maps on S(Rn) are continuous. Also explain how the
continuity of these maps on S(Rn) allows one to extend these maps from S(Rn) to
S ′(Rn). Finally, prove that the extended maps are still continuous on S ′(Rn).

(a) Translations: f(x) 7→ f(x+ h), for any fixed h ∈ Rn

(b) Differentiations: f(x) 7→ Dαf(x), for any fixed multiindex α

(c) Multiplication by polynomials: f(x) 7→ P (x)f(x) for any fixed polynomial P (x)

(d) The Fourier transform: f(x) 7→ f̂(x)

3. (a) Show that the Fourier transform defines a bijection on the space of tempered
distributions on Rn.

(b) Show that the Fourier transform of a homogeneous tempered distribution of
degree α on Rn is a homogeneous tempered distribution of degree −n− α.

4. In what sense does the distributional derivative of a C1 function on Rn agree with
the classical derivative?

5. Suppose 0 < α < n.

(a) Show that
πα/2

Γ(α/2)

∫ R

ε

e−πt|x|
2

tα/2
dt

t
→ |x|−α
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in the topology of S ′(Rn) as ε→ 0 and R→ +∞. (Hint: Note that∣∣∣∣∫ ε

0

e−πt|x|
2

tα/2
dt

t

∣∣∣∣ .α ε
α/2

and ∣∣∣∣∫ ∞
R

e−πt|x|
2

tα/2
dt

t

∣∣∣∣ .β

∫ ∞
R

(t|x|2)−β/2tα/2
dt

t
.α,β R

(α−β)/2|x|−β

for any β ∈ (α, n).)

(b) Hence, or otherwise, compute the Fourier transform of the tempered distribu-
tion on Rn given by |x|−α. (Hint: Use the Fourier transform of e−πt|x|

2
from

Homework 1.)

6. (a) Show that

〈un, f〉 :=

∫
|ξ|≥1

f(ξ)

|ξ|n
dξ +

∫
|ξ|≤1

f(ξ)− f(0)

|ξ|n
dξ

defines a tempered distribution un on Rn, that agrees with |ξ|−n away from
the origin. In addition, if n is even (so that |ξ|n is a polynomial in ξ), then
|ξ|nun = 1 as elements of S ′(Rn).

(b) For 0 < α < n, let uα be the tempered distribution on Rn given by

〈uα, f〉 :=

∫
|ξ|≥1

f(ξ)

|ξ|α
dξ +

∫
|ξ|≤1

f(ξ)− f(0)

|ξ|α
dξ.

Show that uα → un in the topology of S ′(Rn) as α→ n−.

(c) Hence compute the inverse Fourier transform of un. (Hint: Use Question 5(b).)

7. Compute the inverse Fourier transform of the tempered distribution sgn(ξ) on R.
(Hint: sgn(ξ)χ[−n,n](ξ) converges in S ′(R) to sgn(ξ) as n→∞. Also∫ n

−n
sgn(ξ)e2πixξdξ = 2i

∫ n

0

sin(2πxξ)dξ =
i

πx
(1− cos(2πnx)).

We now need to evaluate the limit of this in S ′(R) as n → ∞; in other words, we
need to pair it this with a Schwartz function f(x) and let n → ∞. But then we
may replace f(x) by [f(x)− f(−x)]/2 since the kernel is odd, and we note that∫

R
cos(2πnx)

f(x)− f(−x)

2x
dx→ 0

as n→∞ by the Riemann-Lebesgue lemma. Thus in the limit we get∫
R

i

2πx
[f(x)− f(−x)]dx = lim

ε→0+

∫
|x|≥ε

if(x)

πx
dx,

which shows that the inverse Fourier transform of sgn(ξ) is p.v. i
πx

. Alternatively,
write sgn(ξ) as ξu1 where u1 is the distribution on R defined in Question 6(a).
Thus the inverse Fourier transform of sgn(ξ) is the derivative of the inverse Fourier
transform of u1 divided by 2πi.)
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8. Compute the inverse Fourier transform of the tempered distribution
ξj
|ξ| on Rn for

any 1 ≤ j ≤ n. (Hint: Modify the second approach in the hint to Question 7.)

9. Suppose n ∈ N. For 1 ≤ j ≤ n, let

fj(ξ) =
ξj
|ξ|
e−2π|ξ|, ξ ∈ Rn.

Compute the inverse Fourier transform of these L1 functions on Rn. Hence compute
the inverse Fourier transform of

ξj
|ξ|e
−2πy|ξ| for any y > 0.

(Hint: fj(ξ) = ∂je
−2π|ξ| in the sense of distributions. Now use the inverse Fourier

transform of e−2π|ξ| from Question 9 of Homework 1, and the fact that the distribu-
tional Fourier transform agrees with the L1 Fourier transform when applied to an
L1 function.)

10. Show that if u ∈ S ′(Rn) and g ∈ S(Rn), then u ∗ g is a C∞ function, given by

u ∗ g(x) = 〈u, τxg̃〉

where g̃(y) := g(−y) and [τxg̃](y) := g(x− y). Also verify that

û ∗ g = û · ĝ.

11. Fix a function ζ ∈ C∞c (R) with ζ(y) = 1 for |y| ≤ 1 and define, for each s ∈ C with
Re s > 0, a locally integrable function on R by

αs(y) =
1

Γ(s)
ζ(y)ys−1χ[0,∞)(y).

for all f ∈ S(R).

(a) Show that for any such s and f , we have

〈αs, f〉 =
(−1)N

Γ(s)s(s+ 1) . . . (s+N − 1)

∫ ∞
0

(
d

dy

)N
[f(y)ζ(y)]yN+sdy

y

for all N ∈ N.

(b) Also show that for every f ∈ S(R), the right hand side actually defines a
holomorphic function of s on the half plane {Re s > −N}.

(c) The above allows us to define the analytic continuation of αs to the right half
plane {Re s > −N} for any N ∈ N. With this extension, verify that

α0 = δ0,

the delta function at 0, and more generally that α−k is the k-th derivative of
the delta function at 0 for all k ∈ N.

12. Solve the Cauchy problem of the heat equation on Rn{
∂tu = ∆u on [0,∞)× Rn

u(x, 0) = f(x) for x ∈ Rn

by taking the Fourier transform in x if f ∈ S(Rn). Perform a similar calculation for
the Schrodinger and the wave equations on Rn.
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13. Suppose n ≥ 1, and that u is a bounded harmonic function on Rn+1
+ . If u extends to

a continuous function on the closure of the upper half space Rn+1
+ and the extended

u vanishes on the boundary of Rn+1
+ , show that u is identically zero.

(Hint: Reflect u across the boundary of Rn+1
+ , and use Liouville’s theorem: every

bounded harmonic function on Rn+1 is constant.)

This shows that if f ∈ S(Rn) and u(x, y) is the Poisson integral of f , then u is the
unique harmonic extension of f on Rn+1

+ that is bounded on Rn+1
+ and continuous

up to the boundary.

14. Let n ≥ 1 and Rn+1
+ = {(x0, . . . , xn) : x0 > 0}. The following is an alternative way

of arriving at the Poisson integral formula on Rn+1
+ other than the one given in the

lecture.

(a) Show that if y∗ is the reflection of y across the x0 axis, i.e. if y∗ = (−y0, y
′)

whenever y = (y0, y
′), then

G(x, y) = − 1

2π
(log |x− y| − log |x− y∗|)

is the Green’s function of −∆ on R2
+, i.e.

v(x) =

∫
R2
+

G(x, y)w(y)dy

solves {
−∆v(x) = w(x) for all x ∈ R2

+

v(0, x′) = 0 for all x′ ∈ R

whenever w ∈ C∞c (R2
+). Similarly, show that if n ≥ 2, then

G(x, y) =
Γ((n− 2)/2)

4πn/2

(
1

|x− y|n−2
− 1

|x− y∗|n−2

)
is the Green’s function of −∆ on Rn+1

+ .

(b) Verify the Gauss-Green formula on Rn+1
+ : if u, v are smooth up to the boundary

of Rn+1
+ ,

sup
x∈Rn+1

+

(|u(x)|+ |∂xu(x)|) < +∞

and
lim
R→∞

sup
x∈Rn+1

+

|x|≥R

(|v(x)|+ |∂xv(x)|) = 0,

then

−
∫
Rn+1
+

(u∆v − v∆u)dx =

∫
Rn

(u∂x0v − v∂x0u)dx′.
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(c) Let f ∈ S(Rn). Let u be a solution to the Dirichlet problem{
∆u = 0 on Rn+1

+

u(0, x′) = f(x′) for all x′ ∈ Rn

where u is smooth up to the boundary of Rn+1
+ , and u, ∂xu are both bounded

on Rn+1
+ . Show that for any y ∈ Rn+1

+ , we have

u(y) =

∫
Rn

f(x′)
∂

∂x0

G(x, y)

∣∣∣∣
x0=0

dx′.

Verify also that
∂

∂x0

G(x, y)

∣∣∣∣
x0=0

= Py0(y
′ − x′)

where Py0(y
′) is the Poisson kernel in Rn+1

+ . (Hint: Fix y ∈ Rn+1
+ . Let w

be a smooth function with compact support on Rn+1 with
∫
Rn+1 w = 1. Let

wε(x) = ε−(n+1)w(ε−1(x− y)), and let

vε(x) =

∫
Rn+1
+

G(x, z)wε(z)dz

for all sufficiently small ε > 0. Apply the Gauss-Green formula to u and vε, and
let ε tend to 0.)

15. Let n ≥ 2, and Bn be the unit ball on Rn centered at the origin. Let ∂Bn be the
boundary of Bn (i.e. the unit sphere in Rn), and dσ(y) be the surface measure on
∂Bn induced from the Lebesgue measure on Rn. The Poisson integral formula for
Bn says that if f is continuous on ∂Bn, then

u(x) =

∫
∂Bn

P (x, y)f(y)dσ(y),

where

P (x, y) =
Γ(n/2)

2πn/2
1− |x|2

|x− y|n
.

One can arrive at this formula from the corresponding formula on the upper half
space Rn

+ via the stereographic projection (which maps Bn diffeomorphically onto Rn
+

and preserves harmonic functions; indeed the stereographic projection is an isometry
from Bn to Rn

+ if we put the hyperbolic metric on both spaces, and Euclidean
harmonic functions on the two spaces agree with the hyperbolic harmonic functions
on the two spaces). Alternatively, one can mimic what we do in Question 13,
and give a direct derivation of the Poisson integral formula on Bn by first deriving
the Green’s function for Bn. In this question, we will give yet another derivation,
which is simple and based on the mean-value property of harmonic functions. (In
2-dimensions, one can also use complex analysis, via the Cauchy integral formula,
but we will not enter into this here.) From now on suppose u is harmonic on Bn
and continuous up to the boundary of Bn.
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(a) Show that

u(0) =
1

ωn−1

∫
∂Bn

u(y)dσ(y)

where ωn−1 = 2πn/2

Γ(n/2)
is the surface area of ∂Bn with respect to dσ. (Hint:

Consider the average of u on the sphere of radius r centered at the origin.
Differentiate with respect to r to show that this is constant in r.)

(b) Fix x0 ∈ Bn. Let

v(x) = u

(
(1 + 2x0 · x+ |x|2)x0 + (1− |x0|2)x

1 + 2x0 · x+ |x0|2|x|2

)
.

Show that v is also harmonic on harmonic on Bn and continuous up to the
boundary of Bn. Apply part (a) to v instead of u and conclude that

u(x0) =

∫
∂Bn

P (x0, y)u(y)dσ(y).


