MATHG6081A Homework 2

1. (a) Show that if u is a locally integrable function on R” that grows at most poly-
nomially at infinity, then

()= [ ulw)fwyis

defines a tempered distribution on R".

(b) Show that d,(f) := f(x) defines a tempered distribution on R" for any x € R",
that is homogeneous of degree —n.

(c¢) Show that the linear functional
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on S(R) defines a tempered distribution on R, that is homogeneous of degree —1.
More generally, on R", show that for any 1 < 5 < n, the linear functional
Ly
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on S(R™) defines a homogeneous tempered distribution on R™ of degree —n.
(These are usually referred to as the principal value of % and |x|ij+1 respectively.)

2. Show that the following linear maps on S(R™) are continuous. Also explain how the
continuity of these maps on S(R™) allows one to extend these maps from S(R") to
S'(R™). Finally, prove that the extended maps are still continuous on S’(R™).

(a) Translations: f(x)— f(z + h), for any fixed h € R
(b) Differentiations: f(z)+— D*f(x), for any fixed multiindex «

~

)
)
(¢) Multiplication by polynomials: f(x) — P(z)f(x) for any fixed polynomial P(x)
d) The Fourier transform: f(x) — f(x)

)

(
3. (a) Show that the Fourier transform defines a bijection on the space of tempered
distributions on R™.
(b) Show that the Fourier transform of a homogeneous tempered distribution of
degree a on R™ is a homogeneous tempered distribution of degree —n — a.

4. In what sense does the distributional derivative of a C! function on R" agree with
the classical derivative?

5. Suppose 0 < a < n.

(a) Show that
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in the topology of S'(R") as ¢ — 0 and R — +o0. (Hint: Note that

€
/ e—wtlx\Qtrx/Q dt‘ <a /2
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and
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for any 5 € (a,n).)

(b) Hence, or otherwise, compute the Fourier transform of the tempered distribu-
tion on R™ given by |z|~*. (Hint: Use the Fourier transform of e ™ from

Homework 1.)
f(&) = 1(0)
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defines a tempered distribution u, on R", that agrees with |{|™" away from
the origin. In addition, if n is even (so that |£|" is a polynomial in &), then
|£|"u,, = 1 as elements of S'(R™).

(b) For 0 < a < n, let u, be the tempered distribution on R™ given by

f(€) f(&) — £(0)
d A A S S
g1 161 o <1 1€l

Show that u, — u, in the topology of §'(R") as a« — n~.

6. (a) Show that

(Ua, f) = de.

(c) Hence compute the inverse Fourier transform of w,. (Hint: Use Question 5(b).)

7. Compute the inverse Fourier transform of the tempered distribution sgn(§) on R.
(Hint: sgn(&)x[—nn(§) converges in S’(R) to sgn(§) as n — oo. Also

/ sgn(&)e*™ e d¢ = 22’/ sin(2rx€)dé = L(l — cos(2mnx)).
—n 0 ™

We now need to evaluate the limit of this in §'(R) as n — oo; in other words, we
need to pair it this with a Schwartz function f(z) and let n — co. But then we
may replace f(x) by [f(z) — f(—x)]/2 since the kernel is odd, and we note that

/cos(27m$)de — 0

as n — oo by the Riemann-Lebesgue lemma. Thus in the limit we get

/ @)~ fea)dr= i [ TS,

2mx e=0t Jig>e T

which shows that the inverse Fourier transform of sgn(¢) is p.v.%. Alternatively,
write sgn(§) as {u; where u; is the distribution on R defined in Question 6(a).
Thus the inverse Fourier transform of sgn(§) is the derivative of the inverse Fourier
transform of u; divided by 27i.)
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8.

10.

11.

12.

Compute the inverse Fourier transform of the tempered distribution % on R™ for

any 1 < j <n. (Hint: Modify the second approach in the hint to Question 7.)

Suppose n € N. For 1 < j < n, let

6 = ZeHH, cem

Compute the inverse Fourier transform of these L' functions on R™. Hence compute
the inverse Fourier transform of %6_27@‘5' for any y > 0.

(Hint: f;(¢) = 0;e 2"l in the sense of distributions. Now use the inverse Fourier
transform of e =27l from Question 9 of Homework 1, and the fact that the distribu-
tional Fourier transform agrees with the L! Fourier transform when applied to an
L' function.)

Show that if u € §'(R™) and g € S(R"), then u * g is a C'*° function, given by

uxg(x) = (U, 7:9)
where g(y) := g(—y) and [1.9](y) := g(z — y). Also verify that

~

u*xg=1u-g.

Fix a function ¢ € C°(R) with ((y) = 1 for |y| < 1 and define, for each s € C with
Res > 0, a locally integrable function on R by
(1) = 7O X0 0)
as(y) = — o) (1).
Y T(s) Y)Yy Xo,00)\Y
for all f € S(R).

(a) Show that for any such s and f, we have

_ (=)~ = d\" Nts Y
0h) =t oy L () Vo

for all N € N.

(b) Also show that for every f € S(R), the right hand side actually defines a
holomorphic function of s on the half plane {Res > —N}.

(c) The above allows us to define the analytic continuation of «; to the right half
plane {Res > —N} for any N € N. With this extension, verify that

ap = 0o,

the delta function at 0, and more generally that a_j is the k-th derivative of
the delta function at 0 for all £ € N.

Solve the Cauchy problem of the heat equation on R"”

Ou = Au on [0,00) x R
u(z,0) = f(x) for x € R"

by taking the Fourier transform in z if f € S(R™). Perform a similar calculation for
the Schrodinger and the wave equations on R™.
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13. Suppose n > 1, and that u is a bounded harmonic function on RTFI. If u extends to
a continuous function on the closure of the upper half space Rﬁ“ and the extended
u vanishes on the boundary of R, show that u is identically zero.

(Hint: Reflect u across the boundary of R™', and use Liouville’s theorem: every
bounded harmonic function on R™*! is constant.)

This shows that if f € S(R") and u(z,y) is the Poisson integral of f, then w is the
unique harmonic extension of f on R*! that is bounded on R*! and continuous
up to the boundary.

14. Let n > 1 and R = {(z¢,...,2,): 79 > 0}. The following is an alternative way
of arriving at the Poisson integral formula on ]RTrl other than the one given in the
lecture.

(a)

Show that if y* is the reflection of y across the zy axis, i.e. if y* = (—yo,?’)
whenever y = (yo,y’), then

]' *
G(z,y) = 5 (log |z — y| — log |z — y*|)

or
is the Green’s function of —A on R?, i.e.

v(z) = [ Gz, y)w(y)dy
RZ

solves
—Av(z) =w(z)  forallz € R
v(0,2") =0 for all z’ € R

whenever w € C2°(R?%). Similarly, show that if n > 2, then

G(.x,y):F((n_Q)/Q)( 1 . )

4ﬂ-n/2 |$_y|n72 B ‘x_y*|n72

is the Green’s function of —A on R’}FH.

Verify the Gauss-Green formula on R:ﬁ“: if u, v are smooth up to the boundary
of R,
sup (|u(z)| + [Ozu(x)|) < 400

x€R1+l
and
lim sup (Jv(z)|+ |0.v(z)|) =0,
R—o0 n41
$6R+
|z|>R
then

—/ (uAv — vAu)dz = / (U0 v — VOpyu)da’.
R n



2017-18 First Term MATHG6081A 5

(c) Let f € S(R™). Let u be a solution to the Dirichlet problem

Au=0 on R
u(0,2") = f(a') for all ' € R

where u is smooth up to the boundary of ]RTI, and u, J,u are both bounded
on RTFI. Show that for any y € ]RTLI, we have

0
U x, dr’.
W= [ 1) 50|
Verify also that
0
:P /_ /
5 Cen)| =Pl =)

where P, (y') is the Poisson kernel in R7*'. (Hint: Fix y € R}, Let w
be a smooth function with compact support on R"*! with fRn aw = 1. Let
w.(z) = e " Dw(e (x —y)), and let

ve(x) = /Rn+1 G(z, z)w(2)dz

for all sufficiently small € > 0. Apply the Gauss-Green formula to v and v., and
let € tend to 0.)

15. Let n > 2, and B™ be the unit ball on R" centered at the origin. Let OB™ be the
boundary of B™ (i.e. the unit sphere in R"), and do(y) be the surface measure on
OB™ induced from the Lebesgue measure on R™. The Poisson integral formula for
B™ says that if f is continuous on 0B", then

wa) = [ Pl o).

where

L(n/2)1— |z|”

P(x,y): 27Tn/2 |x_y|n

One can arrive at this formula from the corresponding formula on the upper half
space R"} via the stereographic projection (which maps B" diffeomorphically onto R
and preserves harmonic functions; indeed the stereographic projection is an isometry
from B" to R? if we put the hyperbolic metric on both spaces, and Euclidean
harmonic functions on the two spaces agree with the hyperbolic harmonic functions
on the two spaces). Alternatively, one can mimic what we do in Question 13,
and give a direct derivation of the Poisson integral formula on B™ by first deriving
the Green’s function for B™. In this question, we will give yet another derivation,
which is simple and based on the mean-value property of harmonic functions. (In
2-dimensions, one can also use complex analysis, via the Cauchy integral formula,
but we will not enter into this here.) From now on suppose u is harmonic on B"
and continuous up to the boundary of B”.
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(a) Show that

1
u0) = == [ ulydoty)
Wn—1 SB™
where w,_; = Igzrn—"//;) is the surface area of OB"™ with respect to do. (Hint:

Consider the average of u on the sphere of radius r centered at the origin.
Differentiate with respect to r to show that this is constant in r.)

(b) Fix zy € B". Let

o(x) = u (1+2z¢ -2+ |2[*)z0 + (1 — |20|*)2 .
14 2z - = + |xo|?|x|?

Show that v is also harmonic on harmonic on B"™ and continuous up to the
boundary of B™. Apply part (a) to v instead of u and conclude that

waw) = [ Plaopula)daty).



