
MATH6081A Homework 1

1. Prove Young’s convolution inequality. (Hint: If f ∈ Lp and g ∈ Lq are non-negative,
without loss of generality assume ‖f‖p = ‖g‖q = 1. Then for 1 + 1

r
= 1

p
+ 1

q
, we have

f ∗ g(x) ≤
∫
f(x− y)

p
r g(y)

q
r f(x− y)

r−p
r g(y)

r−q
r dy.

Applying Hölder’s inequality with

1 =
1

r
+

(
1

p
− 1

r

)
+

(
1

q
− 1

r

)
,

and using the normalizations of f and g, we get

f ∗ g(x) ≤
(∫

f(x− y)pg(y)qdy

) 1
r

.

Raising both sides to power r and integrate, we obtain the desired inequality. Al-
ternatively, we can rewrite this proof more symmetrically using duality: let s = r′

so that 1
p

+ 1
q

+ 1
s

= 2. Then∫ ∫
f(x−y)g(y)h(x)dydx =

∫ ∫
[f(x−y)pg(y)q]1−

1
s [f(x−y)ph(x)s]1−

1
q [g(y)qh(x)s]1−

1
pdydx.

Apply Hölder’s inequality with

1 =

(
1− 1

s

)
+

(
1− 1

q

)
+

(
1− 1

p

)
,

we obtain the desired inequality.)

2. For x ∈ T, let

DN(x) =
∑
|n|≤N

e2πinx for N ∈ N ∪ {0}

and

FN(x) =
D0(x) +D1(x) + · · ·+DN−1(x)

N
for N ∈ N.

Find a closed formula for both DN(x) and FN(x).

3. (a) Show that if f ∈ Lp(T), 1 ≤ p <∞, then

lim
N→∞

‖f ∗ FN − f‖Lp(T) = 0.

(Hint: Approximate f by a continuous function.)

(b) Show that if f ∈ L1(T) and

f̂(n) = 0

for all n ∈ Z, then f(x) = 0 a.e. Hence if f, g ∈ L1(T) and

f̂(n) = ĝ(n)

for all n ∈ Z, then f(x) = g(x) a.e. (Hint: Use (a).)
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4. Let f : T→ C. Show that

(a) If f ∈ Ck(T) for some positive integer k, then

|f̂(n)| . (1 + |n|)−k.

In particular the Fourier series of f converges absolutely and uniformly if k ≥ 2.

(b) If f is Lipschitz on T, then

|f̂(n)| . (1 + |n|)−1.

(c) If f is Hölder continuous of some order α ∈ (0, 1) on T, then

|f̂(n)| . (1 + |n|)−α.

Show also that ∑
2k≤|n|<2k+1

|f̂(n)|2 . 2−2kα

for all positive integers k, so the Fourier series of f converges absolutely and
uniformly as long as α > 1/2. (Hint: For the second estimate, consider the L2

norm of Fh(x) := f(x+ h)− f(x) for some h with |h| ' 2−k.)

5. Prove the Riemann-Lebesgue lemma for the Fourier transform on Rn: if f ∈ L1(Rn),

then f̂ is continuous on Rn and vanishes at infinity. (Hint: Approximate f ∈ L1(Rn)
by a Schwartz function on Rn.) How do you prove a similar statement on T?

6. (a) Show that if f ∈ Lp(Rn), 1 ≤ p <∞, then

lim
y→0
‖τyf − f‖Lp(Rn) = 0,

where τy is the translation given by τyf(x) := f(x+ y) for y ∈ Rn.

(b) What can you say if p =∞?

7. Compute the Fourier transform of the following L1 functions of x on Rn:

(a) e−π|x|
2

(b) e−πt|x|
2
, where t > 0

(c)
1

(1 + |x|2)n+1
2

(Hint: Write

1

(1 + |x|2)n+1
2

=
π

n+1
2

Γ(n+1
2

)

∫ ∞
0

e−πt(1+|x|
2)t

n+1
2
dt

t

and use (b). This reduces the problem to the computation of an integral inde-
pendent of n, and to compute that integral amounts to computing the Fourier
transform of 1

1+x2
on R, a task that can be accomplished by, for instance, cal-

culus of residues. See also the method of subordination.)
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(d)
y

(y2 + |x|2)n+1
2

, where y > 0

8. If A is a positive definite real symmetric n×n matrix, show that the Fourier trans-
form of e−π〈x,Ax〉 on Rn is (detA)−1/2e−π〈x,A

−1x〉. This generalizes Question 7(b).

9. From the answer of Question 7(d), it is easy to evaluate the Fourier transform of
the L1 function e−2πy|x| of x ∈ Rn for all y > 0 (how?). In this question we give an
alternative direct evaluation of the same Fourier transform, that does not require
knowing the answer ahead of time.

(a) Compute directly the Fourier transform of e−2π|x| in 1-dimension by evaluating∫
R
e−2π|x|e−2πixξdx.

Hence deduce that

e−2π|u| =

∫
R

e2πiuv

π(1 + v2)
dv

for all u ∈ R.

(b) Using the identity
1

π(1 + v2)
=

∫ ∞
0

e−πt(1+v
2)dt

(which is just a version of the display equation in the hint of Question 7(c)),
express e−2π|u| as a suitable weighted average of e−πtu

2
over t ∈ (0,∞) for all

u ∈ R.

(c) The above allows us to write e−2π|x| as a suitable weighted average of e−πt|x|
2

over t ∈ (0,∞) for every x ∈ Rn. Combine this with the answer of Question
7(b) to evaluate the Fourier transform of e−2π|x| on Rn.

(d) Hence evaluate the Fourier transform of e−2πy|x| on Rn for every y > 0.

10. Compute the k-fold convolution e−πa1|x|
2 ∗e−πa2|x|2 ∗ · · · ∗e−πak|x|2 on Rn, if a1, . . . , ak

are positive real numbers. (Hint: What is the fastest way here?)

11. Prove the following inequality of Hardy’s: If p ∈ (1,∞), then for any non-negative
measurable function f on (0,∞), we have∫ ∞

0

(
1

x

∫ x

0

f(t)dt

)p
dx ≤

(
p

p− 1

)p ∫ ∞
0

f(x)pdx.

(Hint: Write 1
x

∫ x
0
f(t)dt as

∫ 1

0
f(xt)dt and use Minkowski’s inequality. Alternatively,

let F (x) = x1/pf(x). Then the inequality to be proved can be reformulated as∥∥∥∥∫ ∞
0

F (xt)g(t−1)
dt

t

∥∥∥∥
Lp(R+,

dx
x
)

≤ p

p− 1
‖F (x)‖Lp(R+,

dx
x
)

where g(t) := t
1
p
−1χ[1,∞)(t). This is a convolution inequality on the multiplicative

group R+, where dx
x

is the Haar measure on the group. Applying Young’s convolution
inequality yields the desired estimate.)
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12. For p ∈ (1,∞), let

Cp :=

∫ ∞
0

dt

t1/p(1 + t)
<∞.

(a) Show that

Cp =
π

sin(π/p)
.

(Hint: Use contour integration.)

(b) For f : R+ → C (say bounded with compact support) and x ∈ R+, we define
the Hilbert integral of f by

Hf(x) =

∫ ∞
0

f(t)

x+ t
dt.

Show that for p ∈ (1,∞), we have(∫ ∞
0

|Hf(x)|pdx
)1/p

≤ Cp

(∫ ∞
0

|f(x)|pdx
)1/p

.

Also show that this inequality is false if we replace Cp by anything strictly
smaller. (Hint: To prove the positive result, a similar strategy to the previous

question works. You can rewrite Hf(x) as
∫∞
0

f(xt)
1+t

dt and use Minkowski’s

inequality. Alternatively, let F (x) = x1/pf(x). Then the inequality to be
proved can be reformulated as∥∥∥∥∫ ∞

0

F (xt)g(t−1)
dt

t

∥∥∥∥
Lp(R+,

dx
x
)

≤ Cp‖F (x)‖Lp(R+,
dx
x
)

where g(t) := t1/p

1+t
. This is a convolution inequality on the multiplicative group

R+, where dx
x

is the Haar measure on the group. Applying Young’s convolution
inequality yields the desired estimate. Now examine the proof of the positive
result, to show that the constant Cp cannot be improved.)

13. We record here three equivalent reformulations of Hölder’s inequality that are often
useful, and give one application.

(a) If p, q, r ∈ (0,∞] and 1
p

= 1
q

+ 1
r
, then for any measurable functions f and g,

‖fg‖Lp ≤ ‖f‖Lq‖g‖Lr .

(b) If θ ∈ [0, 1] and p ∈ (0,∞], then for any non-negative measurable functions F
and G,

‖F 1−θGθ‖Lp ≤ ‖F‖1−θLp ‖G‖θLp .

(c) If θ ∈ [0, 1] and p, p0, p1 ∈ (0,∞] with 1
p

= 1−θ
p0

+ θ
p1

, then for any non-negative
measurable functions F and G,

‖F 1−θGθ‖Lp ≤ ‖F‖1−θLp0 ‖G‖θLp1 .
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(d) In particular, if θ ∈ [0, 1] and p, p0, p1 ∈ (0,∞] with 1
p

= 1−θ
p0

+ θ
p1

, then for any
measurable function f ,

‖f‖Lp ≤ ‖f‖1−θLp0 ‖f‖θLp1 .

Indeed, (a) is clearly equivalent to the more familiar form of Hölder’s inequality
(which is the case p = 1 of (a)). Applying (a) with f = F 1−θ, g = Gθ, q = p0/(1−θ),
r = p1/θ, we obtain (c). Specializing in (c) to the case p0 = p1 = p, we get (b).
Applying (b) with θ = p/r, 1−θ = p/q, F = |f |1/(1−θ) and G = |g|1/θ, we obtain (a).
(d) follows from (c) by setting F = G = |f |. The inequality in (d) is a baby case of
interpolation, which we will take up in Lecture 8.


