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Abstract. We introduce the notion of tropical Lagrangian multi-sections over any 2-dimensional

integral affine manifold B with singularities, and use them to study the reconstruction problem

for higher rank locally free sheaves over Calabi-Yau surfaces. To certain tropical Lagrangian
multi-sections L over B, which are explicitly constructed by prescribing local models around the

ramification points, we associate locally free sheaves E0(L) over the singular projective scheme
X0(B,P, s) associated to B equipped with a polyhedral decomposition P and a gluing data s. We

find combinatorial conditions on such an L under which the sheaf E0(L) is simple. This produces

explicit examples of smoothable pairs (X0(B,P, s), E0(L)) in dimension 2.
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1. Introduction

The spectacular Gross-Siebert program [13, 14, 15] is usually referred as an algebro-geometric
approach to the famous Strominger-Yau-Zaslow (SYZ) conjecture [25]. It gives an algebro-geometric
way to construct mirror pairs. A polarized Calabi-Yau manifold X̌ near a large volume limit point
should admit a toric degeneration p̌ : X̌ → S to a singular variety X̌0 := p̌−1(0), which is a union
of toric varieties. These toric components intersect along toric strata. By gluing the fans that
correspond to these toric pieces, we obtain an integral affine manifold B̌ with singularities together
with a polyhedral decomposition P̌. Then by choosing a strictly convex multi-valued piecewise
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linear function ϕ̌ on B, a mirror family p : X → S is obtained by the following procedure (the fan
construction):

(1) Take the discrete Legendre transform (B,P, ϕ) of (B̌, P̌, ϕ̌).
(2) Let Xv be the toric variety associated to the fan Σv, defined around a vertex v ∈ B. Glue

these toric varieties together along toric divisors with some twisting data s to obtain a
projective scheme X0(B,P, s).

(3) Smooth X0(B,P, s) to obtain a family p̌ : X̌ → S.

This is usually referred as the reconstruction problem in mirror symmetry.
The most difficult step is (3), namely, to prove that X0(B,P, s) is smoothable. In [13], Gross

and Siebert showed that X0(B,P, s) carries the structure of a log scheme and it is log smooth away
from a subset Z ⊂ X0(B,P, s) of codimension at least 2. The subset Z should be thought of as
the singular locus of a Lagrangian torus fibration (SYZ fibration) on the original side and it is the
main obstacle in the reconstruction problem. Inspired by Kontsevich-Soibelman’s earlier work [19]
and Fukaya’s program [10], Kontsevich and Soibelman invented the notion of scattering diagrams
in the innovative work [20] and applied it to solve the reconstruction problem in dimension 2 over
non-Archimedean fields. This was extensively generalized by Gross and Siebert [15], in which they
solved the reconstruction problem over C in any dimension. Roughly speaking, they defined a notion
called structure, which consists of combinatorial (or tropical) data called slaps and walls. Applying
Kontsevich-Soibelman’s scattering diagram technique, they were able to construct a remarkable
explicit order-by-order smoothing of X0(B,P, s). Recently, in [1] and [8], it was shown that purely
algebraic techniques were enough to prove the existence of smoothing and this can be applied to a
more general class of varieties (called toroidal crossings varieties).

In view of Kontsevich’s homological mirror symmetry (HMS) conjecture [18], it is natural to
ask if one can reconstruct coherent sheaves from combinatorial or tropical data as well, where the
latter should arise as tropical limits of Lagrangian submanifolds on the mirror side. In the rank
one case, this was essentially accomplished by the series of works [11, 12, 16], in which the Gross-
Siebert program was extended and applied to reconstruct (generalized) theta functions, or sections
of ample line bundles, on Calabi-Yau varieties, proving (a strong form of) Tyurin’s conjecture [27].
This paper represents an initial attempt to tackle the reconstruction problem in the higher rank
case. We will restrict our attention to the dimension 2 case as in [11].

In [26], the third author of this paper demonstrated that the tangent bundle TP2 of the complex
projective plane P2 can be reconstructed from some tropical data on the fan of P2, which he called a
tropical Lagrangian multi-section. However, the definition there is not general enough to cover many
interesting cases which could arise in mirror symmetry. In Section 3, we will give a more general
definition of tropical Lagrangian multi-sections over any 2-dimensional integral affine manifold B
with singularities equipped with a polyhedral decomposition P. We expect such an object to arise as
a tropical limit of Lagrangian multi-sections in an SYZ fibration of the mirror. Roughly speaking, it
consists of a topological (possibly branched) covering map π : L→ B, a polyhedral decomposition
Pπ on L respecting P and a multi-valued piecewise linear function ϕ′ on L. A key difference from
the usual polyhedral decomposition is that we require the ramification locus of π : L → B to be
contained in the codimension 2 strata of (L,Pπ). In particular, the pullback affine structure on L
is also singular along the ramification locus. See Definition 3.7.

To have explicit examples of tropical Lagrangian multi-sections, we need good local models. In
Section 4, we define local models of ϕ′ around the ramification points. In [22], Payne used the
equivariant structure of TP2 on each affine chart to define a piecewise linear function ϕ2,1 on a
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2-fold covering of |ΣP2 | ∼= NR. It takes the form

ϕ2,1 :=



−ξ1 on σ+
0 ,

−ξ2 on σ−0
ξ1 on σ+

1 ,

ξ1 − ξ2 on σ−1 ,

−ξ1 + ξ2 on σ+
2 ,

ξ2 on σ−2 ,

where σ±i are two copies of the cone σi and (ξ1, ξ2) are affine coordinates on NR ∼= R2. It is natural
to consider modifications of the coefficients of this function, as shown in Figure 1, where m,n are
integers with m 6= n, and we call the resulting function ϕm,n.

Figure 1. The tropical Lagrangian multi-section L

Let B be a closed topological surface equipped with the structure of an integral affine manifold
with singularities. We say a tropical Lagrangian multi-section is of class S (denoted as L ∈ S) if ϕ′ is
locally modeled by ϕm,n for some m,n around each ramification point. Furthermore, if the integers
m,n are independent of the ramification points, we obtain a special subclass called Sm,n ⊂ S.

Section 5 is devoted to the construction of a locally free sheaf E0(L) over the singular variety
X0(B,P, s) from a tropical Lagrangian multi-section L of class S. This is already nontrivial because
there are obstructions to the gluing processes. First of all, taking the equivariant line bundle
corresponding to ϕ′ on each affine chart Ui := Spec(C[v̌i ∩M ]) and direct sum, one obtains a rank
r equivariant bundle on each Ui. If a vertex v ∈ B is not a branched point, these local pieces glue
to give a rank r bundle which splits. However, when v is a branched point, on each local piece
Ui, there are two line bundles L+

i ,L
−
i which cannot be glued due to nontrivial monodromy around

the ramification points. In such a case, we follow [26] (which was in turn motivated by Fukaya’s
proposal for reconstructing bundles in [10]) and try to glue L+

i ⊕L
−
i ’s equivariantly to obtain a set

of naive transition functions:

τsf10 :=

(
a0

(w1
0)m

0

0 b0
(w1

0)n

)
, τsf21 :=

(
b1

(w2
1)n

0

0 a1
(w2

1)m

)
, τsf02 :=

(
0 b2

(w0
2)n

a2
(w0

2)m
0

)
.

The problem is that these do not satisfy the cocycle condition. Thus we have to modify τsfij by

multiplying by an invertible factor Θij (the wall-crossing factors), namely, τij := τsfij Θij . We then
obtain the following
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Proposition 1.1 (=Proposition 5.1). If we impose the condition
∏
i aibi = −1, then

τ02τ21τ10 = I.

Moreover, the equivariant structure defined by (2) can be extended.

From this we get an equivariant rank 2 holomorphic vector bundle Em,n on P2. Denote the
corresponding rank 2 bundle on a toric piece Xv

∼= P2 by E(v)′. Together with r − 2 line bundles

L(k)
v̌ , k = 1, . . . , r− 2, we obtain a rank r bundle E(v) on Xv even if v is a branched point. To glue
{E(v)} together, a key observation is that the factors Θij act trivially on the boundary divisors.1

However, there is further obstruction to gluing these bundles together. This obstruction, which is
given by a cohomology class oL(s) ∈ H2(L,C×), is analgous to that in [13, Theorem 2.34] (that
arises in gluing of the projective scheme X0(B,P, s)).

Theorem 1.2 (=Theorem 5.6). If oL(s) = 1, then there exists a rank r locally free sheaf E0(L) on
X0(B,P, s).

We then proceed to study smoothability of the pair (X0(B,P, s), E0(L)) in Section 6. We will
assume that the polyhedral decomposition P is positive and simple (as in [13, 14, 15]) as well
as elementary, meaning that every cell in P is an elementary simplex.2 From the Gross-Siebert
program, we already know that X0(B,P, s) can be smoothed to a formal polarized family p : X → S
of Calabi-Yau surfaces; here, we work over S := Spec(C[[t]]). We will focus on the sheaves E0(L)
which correspond to tropical Lagrangian multi-sections L ∈ Sn+1,n.

To prove smoothability of the pair (X0(B,P, s), E0(L)) for L ∈ Sn+1,n, our strategy is to apply
the main result [2, Corollary 4.7] in a previous work of the first and second authors, for which we
need the condition that H2(X0(B,P, s), End0(E0(L))) = 0. In general, it is not easy to deal with
higher cohomologies. Exploiting the fact that X0(B,P, s) is a Calabi-Yau surface and Serre duality,
we are reduced to showing that H0(X0(B,P, s), End0(E0(L))) = 0, or equivalently, that the locally
free sheaf E0(L) is simple.

Our main results give a combinatorial condition on the tropical Lagrangian multi-section L which
is equivalent to simplicity of E0(L). The condition looks particularly appealing in the rank 2 case, so
we will first discuss this case in Section 6.1. In order to state our result, we consider the embedded
graph Γ ⊂ B given by the union of the 1-cells in the polyhedral decomposition P, and let G(L)
be the subgraph in Γ obtained by removing all the branched vertices. Then we have the following
theorem

Theorem 1.3 (=Theorem 6.4). Let L ∈ Sn+1,n. Then the locally free sheaf E0(L) is simple if and
only if G(L) does not bound any 2-cell in P.

Because of this result, we say a tropical Lagrangian multi-section L ∈ Sn+1,n is simple if G(L)
does not bound any 2-cell in P (see Definition 6.3).

Corollary 1.4 (=Corollary 6.7). If L ∈ Sn+1,n is simple, then the pair (X0(B,P, s), E0(L)) is
smoothable.

1This is because each irreducible component of the boundary divisor is isomorphic to P1 and hence any bundle
splits into a direct sum of two line bundles; one should not expect such a nice property for dim(B) ≥ 3.

2In dimension 2, every polyhedral decomposition can actually be subdivided into elementary simplices (or equiv-
alently, standard simplices).
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The higher rank case, which is considerably more subtle, will be taken up in Section 6.2. The
appropriate definition of simplicity of L ∈ Sn+1,n and proof of the analogous theorem for r ≥ 3
involves more complicated combinatorial data on the fiber product

P (L) := L×π L,

which should be regarded as a certain fiberwise path space of L. We will define an embedded graph

G̃(L) ⊂ P (L) similar to G(L) by lifting the polyhedral decomposition of B. To define simplicity
for L, we study how sections on each toric component are glued together along boundary divisors.

First of all, a non-trivial section of End0(E0(L)) restricts to non-trivial sections on some toric
components. Since m = n+ 1, these sections turn out to be either sections of OP2(1) or sections of
the rank 2 bundle En+1,n(−n). Non-trivial sections of these two bundles have different vanishing
loci along the boundary divisors which can be described combinatorially or tropically, as shown in

Figure 5. We will introduce the notion of a well-colored subgraph (Definition 6.12) of G̃(L) to classify
these types of vanishing behavior. Roughly speaking, a well-colored graph is obtained by gluing the
“dual” (see Figure 4) of the local pieces as shown in Figure 5 such that the coloring is respected.
However, well-colored subgraphs alone are not enough to produce sections of End0(E0(L)) due to
their tropical nature. To handle this, we introduce yet another piece of combinatorial information,

called compatible data (Definition 6.18). Then for each well-colored subgraph G̃ ⊂ G̃(L) and

compatible data D, we can define a rank 1 local system LG̃(D,a) on a natural subgraph G̃0 of G̃
and prove the following correspondence theorem:

Theorem 1.5 (=Theorem 6.20). Let L ∈ Sn+1,n. Define

WC(L) := {G̃ ⊂ G̃(L) | G̃ is well-colored},

and for each G̃ ∈ WC(L), define

DG̃ := {D | LG̃(D,a) is trivial}.

Then, for any G̃ ∈ WC(L) and D ∈ DG̃, there is an injection

iLG̃(D,a) : H0(G̃0,LG̃(D,a)) ↪→ H0(X0(B,P, s), End0(E0(L)))

such that

H0(X0(B,P, s), End0(E0(L))) =
⋃

G̃∈WC(L)

⋃
D∈DG̃

Im
(
iLG̃(D,a)

)
.

Theorem 6.20 gives a purely combinatorial description of sections of End0(E0(L)), which can
be regarded as a tropical mirror symmetric statement. It also provides a natural definition for
simplicity (Definition 6.23) of L ∈ Sn+1,n, which is explicit and checkable, though combinatorially
much more complicated than the rank 2 case. Now we arrive at the following

Theorem 1.6 (=Theorem 6.26). A tropical Lagrangian multi-section L ∈ Sn+1,n is simple if and
only if E0(L) is simple.

By applying Serre duality and the smoothing result in [2] again, Corollary 1.4 can be generalized
to r ≥ 2:

Corollary 1.7 (=Corollary 6.27). If L ∈ Sn+1,n is simple, then the pair (X0(B,P, s), E0(L)) is
smoothable.
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We end this introduction with a short discussion on the relation between the locally free sheaf
E0(L) and a constructible sheaf F on P (L) := L×πL, which is defined as follows: Let πB : P (L)→ B
be the natural projection map. We define

P̃ := {σ′1 ×π σ′2 | σ′1, σ′2 ∈ Pπ such that π(σ′1) = π(σ′2)}.

Let {v} ∈ P be a vertex and (v′1, v
′
2) := ṽ ∈ π−1

B (v). Each v′i gives a vector bundle E(v′i) on Xv,

which is either a line bundle or a rank 2 bundle. For σ̃ ∈ P̃ with ṽ ∈ σ̃, we define

F(σ̃) := H0(Xσ, (E(v′1)∗ ⊗ E(v′2))|Xσ ),

where σ := πB(σ̃). If τ̃ ⊂ σ̃, we have the generalization map

gτ̃ σ̃ : F(τ̃)→ F(σ̃)

induced by the inclusion ιστ : Xσ ↪→ Xτ . Clearly,

gρ̃σ̃ = gτ̃ σ̃ ◦ gρ̃τ̃ ,

whenever ρ̃ ⊂ τ̃ ⊂ σ̃. Hence the data ({F(σ̃)}, {gτ̃ σ̃}) defines a constructible sheaf F on P (L).
Define

P0(L) := P (L)\∆L,

where ∆L denotes the diagonal. By restricting F to P0(L), we get a sheaf F0 on P0(L). By
construction, we have canonical identifications

H0(X0(B,P, s), End(E0(L))) ∼= H0(P (L),F),

H0(X0(B,P, s), End0(E0(L))) ∼= H0(P0(L),F0).
(1)

The coherent-constructible correspondence of toric varieties was established by Fang-Liu-Treumann-
Zaslow in [4, 5] and applied to prove HMS for toric varieties [6, 7].As mentioned above, one should
think of the fiber product P (L) as a certain (fiberwise) path space of L. For a non-singular SYZ
fibration p : X̌ → B and an honest Lagrangian multi-section L ⊂ X̌, one can talk about the
fiberwise geodesic path space as in [19, 21]. A point (x′1, x

′
2) ∈ P (L) is regarded as the end points

of an affine geodesic from L to itself. The identifications (1) suggest that if one consider higher
rank sheaves E on X, the self-Hom space of E should be computed by certain (possibly derived)
constructible sheaf on the “path space” P (L). We leave this for future research.

Acknowledgment. The third author is grateful to Yamamoto Yuto for useful and joyful discus-
sions. We would also like to thank Yong-Geun Oh and Cheol-Hyun Cho for their interest in this
work. The work of K. Chan was supported by grants of the Hong Kong Research Grants Council
(Project No. CUHK14302617 & CUHK14303019) and direct grants from CUHK. The work of Z.
N. Ma was supported by the Institute of Mathematical Sciences (IMS) and the Department of
Mathematics at The Chinese University of Hong Kong. The work of Y.-H. Suen was supported by
IBS-R003-D1.

2. The Gross-Siebert program

In this section, we review some machinery in the Gross-Siebert program, mainly following [13].
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2.1. Affine manifolds with singularities and their polyhedral decompositions.

Definition 2.1 ([13], Definition 1.15). An integral affine manifold with singularities is a topological
manifold B together with a closed subset ∆ ⊂ B, which is a finite union of locally closed submanifolds
of codimension at least 2, such that B0 := B\∆ is an integral affine manifold (meaning that the
transition functions are integral affine). Let B be an integral affine manifold with singularities and
U ⊂ B be an open subset. A continuous function f : U → R is call integral affine if f |U∩B0

:
U ∩ B0 → R is an integral affine function. The sheaf of integral affine functions on B is denoted
by Aff(B,Z).

Fix a rank n free abelian group N ∼= Zn and let NR := N ⊗Z R.

Definition 2.2 ([13], Definition 1.21). A polyhedral decomposition of a closed subset R ⊂ NR is
a locally finite covering P of R by closed convex polytopes (called cells) with the property that

(1) If σ ∈ P and τ ⊂ σ is a face, then τ ∈ P.
(2) If σ, σ′ ∈ P, then σ ∩ σ′ is a common face of σ, σ′.

We say P is integral if all vertices (0-dimensional cells) are contained in N .

For a polyhedral decomposition P and a cell σ ∈ P, we denote the relative interior of σ by

Int(σ) := σ
∖ ⋃
τ∈P,τ(σ

τ.

Definition 2.3 ([13], Definition 1.22). Let B be an integral affine manifold with singularities. A
polyhedral decomposition of B is a collection P of closed subsets of B (called cells) covering B
which satisfies the following properties. If {v} ∈ P for some v ∈ B, then v /∈ ∆, and there exist a
polyhedral decomposition Pv of a closed subset Rv ⊂ TvB ∼= Λv ⊗R, which is the closure of an open
neighborhood of 0 ∈ TvB, and a continuous map expv : Rv → B with expv(0) = v satisfying the
following conditions:

(1) expv is a local homeomorphism onto its image, is injective on Int(τ) for all τ ∈ Pv, and is
an integral affine map in some neighborhood of 0 ∈ Rv.

(2) For every top dimensional cell σ̃ ∈ Pv, expv(Int(σ̃)) ∩∆ = ∅ and the restriction of expv to
Int(σ̃) is an integral affine map. Furthermore, expv(τ̃) ∈ P for all τ̃ ∈ Pv.

(3) σ ∈ P and v ∈ σ if and only if σ = expv(σ̃) for some σ̃ ∈ Pv with 0 ∈ σ̃.
(4) Every σ ∈ P contains a point v with {v} ∈ P.

We say the polyhedral decomposition is toric if it satisfies the additional condition:

(5) For each σ ∈ P, there is a neighborhood Uσ ⊂ B of Int(σ) and an integral affine submersion
Sσ : Uσ → N ′R, where N ′ is a lattice of rank dim(B)− dim(σ) and Sσ(σ ∩ Uσ) = {0}.

A polyhedral decomposition of B is called integral if all vertices are integral points of B.

The k-dimensional strata of (B,P) is defined by

B(k) :=
⋃

τ :dim(τ)=k

τ.

If P is a toric polyhedral decomposition P, then for each τ ∈ P, one defines the fan Στ as the
collection of the cones

Kσ := R≥0 · Sτ (σ),
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where σ runs over all elements in P such that τ ⊂ σ and Int(σ)∩Uτ 6= ∅. For a point y ∈ Int(τ)\∆,
we put

Qτ := Qτ,y := Λy/Λτ,y,

which can be identified with the lattice N ′ in Condition (5) in Definition 2.3. These lattices define
a sheaf QP on B.

Definition 2.4 ([13], Definition 1.43). Let B be an integral affine manifold with singularities and
P a polyhedral decomposition of B. Let U ⊂ B be an open set. An integral piecewise linear function
on U is a continuous function ϕ so that ϕ is integral affine on U ∩ Int(σ) for any top dimensional
cell σ ∈ P, and for any y ∈ U ∩ Int(τ) (for some τ ∈ P), there exists a neighborhood V of y and
f ∈ Γ(V,Aff(B,Z)) such that ϕ = f on V ∩ Int(τ). We denote the sheaf of integral piecewise
linear functions on B by PLP(B,Z).

There is a natural inclusion Aff(B,Z) ↪→ PLP(B,Z), and we let MPLP be the quotient:

0→ Aff(B,Z)→ PLP(B,Z)→MPLP → 0.

Locally, an element ϕ ∈ Γ(B,MPLP) is a collection of piecewise linear functions {ϕU} so that on
each overlap U ∩ V , the difference

ϕU |B0 − ϕV |B0

is an integral affine function on U ∩ V ∩B0.

Definition 2.5 ([13], Definition 1.45). The sheaf MPLP is called the sheaf of multi-valued piece-
wise linear functions of the pair (B,P).

The sheaf MPLP also fits into the following exact sequence:

0→ i∗Λ
∗ → PLP(B,Z)/Z→MPLP → 0,

where Λ ⊂ TB0 is the lattice inherited from the integral structure and Λ∗ ⊂ T ∗B0 is the dual
lattice.

Definition 2.6 ([13], Definition 1.46). For each element ϕ ∈ H0(B,MPLP), its image under the
connecting map c1 : H0(B,MPLP)→ H1(B, i∗Λ

∗) is called the first Chern class of ϕ.

Definition 2.7 ([13], Definitions 1.47). A section ϕ ∈ H0(B,MPLP) is said to be (strictly) convex
if for any vertex {v} ∈ P, there is a neighborhood U ⊂ B of v such that there is a (strictly) convex
representative ϕi.

Definition 2.8 ([13], Definition 1.48). A toric polyhedral decomposition P is said to be regular if
there exists a strictly convex multi-valued piecewise linear function ϕ ∈ H0(B,MPLP).

Assumption 2.9. All polyhedral decompositions in this paper are assumed to be regular; in partic-
ular, they are integral and toric.

Given a regular polyhedral decomposition (P, ϕ), one can obtain another affine manifold with

singularities B̌ together with a regular polyhedral decomposition (P̌, ϕ̌) by taking the dual cell of
each cell in P. We will not give the precise construction here but let us mention some facts about
(B̌, P̌, ϕ̌). Topologically, B̌ is same as B and their singular loci coincide. However, their affine
structures and monodromies around the singular loci are dual to each other. See [13], Section 1.4

for the precise construction of (B̌, P̌, ϕ̌).

Definition 2.10 (cf. [13], Propositions 1.50 & 1.51). The triple (B̌, P̌, ϕ̌) is called the discrete
Legendre transform of (B,P, ϕ).
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We will need the following notion later.

Definition 2.11. A regular polyhedral decomposition P is called elementary if for any cell σ ∈ P,
the dual cell σ̌ is an elementary simplex.

2.2. Toric degenerations. In [13], Gross and Siebert defined a toric degeneration (of Calabi-Yau
varieties) as a flat family p̌ : X̌ → S such that generic fiber of p̌ is smooth and the central fiber
X̌0 := p̌−1(0) is a union of toric varieties, intersecting along toric strata. By gluing the fan of
each toric piece, they obtained an affine manifold with singularities B̌ together with a polyhedral
decomposition P̌. When the family X̌ is polarized, the resulting polyhedral decomposition is regular,
so there is a strictly convex multi-valued piecewise linear function ϕ̌ on B̌, giving rise to the
discrete Legendre transform (B,P, ϕ) of (B̌, P̌, ϕ̌). The important reconstruction problem in mirror
symmetry is asking whether one can construct another toric degeneration p : X → S (which acts
as a mirror family) from (B,P, ϕ).

In this section, we review the fan construction of the algebraic spaces associated to (B,P) in [13];
with a good choice of gluing data, such spaces serve as the central fibers of the toric degenerations
p : X → S and p̌ : X̌ → S.3

2.2.1. The fan construction. For each σ ∈ P, the map Sσ : Uσ → Qσ defines a fan Σσ on Qσ. Let
Xσ be the toric variety associated to Σσ. For τ ⊂ σ, let

Στ (σ) := {K ∈ Στ : K ⊃ Kσ}.

There is a fan projection pτσ : Στ (σ) → Σσ, given by quotienting along the direction Λσ and an
inclusion jστ : Στ (σ)→ Στ . There is a natural embedding ιστ : Xσ → X(Στ (σ)) ⊂ Xτ induced by
the ring map

zm 7→

{
zm if m ∈ K∨ ∩K⊥σ ∩Q∗σ = ((K + Λσ,R)/λσ,R)∨ ∩Q∗σ,
0 otherwise.

For e ∈ Hom(τ, σ), we define the functor FA : Cat(P)→ Sch by

F (τ) := Xτ , F (e) := ιτσ.

We can also twist the functor by certain gluing data. The barycentric subdivision Bar(P) of P
defines an open covering W := {Wτ} of B, where

Wτ :=
⋃

σ∈Bar(P)
σ∩Int(τ)6=∅

Int(σ).

For e ∈ Hom(τ, σ), we define We := Wτ ∩Wσ.

Definition 2.12 ([13], Definition 2.10). Let S be a scheme. A closed gluing data (for the fan
picture) for P over S is Cěch 1-cocycle s = (se)e∈

∐
τ,σ∈PHom(τ,σ) of the sheaf QP ⊗Z Gm(S) with

respect to the cover W of B. Here, se ∈ Γ(We,QP ⊗Z Gm(S)) = Qσ ⊗Z Gm(S) for e ∈ Hom(τ, σ).

The torus Qσ⊗ZGm(S) acts on Xσ×S, so an element se ∈ Qσ⊗ZGm(S) gives an automorphism
se : Xσ × S → Xσ × S. We then obtain an s-twisted functor FS,s : Cat(P)→ SchS by setting

FS,s(τ) := Xτ × S, FS,s(e) := (F (s)× idS) ◦ se.

3For the cone construction, please refer to [13, Section 2.1].
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We define

X0(B,P, s) := lim
−→

FS,s.

In [13], Gross and Siebert introduced a special set of gluing data, which they called open gluing
data (for the fan picture). We will not go into details here (readers are referred to [13, Definition
2.25] for the precise definition), but it is essential for X0(B,P, s) to be the central fiber of some
toric degeneration. Given such an open gluing data for (B,P), one can associate a closed gluing
data s for the fan picture of (B,P) (see [13, Proposition 2.32]). There is then an obstruction map
o : H1(W,QP ⊗Z C×)→ H2(B,C×) such that when o(s) = 1, a projective scheme X0(B,P, s) can
be constructed. Throughout this paper, we assume that all closed gluing data are induced by open
gluing data for the fan picture. We also assume that A = C and S = Spec(C). One of the main
result in [13] is the following

Theorem 2.13 ([13], Theorem 5.2). Suppose (B,P) is positive and simple and s satisfies the (LC)
condition in [13, Proposition 4.25]. Then there exists a log structure on X0(B,P, s) and a morphism
X0(B,P, s)† → Spec(C)† which is log smooth away from a subset Z ⊂ X0(B,P, s) of codimension
2.

Remark 2.14. When (B,P) (and hence (B̌, P̌)) is positive and simple, X0(B,P, s) and X̌0(B̌, P̌, š)
are mirror to each other as log Calabi-Yau spaces in an appropriate sense; see [13, Section 5.3] for
details.

As aforementioned, the reconstruction problem in mirror symmetry is to construct a polarized
toric degeneration p : X → S whose central fiber is given by X0(B,P, s) for some open gluing
data s over Spec(C). This was solved by Gross and Siebert in [15] using logarithmic deformation
theory and a key combinatorial object called scattering diagram first introduced by Kontsevich
and Soibelman in [20] (who first solved the reconstruction problem in dimension 2, but over non-
Archimedean fields). When (B,P) is positive and simple, Gross and Siebert proved that X0(B,P, s)
is always smoothable by writing down an explicit toric degeneration.

In [14], Gross and Siebert studied a specific type of logarithmic deformations, called divisoral de-
formations. Similar to the classical deformation theory of schemes, the first order divisoral deforma-
tions of X0(B,P, s) are parametrized by a first cohomology group H1(X0(B,P, s), j∗ΘX0(B,P,s)†/C†),

while the obstructions lie in the seond cohomology group H2(X0(B,P, s), j∗ΘX0(B,P,s)†/C†) (see [14,
Theorem 2.11]); here ΘX0(B,P,s)†/C† is the sheaf of logarithmic tangent vectors of the log scheme

X0(B,P, s)† and j : X0(B,P, s)\Z ↪→ X0(B,P, s) is the inclusion map. However, they did not
prove existence of smoothings along this line of thought.

Very recently, the first two authors of this paper and Leung [1], by using gluing of local differential
graded Batalin-Vilkovisky (dgBV) algebras and partly motivated by [14], developed an algebraic
framework to prove existence of formal smoothings for singular Calabi-Yau varieties with prescribed
local models. This covers the log smooth case studied by Friedman [9] and Kawamata-Namikawa [17]
as well as the maximally degenerate case studied by Kontsevich-Soibelman [20] and Gross-Siebert
[15]. More importantly, this approach provides a singular version of the classical Bogomolov-Tian-
Todorov theory and bypasses the complicated scattering diagrams.

Our theory was subsequently applied by Felten-Filip-Ruddat in [8] to produce smoothings of a
very general class of varieties called toriodal crossing spaces.4 Such an algebraic framework should
be applicable in a variety of settings, e.g., it was applied to smoothing of pairs in [2]. In this

4Applying results in Ruddat-Siebert [23], they were able to prove that the smoothings are actually analytic.
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paper, which can be regarded as a sequel to [2], we show how this approach can lead to an explicit,
combinatorial construction of smoothable pairs in dimension 2.

3. Tropical Lagrangian multi-sections

In this section, we introduce the notion of a tropical Lagrangian multi-section when dim(B) = 2.5

These tropical objects should be viewed as limiting versions of Lagrangian multi-sections of a La-
grangian torus fibration (or SYZ fibration). In [3], the first and third authors of this paper considered
the case of a semi-flat Lagrangian torus fibration X(B)→ B, where a Lagrangian multi-section can
be described by an unbranched covering map π : L → B together with a Lagrangian immersion
into the symplectic manifold X(B). However, in general (e.g., when B is simply connected), the
covering map π : L→ B would have non-empty branched locus. We begin by describing what kind
of covering maps is allowed.

Definition 3.1. Let B be a 2-dimensional integral affine manifold with singularities equipped with
a polyhedral decomposition P. Let L be a topological manifold. A r-fold topological covering map
π : L→ B with branched locus S is called admissible if

(1) S ⊂ B(0), and
(2) π−1(B0\S) is an integral affine manifold such that π|π−1(B0\S) : π−1(B0\S)→ B0\S is an

integral affine map.

An admissible covering map π : L→ B is said to have simple branching if it satisfies the following
extra condition:

(3) For any x ∈ B, there exists a neighborhood U ⊂ B of x such that the preimage π−1(U) can
be written as

U ′ q
r−2∐
i=1

U ′i

for some open subsets U ′, U ′1, . . . , U
′
r−2 ⊂ L so that π|U ′ : U ′ → U is a (possibly branched)

2-fold covering map.

Given an admissible covering map π : L → B, the domain L is naturally an integral affine
manifold with singularities and the singular locus is given by S′ q π−1(∆), where S′ ⊂ L is the
ramification locus of π : L→ B. We need to distinguish these two singular sets combinatorially.

Definition 3.2. Let B be a 2-dimensional integral affine manifold with singularities equipped with
a polyhedral decomposition P. Let π : L → B be an admissible covering map. A polyhedral
decomposition of π : L→ B is a collection Pπ of closed subsets of L (also called cells) covering L
so that

(1) π(σ′) ∈ P for all σ′ ∈ Pπ;
(2) for any σ ∈ P, we have

π−1(σ) =
⋃

σ′∈Pπ :π(σ′)=σ

σ′

and if we define the relative interior of σ′ to be

Int(σ′) := π−1(Int(σ)) ∩ σ′,
then π|Int(σ′) : Int(σ′)→ Int(σ) is a homeomorphism; and

(3) if π(σ′1) = π(σ′2) and σ′1 ∩ σ′2 6= ∅, then σ′1 ∩ σ′2 ⊂ S′.

5From this point on, we will always assume that dim(B) = 2.
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We define

dim(σ′) := dim(σ)

for all σ′ ∈ Pπ with π(σ′) = σ ∈ P.

Clearly, if Pπ is a polyhedral decomposition of an admissible covering map π : L→ B, then

π(Pπ) := {π(σ′) | σ′ ∈ Pπ} = P.

We denote the k-dimensional strata of (L,Pπ) by

L(k) :=
⋃

σ′:dim(σ′)=k

σ′.

Remark 3.3. The vertex of the polyhedral decomposition Pπ of π : L→ B may lie in S′ but never
in π−1(∆). Moreover, if σ ∈ P is a cell of dimension at least 1, then Conditions (2) and (3) in
Definition 3.2 imply that

π−1(Int(σ)) =
∐

σ′∈Pπ :π(σ′)=σ

Int(σ′)

because S′ lies in L(0).

Example 3.4. Let B be the boundary of a 3-simplex Ξ. It carries a polyhedral decomposition P

inherited from the simplicial structure of Ξ. Let L be a 2-torus. There is a branched 2-fold covering
map π : L→ B, which branch over B along four points. Figure 2 shows a polyhedral decomposition
Pπ of π : L→ B.

Figure 2

The largest square represents the 2-torus L and the colored vertices on B (resp. on L) are
the branched (resp. ramification) points of the 2-fold covering map π : L → B. The polyhedral
decomposition Pπ is given by pulling back the cells in P to L.

As the domain L is an integral affine manifold with singularities, we can therefore define the
sheaf of integral affine functions Aff(L,Z) on L as before. However, since the singular locus S′

lies in L(0), we need to clarify what it means by a piecewise linear function though it is similar to
Definition 2.4:
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Definition 3.5. Let B be an integral affine manifold with singularities equipped with a polyhedral
decomposition P. Let π : L → B be an admissible covering map equipped with a polyhedral de-

composition Pπ. Let Ũ be an open subset of L. A piecewise linear function on Ũ is a continuous
function ϕ′ which is affine linear on Int(σ′) for any maximal cell σ′ ∈ Pπ and satisfies the following

property: for any y′ ∈ Ũ and y′ ∈ Int(τ ′) (for some τ ′ ∈ Pπ), there is a neighborhood Ṽ of y′ and

f ′ ∈ Γ(Ṽ ,Aff(L,Z)) such that

ϕ′|Ṽ ∩τ ′ = f ′|Ṽ ∩τ ′ .

We denote the sheaf of piecewise linear functions on L by PLPπ (L,Z).

Definition 3.6. The sheaf of multi-valued piecewise linear functions MPLPπ on L is defined as
the quotient

0→ Aff(L,Z)→ PLPπ (L,Z)→MPLPπ → 0.

We are now ready to define the main object to be studied in this paper.

Definition 3.7. Let B be a 2-dimensional integral affine manifold with singularities equipped with
a polyhedral decomposition P. A tropical Lagrangian multi-section of rank r is a quadruple L :=
(L, π,Pπ, ϕ

′), where

1) L is a topological manifold and π : L→ B is an admissible r-fold covering map,
2) Pπ is a polyhedral decomposition of π : L→ B, and
3) ϕ′ is a multi-valued piecewise linear function on L.

4. A local model around the ramification locus

In this section, we prescribe a local model for L around each point in the ramification locus of
π : L→ B; such a model is motivated by the previous work [26] of the third author. We also give
an explicit construction of a certain class of rank 2 tropical Lagrangian multi-sections over B.

Definition 4.1. Let B be an integral affine manifold with singularities equipped with a polyhedral
decomposition P, and π : L→ B an admissible covering map. A branched point v ∈ S ⊂ B is called
standard if there is an isomorphism Σv ∼= ΣP2 between the fan Σv and that of P2.

For a standard vertex v ∈ S, we construct a fan Σv′ , a 2-fold covering map π∗ : |Σv′ | → |Σv| with
a unique branched point at 0 and a piecewise linear function ϕv′ : |Σv′ | → R on |Σv′ | as follows.

Let Kσ0
,Kσ1

,Kσ2
∈ Σv be the top dimensional cones of Σv which correspond to the cones

σ0, σ1, σ0 ∈ ΣP2 (see Figure 1) respectively. Let K±σi be two copies of Kσi . Let ρj , ρk be the rays

spanning Kσi and ρ±j , ρ
±
k be that for K±σi , for i, j, k = 0, 1, 2 being distinct. We glue K±σ0

with

K∓σ1
and K∓σ2

by identifying ρ±1 with ρ∓1 and ρ±2 with ρ∓2 respectively, and glue K±σ1
with K∓σ2

by

identifying ρ±0 with ρ∓0 . Then the fan Σv′ is given by

{K±σi , ρ
±
i , 0 | i = 0, 1, 2}.

The projection π∗ : |Σv′ | → |Σv| is defined by K±σi → Kσi .
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On the fan Σv′ , one can define a piecewise linear function ϕv′ by setting

ϕv′ :=



(n−m)ξ1 on K+
σ0
,

(n−m)ξ2 on K−σ0
,

nξ1 on K+
σ1
,

nξ1 + (n−m)ξ2 on K−σ1
,

(n−m)ξ1 + nξ2 on K+
σ2
,

nξ2 on K−σ2
,

for some m,n ∈ Z with m 6= n. Here, ξ1, ξ2 are affine coordinates on |Σv| ∼= R2. This gives
a tropical Lagrangian multi-section (|Σv′ |, π∗,Σv′ , ϕv′) of the smooth affine manifold |Σv| with
polyhedral decomposition given by the fan Σv.

Recall that when π has simple branching, for any branched point v ∈ S, one can choose a
neighborhood U of v such that

π−1(U) = U ′ q
r−2∐
i=1

U ′i ,

for some open subsets U ′, U ′1, . . . , U
′
r−2 ⊂ L and π|U ′ : U ′ → U is a branched 2-fold covering map.

Let Pπ be a polyhedral decomposition of π : L → B. Denote by Pv′ the collection of all cells
σ′ ∈ Pπ such that v′ ∈ σ′. Write

π−1(σ ∩ U) ∩ U ′ = (σ+ ∪ σ−) ∩ U ′

for σ ∈ P and σ± ∈ Pv′ .

Definition 4.2. Let B be a 2-dimensional integral affine manifold with singularities, P a polyhedral
decomposition of B. A tropical Lagrangian multi-section L := (L, π,Pπ, ϕ

′) is said to be of class S,
denoted as L ∈ S, if

(1) π : L→ B has simple branching and every branched point is standard;
(2) for any vertex v ∈ S, there exists a neighborhood U ⊂ B of v and two integral affine

embeddings f ′ : U ′ → |Σv′ |, f : U → |Σv| such that f ′(σ± ∩ U ′) ⊂ K±σ for all σ ∈ P with
v ∈ σ and π∗ ◦ f ′ = f ◦ π; and

(3) for each vertex v ∈ S, ϕ′ can be represented by ϕv′ on U ′, i.e., if ϕ′U ′ is a representative of
ϕ′ on U ′, then

ϕ′U ′ − ϕv′ |f ′(U ′) ◦ f ′ ∈ Aff(U ′,Z),

for some m(v′), n(v′) ∈ Z defining ϕv′ .

For each m,n ∈ Z with m 6= n, there is a subclass Sm,n of S defined as

Sm,n := {L ∈ S : m(v′), n(v′) ∈ {m,n} for all v′ ∈ S′}.
This collection of tropical Lagrangian multi-sections will be our main object of study in Section 6.

Remark 4.3. We may also use the local model given by

ϕ′v′ =



0 on K±σ0
,

mξ1 on K+
σ1
,

nξ1 on K−σ1
,

nξ2 on K+
σ2
,

mξ2 on K−σ2
.
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This local model is more related to metric structures while the previous one is more related to
equivariant structures; see [26] for a discussion in the special case m = 2, n = 1. Nevertheless, we
will see later that ϕ′v′ and ϕv′ actually give rise to the same locally free sheaf on P2.

5. Construction of E0(L) for L ∈ S

Let (B,P) be a 2-dimensional integral affine manifold with singularities equipped with a regular
polyhedral decomposition P. Let L be a rank r tropical Lagrangian multi-section of class S as in
Definition 4.2. The goal of this section is to construct a locally free sheaf E0(L) of rank r on the
scheme X0(B,P, s) associated to L.

First of all, for any vertex {v} ∈ P, we need to construct a locally free sheaf E(v̌) over the toric
variety Xv. Let σ1, . . . , σl be the top dimensional cells that contain v and Uσi ⊂ Xv be the toric
affine chart corresponding to σi. Then {Uσi} forms an open covering of Xv. Suppose the vertex
v /∈ S. Then the preimage of v consists of r distinct points v′k, for k = 1, . . . , r. Hence we obtain
r piecewise linear functions ϕv′k : |Σv′k | → R, which correspond to r equivariant line bundles L(v′k)
on Xv. In this case, we put

E(v) :=

r⊕
k=1

L(v′k).

Suppose v ∈ S. Then by our assumption, there are precisely three top dimensional cells σ0, σ1, σ2

containing v. In this case, Xv
∼= P2. Let v′ ∈ S′ be the unique ramification point such that

π(v′) = v. In a neighborhood U of v, write

π−1(σi ∩ U) :=
(
(σ+
i ∪ σ

−
i ) ∩ U ′

)
q
r−2∐
k=1

σ
(k)
i ∩ U

′
k

with σ+
i ∩σ

−
i = {v′} being the ramification point. As ϕ|U ′ can be represented by ϕv′ , by restricting

to σ±i , σ
(k)
i , we obtain r integral affine functions. Hence they define r equivariant line bundles

L±i ,L
(k)
i , k = 1, . . . , r − 2, on the affine chart X̌i, where

L+
0 =O((n−m)D1)|U0 , L−0 = O((n−m)D2)|U0 ,

L+
1 =O(nD0)|U1

, L−1 = O((m− n)D2 + (2n−m)D0)|U2
,

L+
2 =O(nD0)|U2

, L−2 = O((m− n)D1 + (2n−m)D0)|U2
.

Here, Ui ⊂ P2 are the affine charts corresponding to the cones Kσi and Dk is the divisor corre-
sponding to the ray ρk. In this case, we set

Ei := (L+
i ⊕ L

−
i )⊕

r−2⊕
k=1

L(k)
i ,

which is a rank r vector bundle on Uσi .

Next, we try to glue the bundles Ei’s together. First of all, the line bundles {L(k)
i }i=0,1,2 naturally

glue together to form an equivariant line bundle L(v′k) on Xv as before.
However, in the case v ∈ S, the rank 2 bundles {L+

i ⊕L
−
i }i=0,1,2 cannot be glued equivariantly.

This is because when we try to glue L±i to L∓j equivariantly, the gluing data consists of two diagonal
matrices and one off-diagonal matrix, and so the cocycle condition fails to hold. More precisely,
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the equivariant structure on each L+
i ⊕ L

−
i is given by the minus of the slopes of ϕv′ on Kσi :

(λ1, λ2) · (w1
0, w

2
0, v

+
0 , v

−
0 ) = (λ1w

1
0, λ2w

2
0, λ

m−n
1 v+

0 , λ
m−n
2 v−0 ),

(λ1, λ2) · (w0
1, w

2
1, v
−
1 , v

+
1 ) = (λ−1

1 w0
1, λ
−1
1 λ2w

2
1, λ
−n
1 v−1 , λ

−n
1 λm−n2 v+

1 ),

(λ1, λ2) · (w0
2, w

1
2, v

+
2 , v

−
2 ) = (λ−1

2 w0
2, λ1λ

−1
2 w1

2, λ
−n
2 v+

2 , λ
m−n
1 λ−n2 v−2 );

(2)

here v±i are fiber coordinates of L±i . According to the gluing of |Σv′ |\{v′}, one can write down the
naive transition functions

τsf10 :=

(
a0

(w1
0)m

0

0 b0
(w1

0)n

)
, τsf21 :=

(
b1

(w2
1)n

0

0 a1
(w2

1)m

)
, τsf02 :=

(
0 b2

(w0
2)n

a2
(w0

2)m
0

)
,

where wji := ζj

ζi are inhomogeneous coordinates of a point [ζ0 : ζ1 : ζ2] ∈ P2 and ai, bi are arbitrary

nonzero constants. It is clear that they do not compose to the identity.
To correct the gluing, we introduce three automorphisms. For m > n, we consider

Θ10 := I +

(
0 0

−a0b1a2

(
w2

0

w1
0

)m−n
0

)
∈ Aut (O|U10

⊕O|U10
) ,

Θ21 := I +

(
0 b−1

0 b−1
1 a−1

2

(
w0

1

w2
1

)m−n
0 0

)
∈ Aut (O(mD0)|U21

⊕O(nD0)|U21
) ,

Θ02 := I +

(
0 0

a−1
0 b−1

1 b−1
2

(
w1

2

w0
2

)m−n
0

)
∈ Aut (O(mD0)|U02 ⊕O(nD0)|U02) ,

while for m < n, we consider

Θ10 := I +

(
0 −b0a1b2

(
w2

0

w1
0

)n−m
0 0

)
∈ Aut (O|U10

⊕O|U10
) ,

Θ21 := I +

(
0 0

a−1
0 a−1

1 b−1
2

(
w0

1

w2
1

)n−m
0

)
∈ Aut (O(mD0)|U21

⊕O(nD0)|U21
) ,

Θ02 := I +

(
0 b−1

0 a−1
1 a−1

2

(
w1

2

w0
2

)n−m
0 0

)
∈ Aut (O(mD0)|U02

⊕O(nD0)|U02
) .

The factors Θij are written in terms of the frame of Ej on Uj . Let

τij := τsfij Θij .

Then a straightforward computation gives the following

Proposition 5.1. If we impose the condition that
∏
i aibi = −1, then

τ02τ21τ10 = I.

Moreover, the equivariant structure defined by (2) can be extended.

Hence we obtain an equivariant rank 2 bundle Em,n on Xv
∼= P2 (for v ∈ S). The mysterious

constants ai, bi’s are indeed irrelevant to the holomorphic structure.

Lemma 5.2. The holomorphic structure of Em,n is independent of ai, bi’s as long as
∏
i aibi = −1.
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Proof. We will only consider the case m > n; the proof for n > m is similar. Let τ ′ij ’s be the
transition functions of Em,n with ai = −1, bi = 1, for all i = 0, 1, 2. We define f by

f |U0 := f0 :=

(
1 0
0 a0b1a2

)
,

f |U1
:= f1 :=

(
−a0 0

0 −a−1
1 b−1

2

)
,

f |U2 := f2 :=

(
a0b1 0

0 b−1
2

)
.

Using
∏
i aibi = −1, one can check that

τ02f2 = f0τ
′
02, τ21f1 = f2τ

′
21, τ10f0 = f1τ

′
10.

Hence f defines an isomorphism. �

From now on, we will take ai = −1, bi = 1, for all i = 0, 1, 2. Then the corresponding transition
functions are given by

(3) τ ′10 :=

(
− 1

(w1
0)m

0

− (w2
0)m−n

(w1
0)m

1
(w1

0)n

)
, τ ′21 :=

(
1

(w2
1)n

− (w0
1)m−n

(w2
1)m

0 − 1
(w2

1)m

)
, τ ′02 :=

− (w1
2)m−n

(w0
2)m

1
(w0

2)n

− (w1
2)m−n

(w0
2)m

0

 ,

for m > n and

τ ′10 :=

(
− 1

(w1
0)m

− (w2
0)n−m

(w1
0)n

0 1
(w1

0)n

)
, τ ′21 :=

(
− 1

(w2
1)n

0

− (w0
1)n−m

(w2
1)n

1
(w2

1)m

)
, τ ′02 :=

(
0 1

(w0
2)n

1
(w0

2)m
− (w1

2)m−n

(w0
2)m

)
,

for n > m.

Proposition 5.3. For any m,n ∈ Z with m 6= n, we have Em,n ∼= En,m and E∗m,n
∼= E−m,−n.

Proof. Let {τm,nij } be the transition functions of Em,n. Put

J :=

(
0 −1
1 0

)
.

Then we have

τm,n10 J = J−1τn,m10 , τm,n21 J−1 = Jτn,m21 , τm,n02 J = Jτn,m02 .

Hence we have Em,n ∼= En,m. It is immediate that (τm,nij )−1 = (τ−m,−nij )t. Thus E∗m,n
∼= E−m,−n.

�

Remark 5.4. As aforementioned, one can as well use the local model defined in Remark 4.3. Then
by applying the same technique of reconstruction as in [26], one can construct a rank 2 bundle E′m,n
on Xv

∼= P2. Using the homomorphism defined in [26, Theorem 3.9], we see that E′m,n
∼= Em,n. See

also [26] for the relation of Θij’s and the wall-crossing phenomenon.

Before constructing the sheaf E0(L), we first prove the simplicity of the rank 2 bundle Em,n. This
will be crucial in the study of smoothability of the pair (X0(B,P, s), E0(L)) in Section 6. Recall
that a locally free sheaf E on a scheme X is called simple if H0(X,End(E)) = C, or equivalently,
H0(X,End0(E)) = 0 where End0 denotes the sheaf of traceless endomorphisms.
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For this purpose, we compute the Chern classes of Em,n. The piecewise linear function ϕm,n
allows us to obtain the equivariant Chern classes as piecewise polynomial functions on |ΣP2 | (see
[22, Section 3.2]) , namely,

c
(C×)2

1 (Em,n) =


(n−m)(ξ1 + ξ2) on σ0,

2nξ1 + (n−m)ξ2 on σ1,

(n−m)ξ1 + 2nξ2 on σ2.

c
(C×)2

2 (Em,n) =


(n−m)2ξ1ξ2 on σ0,

n2ξ2
1 + n(n−m)ξ1ξ2 on σ1,

n(n−m)ξ1ξ2 + n2ξ2
2 on σ2.

Since the equivariant cohomology H•(C×)2(P2;Z) of P2 is given by Z[t0, t1, t2]/(t0t1t2), where ti’s are

piecwewise linear functions on |ΣP2 | so that ti(vj) = δij , and the forgetful map H•(C×)2(P2;Z) →
H•(P2;Z) ∼= Z[H]/(H3) is given by mapping all the ti’s to the hyperplane class H, we have

c(Em,n) = 1 + (m+ n)H + (m2 + n2 −mn)H2.

Proposition 5.5. For all m,n ∈ Z with m 6= n, the bundle Em,n is stable and hence simple.

Proof. A straightforward calculation shows that we have the equality

c2 − 4c21 = −3(m− n)2.

Hence c2−4c21 < 0 and c2−4c21 6= −4. These conditions are equivalent to stability of rank 2 bundles
on P2. See [24]. �

Let us go back to the construction of E0(L). The fan structure around v ∈ S defines a toric
isomorphism Xv

∼= P2. Denote the corresponding bundle on Xv by E(v′) and put

E(v) := E(v′)⊕
r−2⊕
k=1

L(v′k),

which is a rank r bundle on P2. In this way, the tropical Lagrangian multi-section L defines a
locally free sheaf E(σ) on Xσ for each σ ∈ P. Now we fix a closed gluing data s = (se) for the fan
picture. For a morphism e : τ → σ, we write the corresponding scheme morphism Fs(e) : Xσ → Xτ

as ιστ,s : Xσ → Xτ . In order to obtain a consistent gluing, we need to find a set of isomorphisms
{gστ,s : E(σ)→ ι∗στ,sE(τ)}τ⊂σ such that

(ι∗στ,sgτω,s) ◦ gστ,s = gσω,s

for each triple ω ⊂ τ ⊂ σ.
To do this, note that by our definition of tropical Lagrangian multi-section, for ♦,� ∈ {ω, τ, σ}

and lifts ♦′,�′ ∈ Pπ such that ♦′ ⊂ �′, there are piecewise linear functions ϕ′�′ , ϕ
′
♦′ such that

f ′♦′�′ := ϕ′♦′ − ϕ′�′
is an affine function, whenever defined. Since the intersection of any two charts always avoids S,
by composing with π−1, we can regard f ′♦′�′ as a local affine function on B. We assume that for all
♦ ∈ {ω, τ, σ}, ϕ′♦′ is induced from the pullback of some piecewise linear functions ϕ♦′ on the fan
Σ♦′ . Then we have

f ′♦′�′ = S∗♦(ϕ♦′)− S∗�(ϕ�′)
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on U♦ ∩ U� (recall that for any σ ∈ P, Sσ : Uσ → N ′R is an integral affine submersion assumed to
exist in Condition (5) in Definition 2.3). Let

Σ♦(�) := {K ∈ Σ♦ : K ⊃ K�}.
Then there is a natural fan inclusion j�♦ : Σ♦(�) → Σ♦ and a fan projection p♦� : Σ♦(�) → Σ�

given by quotienting Σ♦(�) along Λ�,R, so that

f♦′�′ := j∗�♦ϕ♦′ − p∗♦�ϕ�′

is an affine function on |Σ♦(�)|.
We first consider the case ω 6⊂ S. Let σi, σj ∈ P be two cells containing σ. For ♦ ∈ {ω, τ, σ},

denote by L(♦′) the line bundle on the toric stratum X♦ which corresponds to the piecewise linear
function ϕ♦′ : |Σ♦| → R. The transition function of j∗�♦L(♦′) on Vσi ∩ Vσj ⊂ X(Σ♦(�)) is given by
the monomial

zj
∗
�♦(mi(♦

′)−mj(♦′)),

where mi(♦′),mj(♦′) ∈ Q∗♦ are the slopes of ϕ♦′ on Kσi ,Kσj ∈ Σ♦. If ♦ ⊂ �, we have the projection
p♦� : Σ♦(�)→ Σ�. Then the transition function of the line bundle p∗♦�L(�′) on Vσi ∩ Vσj is given
by the monomial

zp
∗
♦�(mi(�

′)−mj(�′)).

Since f♦′�′ is affine, we have p∗♦�L(�′) ∼= j∗�♦L(♦′). Thus, the embedding ι�♦ : X� → X(Σ♦(�)) ⊂
X♦ is given by

zm 7→

{
zm if m ∈ K∨σi ∩K

⊥
� ∩Q∗� = (Kσi + Λ�,R)/Λ�,R)∨ ∩Q∗�,

0 otherwise

on the affine chart Vσi . Twisting with se ∈ Q� ⊗Z C×, the inclusion ι�♦,s : X� → X(Σ♦(�)) ⊂ X♦

is given by

zm 7→

{
se(m)zm if m ∈ K∨σi ∩K

⊥
� ∩Q∗� = (Kσi + Λ�,R)/Λ�,R)∨ ∩Q∗�,

0 otherwise.

Hence ι∗�♦,sL(♦′) has transition function given by

se(mi(�′))
se(mj(�′))

zmi(�
′)−mj(�′).

So we can define g�′♦′,s : L(�′)→ ι∗�♦,sL(♦′) by

ei(�
′) 7→ se(mi(�

′))−1ι∗�♦,sei(♦
′)

on Ui(�), which gives an isomorphism L(�′) ∼= ι∗�♦,sL(♦′). Moreover, as ι∗σω,sL(ω′) = ι∗στ,sι
∗
τω,sL(ω′),

we have

sτ→σ(mi(σ
′))sω→τ (mi(τ

′))sω→σ(mi(σ
′))−1 = sτ→σ(mj(σ

′))sω→τ (mj(τ
′))sω→σ(mj(σ

′))−1.

Hence the quantity

sω′τ ′σ′ := sτ→σ(mi(σ
′))sω→τ (mi(τ

′))sω→σ(mi(σ
′))−1

is independent of i. Also, if we choose other local representatives of ϕ′, then

ŝω′τ ′σ′ = sω′τ ′σ′
(
sτ→σ(a(σ′))sω→τ (a(τ ′))sω→σ(a(σ′))−1

)
,

where a(♦′) is the slope some affine function.



20 CHAN, MA, AND SUEN

Now, if ω = {v} ⊂ S and ω ( τ , observe that Θij |Dk ≡ I on the divisor Dk ⊂ P2, for
i, j, k = 0, 1, 2 distinct, so E(v′) splits into two line bundles L+

τ (v′) ⊕ L−τ (v′) on the (C×)2-orbit
corresponding to Kτ ∈ Σv. The affine functions ϕv′ − ϕτ± induce isomorphisms

gτ±v′,s : L(τ±) ∼= ι∗τv,sL±τ (v′),

as before, where τ± are preimage cells of τ under π : L→ B such that τ+ ∩ τ− = {v′}. Similarly,
we have

gσ±v′,s : L(σ±) ∼= ι∗σv,sL±σ (v′).

Without lost of generality, we may assume τ± ⊂ σ±, so that

(ι∗σv,sgτ±v′,s) ◦ gσ±τ±,s ◦ g−1
σ±v′,s =

(
sv→τ (mi(τ

±))sτ→σ(mi(σ
±))sv→σ(mi(σ

±))−1
)
idL(σ′).

Then
sv′τ±σ± := sv→τ (mi(τ

±))sτ→σ(mi(σ
±))sv→σ(mi(σ

±))−1

is independent of i. Moreover, choosing other local representatives of ϕ′ leads to the equality

ŝv′τ±σ± = sv′τ±σ±(sv→τ (a(τ±))sτ→σ(a(σ±))sv→σ(a(σ±))−1).

Hence, for any ω′, τ ′, σ′ ∈ Pπ with ω′ ⊂ τ ′ ⊂ σ′, we obtain an element sω′τ ′σ′ , so that
(sω′τ ′σ′)ω′⊂τ ′⊂σ′ gives a C×-valued Cěch 2-cocycle with respect to the simplicial structure on L
induced by Pπ. This defines a cohomology class

oL(s) := [(sω′τ ′σ′)ω′⊂τ ′⊂σ′ ] ∈ H2(L,C×).

It is also clear that oL(s) only depends on the cohomology class of s in H1(W,QP ⊗ C×). As a
result, we obtain the obstruction map as a group homomorphism

oL : H1(W,QP ⊗ C×)→ H2(L,C×).

Theorem 5.6. If oL(s) = 1, then there exists a rank r locally free sheaf E0(L) on X0(B,P, s).

Proof. If oL(s) = 1, then for ω′ ⊂ τ ′ ⊂ σ′, there exists h♦′�′ ∈ C× for any pair ♦′,�′ ∈ {ω′, τ ′, σ′}
such that

sω′τ ′σ′ = hτ ′σ′hω′τ ′h
−1
ω′σ′ .

Set s̃♦→� := s♦→� · h−1
♦′�′ and define g�′♦′,s̃ : L(�′)→ ι∗�♦,sL(♦′) by

ei(�
′) 7→ s̃e(mi(�

′))−1ι∗�♦,sei(♦
′) =

(
se(mi(�

′))−1h♦′�′
)
ι∗�♦,sei(♦

′)

Then they satisfy (
ι∗στ,sgτ ′ω′,s̃

)
◦ gσ′τ ′,s̃ = gσ′ω′,s̃.

Now, suppose ♦,� ∈ {ω, τ, σ} have preimages cells ♦(α),�(β) ∈ Pπ, α, β = 1, . . . , r (counted with
multiplicities). Then we have an invertible matrix

g�♦,s̃ := (g�(β)♦(α),s̃)α,β=1,...,r,

where we put g�(β)♦(α),s̃ = 0 if ♦(α) ∩ �(β) = ∅. As π : L → B is homeomorphic on cells, for any

α ∈ {1, . . . , r}, there exist unique β(α), γ(α) ∈ {1, . . . , r} such that ω(γ) ⊂ τ (β) ⊂ σ(α), so we have
r∑

β,γ=1

gω(γ)σ(η),s̃

(
ι∗στ,sgτ(β)ω(γ),s̃

)
gσ(α)τ(β),s̃ = gω(γ(α))σ(η),s̃

(
ι∗στ,sgτ(β(α))ω(γ(α)),s̃

)
gσ(α)τ(β(α)),s̃ = δαη.

Hence {gστ,s̃ : E(σ)→ ι∗στ,s̃E(τ)}τ⊂σ satisfies the desired cocycle condition. �

Definition 5.7. If oL(s) = 1, we define E0(L) := lim
−→
E(σ).
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Remark 5.8. The obstruction map oL is a higher rank analog of the obstruction map defined in
[13, Theorem 2.34] via open gluing data. Since the space of open gluing gluing data is embedded
into the space of closed gluing data (see [13, Proposition 2.32]), we can restrict oL to the space of
open gluing data.

Remark 5.9. Different choices of the constants {hτ ′σ′} ⊂ C× in the proof of Theorem 5.6 may
produce different locally free sheaves. When we write E0(L), it is understood that we have fixed one
such choice.

6. Simplicity and smoothability

As before, we assume that dim(B) = 2 and the polyhedral decomposition P is elementary (See
Definition 2.11). The tropical Lagrangian multi-section L we consider is in class Sm,n (See Definition
4.2). We also assume that the domain L of L is connected. These assumptions imply that, at an
unramified vertex v′ ∈ L, ϕv′ can be represented by the piecwise linear function

ϕk :=


0 on Kσ0

kξ1 on Kσ1

kξ2 on Kσ2

,

for k ∈ {m,n}, which corresponds to the line bundle OP2(k) on P2.
We are interested in smoothability of the pair (X0(B,P, s), E0(L)), where oL(s) = 1.6 In order to

apply the Gross-Siebert program, we assume that (B,P) positive and simple. Then, with a suitable
choice of gluing data s and a choice of strictly convex ϕ ∈ H0(B,MPLP), the main theorem of
[15] (or alternatively, combining the results in [1] and [8]) says that X0(B,P, s) is smoothable to a
polarized toric degeneration p : X → S over S := Spec(C[[t]]).

To prove smoothability of the pair (X0(B,P, s), E0(L)), we plan to apply the main result (Corol-
lary 4.7) in [2], for which we need to show that the pair (X0(B,P, s),det(E)) is smoothable and
H2(X0(B,P, s), End0(E0(L))) = 0. The first condition is easy as det(E0(L)) = OX0(B,P,s)(K),
for some K ∈ Z and the pair (X0(B,P, s),OX0(B,P,s)(1)) is smoothable by [15]. If K = 0,
E0(L) = OX0(B,P,s) and it is clear that (X0(B,P, s),OX0(B,P,s)) is smoothable because X0(B,P, s)
is. If K > 0 (resp. K < 0), we see that the pair (X0(B,P, s),det(E0(L))) is also smoothable
after tensoring OX0(B,P,s)(1) (resp. OX0(B,P,s)(−1)) with itself |K|-times. For the second con-
dition, higher cohomologies are usually hard to compute. Fortunately, we work in dimension 2
and X0(B,P, s) is Calabi-Yau, so it reduces to showing that H0(X0(B,P, s), End0(E0(L))) = 0, or
equivalently, that the locally free sheaf E0(L) is simple. Our main result provides a combinatorial
condition on the tropical Lagrangian multi-section L to assure such a situation, and the condition
looks particularly neat in the rank 2 case. We will therefore separately handle the r = 2 case and
the higher rank (r ≥ 3) case.

6.1. Smoothing in rank 2. For any vertex {v} ∈ P, we have the restriction maps

Πv : H0(X0(B,P, s), End(E0(L)))→H0(Xv, End(E(v))),

Π0
v : H0(X0(B,P, s), End0(E0(L)))→H0(Xv, End0(E(v))).

We have already proven that Π0
v ≡ 0 for v ∈ S. So to prove simplicity of E0(L), it remains to study

Π0
v for v /∈ S. To do this, we introduce a graph associated to L:

6Recall that we always assume that all closed gluing data for both the fan and cone pictures are induced by open
gluing data for the fan picture.



22 CHAN, MA, AND SUEN

Definition 6.1. The union of all 1-cells in P defines an embedded graph Γ :=
⋃
τ∈B(1) τ in B.

Then by removing all the branched points of π : L→ B from Γ, we get the graph

G(L) :=
⋃

τ∈B(1):τ∩S=∅

τ,

as a subgraph of Γ.

Note that V (G(L)) q S = V (Γ), where V (·) denotes the vertex set of a graph, so G(L) is the
maximum subgraph of Γ whose vertices are unbranched points of π : L → B. Hence if G(L) = ∅,
we have Π0

v ≡ 0 for all v /∈ S. However, if G(L) 6= ∅, the group H0(Xv, End0(E(v))) never vanishes
for v /∈ S since E(v) ∼= OP2(n)⊕OP2(m).

Definition 6.2. A cycle γ ⊂ Γ is called a minimal cycle if there exists a 2-cell σ ∈ P such that
∂σ = γ.

We now focus on the case m = n+ 1.

Definition 6.3. A tropical Lagrangian multi-section L ∈ Sn+1,n is called simple if G(L) has no
minimal cycles.

For example, when G(L) is a disjoint union of trees, L is always simple.

Theorem 6.4. L ∈ Sn+1,n is simple if and only if the locally free sheaf E0(L) is simple.

Proof. Let s be a section of End0(E0(L)) such that Π0
v(s) 6= 0 for some v ∈ G(L). Since Πv(s) is

a non-zero section of OP2(1), there exists at least one vertex σ̌ ∈ P̌ such that Πv(s) is non-zero at
the torus fixed point Xσ ⊂ Xv. Consider the minimal cycle γ := ∂σ. If there exists some vertex
v′ ∈ V (γ) such that Πv(s) = 0, then by continuity, Πv(s) must vanish at the torus fixed point
Xσ because v̌ and v̌′ share the common vertex σ̌ (see Figure 3 below). Thus Π0

v′(s) 6= 0 for all
v′ ∈ V (σ). In particular, γ ⊂ G(L).

Figure 3. The dual of the minimal cycle γ.

Conversely, suppose G(L) has a minimal cycle γ. Let

Xγ :=
⋃

v∈V (γ)

Xv

and Eγ̌ := E0(L)|Xγ . We want to construct a non-trivial section A of End0(Eγ̌) → Xγ by gluing
non-trivial sections {sv̌}v∈V (γ) of O(1) → Xv, v ∈ V (γ), which has vanishing order 1 along the
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boundary divisors of Xγ . To do this, we first define a cover {Uv}v∈V (γ) of γ by

Uv := {v} ∪
⋃

τ∈E(γ):v∈τ

Int(τ).

Let {sv}v∈V (γ) be sections of O(1) which vanish along the divisor correspond to the half-edges7 of
γ. Then for any τ ∈ E(γ) with vertices v, v′ ∈ τ , ι∗τv,ssv and ι∗τv′,ssv′ can be regarded as non-trivial

holomorphic sections of OXτ (1)→ Xτ . Thus

λvv′ :=
ι∗τv,ssv

ι∗τv′,ssv′

is a meromorphic function on Xτ . But λvv′ has no zeros and poles, so λvv′ ∈ C×. Hence the data
L := ({Uv}, {C〈sv〉}, {λvv′}) defines a rank 1 local system on γ ∼= S1. Let σ be such that ∂σ = γ.
We extend L as follows: Cover σ by

Uσv := Uv ∪ Int(σ).

If Uσv ∩ Uσv′ 6= ∅, then

Uσv ∩ Uσv′ =

{
Int(τ) ∪ Int(σ) if Uv ∩ Uv′ = Int(τ),

Int(σ) otherwise.

We define

λ̃vv′ :=


ι∗τv,ssv
ι∗
τv′,ssv′

if Uv ∩ Uv′ = Int(τ),

ι∗σv,ssv
ι∗
σv′,ssv′

otherwise.

Clearly, λ̃vv′ ∈ C× and since ιστ,s ◦ ιτv,s = ισv,s, which is independent of τ , the cocycle condition

is satisfied. Thus we get a local system L̃ → σ extending L → γ. Since σ is contractible, L̃, and
hence L, are trivial as local systems. Therefore, we can find {cv} ⊂ C× such that λvv′ = cv′/cv.
By definition, we have

ι∗τv,s(cvsv) = ι∗τ̌v′,š(cv′sv′)

for all τ with vertices v, v′. Thus we obtain a section A of End0(Eγ̌)→ Xγ which vanishes along the
boundary divisor of Xγ . Extend A by zero to the other toric components, we see that End0(E0(L))
has a non-trivial section. �

Remark 6.5. The case when m ≥ n+ 2 is much easier. By choosing sections of OP2(m−n) which
vanish only along boundary divisors, it is not hard to see that

• when m = n+ 2, E0(L) is simple if and only if G(L) is a collection of vertices in B\S;
• when m ≥ n+ 3, E0(L) is simple if and only if G(L) = ∅.

Corollary 6.6. L ∈ Sn+1,n is simple if and only if H2(X0(B,P, s), End0(E0(L))) = 0.

Proof. Because X0(B,P, s) has Gorenstein singularities, Serre duality holds. The canonical sheaf
is trivial by Calabi-Yau condition. �

Because of Corollary 6.6, we can apply the smoothing result of [2] to obtain the following

Corollary 6.7. If L ∈ Sn+1,n is simple, then the pair (X0(B,P, s), E0(L)) is smoothable.

7Let G be a graph and H be a subgraph of G. An edge e ∈ E(G) is called a half-edge of H if e /∈ E(H) and
e ∩H 6= ∅.
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6.2. Smoothing in general rank. We now turn to the higher rank (r ≥ 3) case. Let (B,P, ϕ)
be as before and consider a tropical Lagrangian multi-section L = (L, π,Pπ, ϕ

′) ∈ Sn+1,n.

6.2.1. The graph G̃(L). In order to characterize when L gives rise to a simple E0(L), we consider
the fiber product

P (L) := L×π L.
Since π has simple branching, the ramification locus S′ sits inside the diagonal ∆L as S′×πS′ ⊂ ∆L.
There is a natural projection πB : P (L) → B. The preimage set π−1

B (x) has r2 points if x /∈ S
while it has (r − 1)2 points if x ∈ S. Note that the topological space P (L) is connected but not a
manifold, even topologically. Nevertheless,

P0(L) := P (L)\∆L,

is a topological manifold but not necessarily connected.
Define

P̃ := {σ′1 ×π σ′2 | σ′1, σ′2 ∈ Pπ with π(σ′1) = π(σ′2)}.
For each σ ∈ P, we have

π−1
B (σ) =

⋃
σ′1,σ

′
2∈Pπ

π(σ′1)=π(σ′2)=σ

σ′1 ×π σ′2

and πB |σ′1×πσ′2 : σ′1 ×π σ′2 → σ is a homeomorphism. Denote by P̃(k) the k-dimensional strata of
P (L):

P̃(k) := {σ′1 ×π σ′2 | dim(σ′1) = dim(σ′2) = k}.
Let

Γ̃ :=
⋃

σ′1×πσ′2∈P̃(0)∪P̃(1)

σ′1 ×π σ′2

be the graph associated to P̃, which satisfies πB(Γ̃) = Γ. We denote by Vj(Γ̃) the set of all j-valent

vertices in Γ̃, and write a vertex of Γ̃ as a pair ṽ := (v′1, v
′
2) ∈ V (Γ̃). There are 3 scenarios:

• If v′i /∈ S′ for i = 1, 2, then ṽ ∈ V3(Γ̃).

• If v′i ∈ S′ for only one i, then ṽ ∈ V6(Γ̃).

• Lastly, if v′i ∈ S′ for all i, which means v′1 = v′2 ∈ S′, then ṽ ∈ V12(Γ̃) and six of the twelve
edges are contained in the diagonal ∆L.

Definition 6.8. Let G̃(L) ⊂ P0(L) be the subgraph of Γ̃ whose vertex set V (G̃(L)) and edge set

E(G̃(L)) are given as follows. A vertex ṽ = (v′1, v
′
2) ∈ V (G̃(L)) if and only if one of the following

conditions is satisfied.

(1) For any adjacent edge τ̃ := τ ′1 ×π τ ′2 of ṽ = (v′1, v
′
2), put τ := πB(τ̃). Then there exist

neighborhoods Uτ ′i , Uτ of Int(τ ′i), Int(τ) respectively such that the piecewise linear function

ϕv′2 |Uτ′2 ◦ π
−1 − ϕv′1 |Uτ′1 ◦ π

−1

is strictly convex on Uτ .
(2) If v′i /∈ S′ for i = 1, 2, then

ϕv′2 ◦ π
−1 − ϕv′1 ◦ π

−1

is strictly convex on Uv ⊂ B, where v = πB(ṽ).

A 1-cell ẽ ∈ E(G̃(L)) if and only if ẽ connects two points in V (G̃(L)).
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In particular, G̃(L) is at most 6-valent. For a vertex ṽ = (v′1, v
′
2) ∈ V (G̃(L))∩V6(Γ̃) with v′1 ∈ S′,

there are two edges τ̃+
1 , τ̃

−
1 containing ṽ. We put

(4) τ̃+ := τ+
1 ×π τ ′2, τ̃− := τ−1 ×π τ ′2,

where ± is determined by the conditions that

ϕτ ′2 ◦ π
−1−ϕτ+

1
|U
τ
+
1

◦ π−1 is straightly convex, and

ϕτ ′2 ◦ π
−1−ϕτ−1 |Uτ−1

◦ π−1 is an affine function.

Similar definitions apply for v′2 ∈ S′.

6.2.2. Well-colored subgraphs of G̃(L). To proceed, we make the following notation. For any sub-

graph G̃ ⊂ Γ̃, define

XG̃ :=
⋃

v∈V (πB(G̃))

Xv

and let EndG̃ be the sheaf on XG̃ such that

EndG̃|Xv =
⊕

ṽ∈V (G̃)
πB(ṽ)=v

E(ṽ) :=
⊕

ṽ=(v′1,v
′
2)∈V (G̃)

πB(ṽ)=v

E(v′1)∗ ⊗ E(v′2),

where E(v′i) is the bundle which corresponds to the piecewise linear function ϕv′i defined in a

neighborhood of v′i ∈ L. Note that EndG̃ may not be a vector bundle on XG̃ because its rank can
be non-constant.

To prove simplicity of E0(L), we want to show that the cohomology H0(X0(B,P, s), End0(E0(L)))
vanishes by showing that the maps

Π0
ṽ : H0(X0(B,P, s), End0(E0(L)))→ H0(Xv, E(v′1)∗ ⊗ E(v′2))

vanish for all ṽ ∈ V (Γ̃). We already have Π0
ṽ ≡ 0, for all ṽ ∈ ∆S′ . For ṽ /∈ V (G̃(L)), we also have

Π0
ṽ ≡ 0 because E(v′1)∗ ⊗ E(v′2) ∼= OP2(−1). So we suppose ṽ ∈ V (G̃(L)). Then by definition of

G̃(L), we have E(v′1)∗ ⊗ E(v′2) ∼= OP2(1) if ṽ′i /∈ S′ for i = 1, 2, and if ṽ′i ∈ S′ for some i = 1, 2,
then E(v′1)∗ ⊗ E(v′2) ∼= En+1,n(−k) or E∗n+1,n(k) for some k ∈ {n + 1, n}. Thus we also need to
handle sections coming from En+1,n(−k) and its dual. Let us first try to understand how sections
of En+1,n(−k) and its dual look like.

Proposition 6.9. Let k, n ∈ Z. We have the following:

(1) If k ≥ n+ 1, then H0(P2, En+1,n(−k)) = 0.
(2) If k ≤ n, then H0(P2, E∗n+1,n(k)) = 0.

(3) If k = n, then H0(P2, En+1,n(−n)) = C〈s0, s1, s2〉 and H0(P2, E∗n+1,n(n+1)) = C〈s′0, s′1, s′2〉,
where sk, s

′
k are sections which vanish at the torus fixed point Di ∩Dj for distinct i, j, k.

Proof. By Proposition 5.3, we only need to take care of En+1,n(−k). By using the transition
functions given in (3), it is easy to see that En+1,n(−k) ∼= E2,1(n − k − 1) ∼= TP2(n − k − 1). The
Euler sequence of P2 reads

0→ OP2(−1)→ O⊕3
P2 → TP2(−1).

Tensoring with O(n− k), we get

0→ OP2(n− k − 1)→ OP2(n− k)⊕3 → TP2(n− k − 1)→ 0.
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The induced long exact sequence on cohomologies implies (1) and (2) as well as

dimCH
0(P2, En+1,n(−n)) = dimCH

0(P2, TP2(−1)) = 3.

One can check that for any λ, µ, η ∈ C, if we define s by

s|U0 =(λ− µw1
0)e0 + (η − µw2

0)e′0,

s|U1
=(µ− λw0

1)e1 + (η − λw2
1)e′1,

s|U2 =(µ− ηw0
2)e2 + (λ− ηw1

2)e′2,

(5)

then s is a section of En+1,n(−n). Hence any section of En+1,n(−n) must of the above form. By
setting two of them to bel zero, we see that s vanishes at a torus fixed point. �

Remark 6.10. The role of Condition (1) in the definition of G̃(L) is to rule out the vertices that
correspond to the situations (1), (2) in Proposition 6.9.

Remark 6.11. Equation (5) gives an explicit description of sections of En+1,n(−n). Note that if
s is a non-trivial section of En+1,n(−n), then on each divisor, it splits into the following form

(c, t) ∈ H0(P1,OP1)⊕H0(P1,OP1(1))

and at least one of them is non-trivial. If E(ṽ) ∼= En+1,n(−n) via Xv
∼= P2, the edges τ̃+, τ̃− gives

two projection maps Πτ̃+ṽ,Πτ̃−ṽ defined on H0(Xτ , ι
∗
τv,sE(ṽ)) ∼= V− ⊕ V+, which correspond to the

projections (c, t) 7→ t, (c, t) 7→ c respectively.

As in the proof of Theorem 6.4, we can produce minimal cycles in G̃(L) if E0(L) is not simple.
However, unlike the rank 2 case, non-existence of minimal cycles is way too strong for simplicity to
hold when r ≥ 3. This is due to the fact that sections of En+1,n(−n) can vanish at a single torus

fixed point. For example, if G̃(L) itself is a minimal cycle whose vertices are all in V6(Γ̃), then any
non-trivial section of EG̃(L) → XG̃(L) cannot be extended. Thus we need a detailed classification of

the graphs which arise as “supports” of sections of End0(E0(L)). This leads to the following rather
complicated definition.

Definition 6.12. Let G̃ be a subgraph of G̃(L).

(1) Denote by V (G̃) the set of vertices of G̃, E(G̃) the set of edges of G̃, H(G̃) the set of half-

edge of G̃ and F (G̃) the set of 2-cells in P̃ such that σ̃ ∈ F (G̃) if and only if σ̃ contains an

edge or a half edge of G̃.

(2) A subgraph G̃ ⊂ G̃(L) is said to be well-colored if there are coloring maps ce : E(G̃) q
H(G̃)→ {red, blue, green, black}, cf : F (G̃)→ {white, red} such that

(a) Let σ̃, σ̃′ ∈ F (G̃) and σ̃ ∩ σ̃′ ∈ E(G̃)qH(G̃). Then σ̃, σ̃′ are red-colored if and only if
σ̃ ∩ σ̃′ is red-colored.

(b) If ẽ is blue- or green-colored, then the two adjacent faces of ẽ are white-colored.

(c) If ẽ = τ̃+ ∈ E(G̃), then ẽ is blue-colored (See (4) for the notations τ̃±).

(d) If ẽ = τ̃− ∈ E(G̃), then ẽ is green-colored.

(e) If ṽ ∈ V (G̃) ∩ V3(Γ̃), then we have the following cases:
(i) ṽ has one red edge or half-edge and two black edges, two red faces. We call such

vertex a Type I(a) vertex.
(ii) ṽ has one red face, one blue edge and two black edges. We call such vertex a

Type I(b) vertex.
(iii) ṽ has three blue-colored edges. We call such vertex a Type I(c) vertex.
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(f) If ṽ ∈ V (G̃) ∩ V6(Γ̃), then we have the following cases:
(i) ṽ has one green edge, two black edges and three red edges or half-edges, four red

faces. We call such vertex a Type II(a) vertex.
(ii) ṽ has one red-colored edge or half-edge, one blue edge, two black edges, two red

faces. We call such vertex a Type II(b) vertex.
(iii) ṽ has three blue edges and three black edges. We call such vertex a Type II(c)

vertex.
These conditions are subordinate to the extra condition that if τ̃ , τ̃ ′ are edges or half-
edges such that πB(τ̃) = πB(τ̃ ′), then τ̃ , τ̃ ′ are of different color.

(g) All half-edges of G̃ are red-colored.

Different types of vertices are shown in Figure 4.

Figure 4

Example 6.13. If γ̃ ⊂ G̃(L) is a minimal cycle such that V (γ̃) ⊂ V3(Γ̃), then γ̃ is well-colored.
Explicitly, if ∂σ̃ = γ̃, then we can color σ̃ white and all the outer faces red.

We shall give a more complex-geometric meaning of well-coloring.

Definition 6.14. Let s be a non-trivial section of En+1,n(−n) and ιi : P1 ↪→ P2 be an embedding
mapping P1 to the boundary divisor Di for i = 0, 1, 2. Write ι∗i s = (ci, ti), where ci ∈ H0(P1,OP1)
and ti ∈ H0(P1,OP1(1)). The pseudo-zero locus of s along Di is the set

PZi(s) := {p ∈ P1 | ci(p) = 0 or ti(p) = 0}.
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Then the pseudo-zero locus of s is defined as

PZ(s) :=

2⋃
i=0

PZi(s).

We also define the pseudo-zero locus PZi(s) of a section s of OP2(1) along Di to be the zero locus
of ι∗i s

Remark 6.15. The red-colored faces and edges should be thought of as the zero locus or pseudo-zero
locus of certain non-trivial sections of OP2(1) or En+1,n(−n) respectively. Different types of vertices
correspond to different types of sections. The tropical images of the pseudo-zero loci of different
types of sections are depicted in Figure 5. Each triangle is the dual cell of some vertex v such that

v = πB(ṽ) for some ṽ ∈ V (G̃). The “double triangle” should be thought of as a 2-fold covering of
v̌, which record the pseudo-zero locus of a section of En+1,n(−n) along toric divisors.

Figure 5. For Type I(a)-(c), the red-colored cells denote the tropical images of
pseudo-zero loci of three types of sections of OP2(1). For Type II(a)-(c), the red-
colored cells denote the pseudo-zero locus of a non-trivial section of En+1,n(−n).

6.2.3. A rank 1 local system. Let G̃ ⊂ G̃(L) be a well-colored subgraph. To study simplicity of
E0(L), we need one more ingredient, which is a rank 1 local system on the subgraph

G̃0 := G̃\{Int(τ̃) | τ̃ is a red edge} ⊂ G̃.

Note that V (G̃0) = V (G̃). Fix ṽ ∈ V (G̃0) and define the open star of ṽ by

Uṽ :=
⋃

σ̃∈V (G̃0)qE(G̃0)

Int(σ̃) ⊂ G̃0.

Then {Uṽ}ṽ∈V (G̃0) forms an open cover of G̃0. To define the local system, we choose a collection of

sections S := {sṽ}ṽ∈V (G̃), where sṽ is a non-trivial section of E(ṽ). We assume that the pseudo-zero
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locus of sṽ’s respects the coloring of G̃, meaning that, for an adjacent cell σ̃ of ṽ, Xσ is contained
in the pseudo-zero locus of sṽ if and only if σ̃ is red-colored. If Uṽ ∩ Uũ 6= ∅, then we have

Uṽ ∩ Uũ =

{
Int(τ̃)q Int(τ̃ ′) if ṽ, ũ ∈ V6(Γ̃) such that ṽ, ũ ∈ τ̃ ∩ τ̃ ′,
Int(τ̃) otherwise

for some τ̃ , τ̃ ′ ∈ E(G̃0) with πB(τ̃) = πB(τ̃ ′). In such a case, we define

λṽũ(S) :=



ι∗τv,ssṽ
ι∗
τv′,ssũ

if ṽ, ũ ∈ V3(Γ̃),

tτ̃ ṽ
ι∗
τv′,ssũ

if ṽ ∈ V6(Γ̃), ũ ∈ V3(Γ̃) and τ̃ is a blue or black edge,

cτ̃ ṽ
cτ̃ ũ

if ṽ, ũ ∈ V6(Γ̃) and τ̃ is a green edge,
tτ̃ ṽ
tτ̃ ṽ

if ṽ, ũ ∈ V6(Γ̃) and τ̃ is not a green edge.

An explanation of the definition of λṽũ(S) is in order:

(1) Suppose τ̃ is not a red-colored edge whose vertices ṽ, ũ are in V3(Γ̃). Then E(ṽ), E(ũ) are
line bundles and ι∗τv,ssṽ, ι

∗
τv′,ssũ are non-trivial holomoprhic sections of ι∗τv,sE(ṽ), ι∗τv′,sE(ũ),

which can be identified with a line bundle L(τ̃) on Xτ . In this case, the quotient λṽũ(S) is
a meromorphic function on Xτ .

(2) Suppose τ̃ is not a red-colored edge and some of its vertices ṽ, ũ are in V6(Γ̃), say ṽ ∈ V6(Γ̃).
Then E(ṽ) is a rank 2 bundle. In this case, ι∗τv,ssṽ splits into

(cτ̃ ṽ, tτ̃ ṽ) ∈ H0(Xτ , ι
∗
τv,sE(ṽ)),

where cτ̃ ṽ ∈ C and tτ̃ ṽ is a holomorphic section of a line bundle on Xτ . Both of them are
non-trivial since τ̃ is not a red edge. The bundles ι∗τv,sE(ṽ), ι∗τv,sE(ṽ) are identified with a
split rank 2 bundle E(τ̃) on Xτ and thus, λṽũ(S) is also a meromorphic function on Xτ .

Clearly λṽũ(S)λũṽ(S) = 1 and since Uṽ ∩ Uũ ∩ Uũ′ = ∅ for three distinct vertices, the cocycle
condition is vacuous.

Definition 6.16. A collection of sections S = {sṽ}ṽ∈V (G̃), with sṽ ∈ H0(Xv, E(ṽ)), is called

admissible if {λṽũ(S)}ṽ,ũ∈V (G̃) ⊂ C×.

Thus, if S is a collection of admissible sections, the non-zero constants {λṽũ(S)}ṽ,ũ∈V (G̃) defines

a rank 1 local system

LG̃(S)

on the support of G̃0. Clearly, LG̃(S) only depends on the pseudo-zero loci of sṽ’s, namely, if
S = {sṽ}ṽ∈V (G̃) and S ′ = {s′ṽ}ṽ∈V (G̃) are related by sṽ = cṽsṽ for some non-zero constants

{cṽ}ṽ∈V (G̃), then LG̃(S) ∼= LG̃(S ′) as local systems. It is also clear that a non-trivial global section

of EndG̃ exists if and only if LG̃(S) is trivial as a local system. The key point is that admissible
sections can be determined combinatorially.

Definition 6.17. Let G̃ be a well-colored subgraph of G̃(L). Let ṽ ∈ V (G̃) and for an adjacent face

σ̃, we define σ := πB(σ̃). Let σi, i = 0, 1, 2, be the adjacent faces of πB(ṽ). A data D on G̃ is a

collection of triples {δ(ṽ) = (dσ0
(ṽ), dσ1

(ṽ), dσ2
(ṽ))}ṽ∈V (G̃0) ⊂ C3 such that, if ṽ ∈ V3(G̃), then we

have the following cases:
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(Ia) If ṽ is of Type I(a) with the unique white-colored adjacent face σ̃k, then

dσk(ṽ) 6= 0

and dσj (ṽ) = dσk(ṽ) = 0 for distinct i, j, k ∈ {0, 1, 2}.
(Ib) If ṽ is of Type I(a) with two white-colored adjacent faces σ̃i, σ̃j,

dσi(ṽ) 6= 0, dσj (ṽ) 6= 0

and dσk(ṽ) = 0 for distinct i, j, k ∈ {0, 1, 2}.
(Ic) If ṽ is of Type I(c), then

dσi(ṽ) 6= 0

for all i ∈ {0, 1, 2};
while, if ṽ ∈ V6(G̃), then we have the following cases:

(IIa) If ṽ is of Type II(a) with white-colored adjacent faces σ̃i, σ̃j such that the edge σ̃i ∩ σ̃j is
green-colored, then

dσi(ṽ) = dσj (ṽ) = 0

and dσk(ṽ) 6= 0 for distinct i, j, k ∈ {0, 1, 2}.
(IIb) If ṽ is of Type II(b) with white-colored adjacent faces σ̃i, σ̃j such that the edge σ̃i ∩ σ̃j is

blue-colored then

dσi(ṽ) 6= 0, dσj (ṽ) 6= 0

and dσk(ṽ) = 0 for distinct i, j, k ∈ {0, 1, 2}.
(IIc) If ṽ is of Type II(c), then

dσi(ṽ) 6= 0

for all i ∈ {0, 1, 2}.

Definition 6.18. Let G̃ be a well-colored subgraph of G̃(L). Let τ̃ := τ ′1 ×π τ ′2 ∈ E(G̃0) be an
edge with vertices ṽ, ũ and adjacent faces σ̃, σ̃′, and let se, se′ be the gluing data correspond to the
morphisms e : v → τ, e′ : u → τ . A data D := {δ(ṽ)}ṽ∈V (G̃) is called compatible if the following

conditions are satisfied:

(1) If τ̃ has vertices ṽ, ũ ∈ V3(Γ̃) and two white-colored adjacent faces σ̃, σ̃′, then

se(m(σ̃))

se(m(σ̃′))

dσ(ṽ)

dσ′(ṽ)
=

se′(m(σ̃))

se′(m(σ̃′))

dσ(ũ)

dσ′(ũ)
,

where m(σ̃),m(σ̃′) ∈ Q∗τ are the slopes of the piecewise linear function ϕτ ′2 ◦π
−1−ϕτ ′1 ◦π

−1

on the cones Kσ,Kσ′ ∈ Στ respectively.

(2) If τ̃ is a blue edge with vertices ṽ ∈ V3(Γ̃), ũ ∈ V6(Γ̃) and two white-colored adjacent faces
σ̃, σ̃′, then

se(m(σ̃))

se(m(σ̃′))

dσ(ṽ)

dσ′(ṽ)
= − se

′(m(σ̃))

se′(m(σ̃′))

dσ(ũ)

dσ′(ũ)
.

(3) If τ̃ is a blue edge with vertices ṽ, ũ ∈ V6(Γ̃) and two white-colored adjacent faces σ̃, σ̃′, then

se(m(σ̃))

se(m(σ̃′))

dσ(ṽ)

dσ′(ṽ)
=

se′(m(σ̃))

se′(m(σ̃′))

dσ(ũ)

dσ′(ũ)
.



31

Given a well-colored subgraph G̃ and a compatible data D, we define

LG̃(D,a)|Uṽ := C〈ṽ〉,

and for ṽ, ũ ∈ V (G̃) so that

Uṽ ∩ Uũ =

{
Int(τ̃)q Int(τ̃ ′) if ṽ, ũ ∈ V6(G̃) such that ṽ, ũ ∈ τ̃ ∩ τ̃ ′,
Int(τ̃) otherwise

for some τ̃ , τ̃ ′ ∈ E(G̃0) with πB(τ̃) = πB(τ̃ ′), we define

λṽũ(D,a) := λṽũ(D,σ,a) :=


aṽũ

se(m(σ̃))
se′ (m(σ̃))

dσ(ṽ)
dσ(ũ) if ṽ, ũ ∈ V3(Γ̃),

aṽũ
se(m(σ̃))
se′ (m(σ̃))

dσ(ṽ)
dσ(ũ) if ṽ ∈ V3(Γ̃), ũ ∈ V6(Γ̃),

aṽũ
dσ(ũ)
dσ(ṽ) if ṽ, ũ ∈ V6(Γ̃) and τ̃ is a green edge,

aṽũ
se(m(σ̃))
se′ (m(σ̃))

dσ(ṽ)
dσ(ũ) if ṽ, ũ ∈ V6(Γ̃) and τ̃ is not a green edge,

where σ̃ is any white-colored adjacent face of τ̃ and a := {aṽũ} is a set of non-zero constants that
we will fix later. They are required to satisfy aṽũaũṽ = 1. Clearly, λṽũ(D,a)λũṽ(D,a) = 1. In this
way we obtain a rank 1 local system

LG̃(D,a)

on G̃0, which is independent of the white-colored cell we chose. Indeed, for each vertex ṽ ∈ V (G̃),
we define

fṽ :=

{
1 if ṽ ∈ V3(G̃),

−1 if ṽ ∈ V6(G̃).

Then by Conditions (1), (2) and (3) in Definition 6.18, we have

λṽũ(D, σ̃,a)fũ = fṽλṽũ(D, σ̃′,a),

for all ṽ, ũ ∈ V (G̃). Moreover, LG̃(D,a) ∼= LG̃(D′,a) as local systems if there exists a set of

non-zero constants {cṽ}ṽ∈V (G̃) ⊂ C× such that δ(ṽ) = cṽδ
′(ṽ) for all ṽ ∈ V (G̃).

To relate LG̃(D,a) with LG̃(S), for each ṽ ∈ V (G̃), we associate a section sṽ of E(ṽ) such
that the corresponding transition functions {λṽũ(S)} are given by {λṽũ(D,a)}, for some choice of
a that only depends on L and the gluing data {gστ,s}τ⊂σ obtained in Theorem 5.6. Note that

Xv
∼= Proj(C[P̌v̌]), where v̌ is the dual cell of {v} and

P̌v̌ = {(mr, r) ∈ Λ̌v̌ ⊕ Z | m ∈ ˜̌v, r ≥ 0}.

When E(ṽ) is a line bundle, sections of E(ṽ) are degree 1 elements of C[Pv̌]. Let σ̌ be a vertex of v̌.
Put

χσ̌(v̌) := z(σ̌,1),

which can be regarded as homogeneous coordinates of Xv. Let τ̃ be the edge such that σ̌ /∈ τ̌ . Then
χσ̌(v̌) vanishes along the divisor corresponding to τ . The assignment ṽ 7→ sṽ is as follows.

(Ia) If ṽ is of Type I(a) and σ̃ is the unique white-colored adjacent face, we define

sṽ := dσ(ṽ)χσ̌(v̌).

(Ib) If ṽ is of Type I(b) such that τ̃k has two white-colored adjacent faces σ̃i, σ̃j , for i, j 6= k, we
define

sṽ := dσi(ṽ)χσ̌i(v̌) + dσ̌jχσ̌j (v̌).
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(Ic) If ṽ is of Type I(c), we define

sṽ := dσ0
(ṽ)χσ̌0

(v̌) + dσ1
(ṽ)χσ̌1

(v̌) + dσ2
(ṽ)χσ̌2

(v̌).

(IIa) If ṽ is of Type II(a) with two unique white-colored face σ̃1, σ̃2 so that the edge σ̃1 ∩ σ̃2 is
green, we define sṽ by

sṽ|Wσ0
:=− 1

dσ0(ṽ)

χσ̌1
(v̌)

χσ̌0(v̌)
e0 −

1

dσ0(ṽ)

χσ̌2
(v̌)

χσ̌0(v̌)
e′0,

sṽ|Wσ1
:=

1

dσ0
(ṽ)

e′1,

sṽ|Wσ2
:=

1

dσ0
(ṽ)

e′2.

Here, Wσi := Spec(C[σ̌i ∩M ]) = {χσ̌i(v̌) 6= 0} are the affine charts of Xv and sṽ is written
in terms of the inhomogeneous coordinates χσ̌j (v̌)/χσ̌i(v̌) of Wσi .

(IIb) If ṽ is of Type II(b) with a pair of white-colored faces σ̃1, σ̃2 so that the edge σ̃1 ∩ σ̃2 is
blue-colored, we define sṽ by

sṽ|Wσ0
:=

1

dσ1(ṽ)
e0 +

1

dσ2(ṽ)
e′0,

sṽ|Wσ1
:=− 1

dσ1
(ṽ)

χσ̌0(v̌)

χσ̌1
(v̌)

e1 +

(
1

dσ2
(ṽ)
− 1

dσ1
(ṽ)

χσ̌2(v̌)

χσ̌1
(v̌)

)
e′1,

sṽ|Wσ2
:=− 1

dσ2
(ṽ)

χσ̌0
(v̌)

χσ̌2
(v̌)

e2 +

(
1

dσ1
(ṽ)
− 1

dσ2
(ṽ)

χσ̌1
(v̌)

χσ̌2
(v̌)

)
e′2.

(IIc) If ṽ is of Type II(c), we define sṽ by

sṽ|Wσ0
:=

(
1

dσ1(ṽ)
− 1

dσ0(ṽ)

χσ̌1
(v̌)

χσ̌0(v̌)

)
e0 +

(
1

dσ2(ṽ)
− 1

dσ0(ṽ)

χσ̌2
(v̌)

χσ̌0(v̌)

)
e′0,

sṽ|Wσ1
:=

(
1

dσ0
(ṽ)
− 1

dσ1
(ṽ)

χσ̌0(v̌)

χσ̌1
(v̌)

)
e1 +

(
1

dσ2
(ṽ)
− 1

dσ1
(ṽ)

χσ̌2(v̌)

χσ̌1
(v̌)

)
e′1,

sṽ|Wσ2
:=

(
1

dσ0(ṽ)
− 1

dσ2(ṽ)

χσ̌0
(v̌)

χσ̌2(v̌)

)
e2 +

(
1

dσ1(ṽ)
− 1

dσ2(ṽ)

χσ̌1
(v̌)

χσ̌2(v̌)

)
e′2.

The quotient of the characters are precisely transition functions of the line bundle OXv (1) ∼=
OP2(1), so we have

ι∗τv,s

(
χσ̌(v̌)

χσ̌′(v̌)

)
=

se(m(σ̃))

se(m(σ̃′))

χσ̌(τ̌)

χσ̌′(τ̌)

Then by using Conditions (1), (2) and (3) in Definition 6.18, one can see that ι∗τv,ssṽ, ι
∗
τu,ssũ share

the same pseudo-zero locus on Xτ . For example, if ṽ is of Type I(c) and ũ is of Type II(c), and

τ̃ ∈ E(G̃) is a blue edge connecting ṽ, ũ with white-colored adjacent faces σ̃1, σ̃2, then Xτ
∼= P1 is

mapped into the divisors {χσ̌0
(v) = 0} ⊂ Xv and {χσ̌0

(v) = 0} ⊂ Xu. We compute in terms of the
inhomogeneous coordinate χσ̌2(τ̌)/χσ̌1(τ̌) that

Aτ̃ ṽ,s
(
ι∗τv,s(sṽ)

)
= aτ̃ ṽ

(
dσ1

(ṽ) + dσ2
(ṽ)

se(m(σ̃2))

se(m(σ̃1))

χσ̌2
(τ̌)

χσ̌1(τ̌)

)
χσ̌1

(τ̌),

Aτ̃ ũ,s
(
ι∗τu,s(sũ)

)
=

(
a−τ̃ ũ
dσ0(ũ)

, a+
τ̃ ũ

(
1

dσ2(ũ)
− 1

dσ1(ũ)

se′(m(σ̃2))

se′(m(σ̃1))

χσ̌2
(τ̌)

χσ̌1(τ̌)

)
χσ̌1

(τ̌)

)
,
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where

A−1
τ̃ ṽ,s := g∗τ ′1v′1,s ⊗ gτ ′2v′2,s :L(τ ′1)∗ ⊗ L(τ ′2)→ ι∗τv,s(L(v′1)∗ ⊗ L(v′2)),

A−1
τ̃ ũ,s := g∗τ ′1u′1,s ⊗ gτ ′2u′2,s :L(τ ′1)∗ ⊗ L(τ ′2)→ ι∗τu,s(L(u′1)∗ ⊗ Lτ ′2(u′2)),

and gτ ′iu′i,s, gτ ′iv′i,s are components of the isomorphisms obtained in Theorem 5.6. As aτ̃ ṽ, a
+
τ̃ ũ are

non-zero, the sections aτ̃ ṽ
(
ι∗τv,s(sṽ)

)
and Πτ̃+ũ

(
aτ̃ ũ

(
ι∗τu,s(sũ)

))
(See Remark 6.11 for the notation

Πτ̃±ũ) share the same zero locus along Xτ if and only if

dσ1(ṽ) + dσ2(ṽ)
se(m(σ̃2))

se(m(σ̃1))

χσ̌2
(τ̌)

χσ̌1(τ̌)
and

1

dσ2(ũ)
− 1

dσ1(ũ)

se′(m(σ̃2))

se′(m(σ̃1))

χσ̌2
(τ̌)

χσ̌1(τ̌)

share the same zero locus on Xτ . Equivalently,

dσ1
(ṽ)

(
− 1

dσ1
(ũ)

se′(m(σ̃2))

se′(m(σ̃1))

)
=

1

dσ2
(ũ)

(
dσ2

(ṽ)
se(m(σ̃2))

se(m(σ̃1))

)
which is Condition (2) in Definition 6.18 after reordering terms. Hence the corresponding {λṽũ(S)}
are exactly given by {λṽũ(D,a)}, with a = {aṽũ} being given by the quotient of the constants
{aτ̃ ṽ, a±τ̃ ṽ} and so LG̃(S) ∼= LG̃(D,a) as local systems. The converse is also true, namely, given a

set of sections S = {sṽ}ṽ∈V (G̃) whose vanishing loci respect the coloring of G̃, and for any edge

τ̃ with vertices ṽ, ũ, sṽ, sũ share the same pseudo-zero locus on Xτ , one can obtain a compatible
data D by writing sṽ as a linear combination of characters in Xṽ as above. We summarize by the
following:

Proposition 6.19. Given a well-colored subgraph G̃ ⊂ G̃(L). There is a 1-1 correspondence

between the set of compatible data on G̃ and the set of admissible sections on G̃. Moreover, the
assignment ṽ 7→ sṽ above induces an isomorphism of local systems LG̃(D,a) ∼= LG̃(S).

6.2.4. The main results. We are now ready to prove the main result of this section, which gives a
combinatorial description of sections of End0(E(L)) for L ∈ Sn+1,n.

Theorem 6.20. Let L ∈ Sn+1,n. Define

WC(L) := {G̃ ⊂ G̃(L) | G̃ is well-colored},

and for each G̃ ∈ WC(L), define

DG̃ := {D | LG̃(D,a) is trivial}.

Then, for any G̃ ∈ WC(L) and D ∈ DG̃, there is an injection

iLG̃(D,a) : H0(G̃0,LG̃(D,a)) ↪→ H0(X0(B,P, s), End0(E0(L)))

such that

H0(X0(B,P, s), End0(E0(L))) =
⋃

G̃∈WC(L)

⋃
D∈DG̃

Im
(
iLG̃(D,a)

)
.

Proof. Suppose we have a well-colored subgraph G̃ ⊂ G̃(L) and a compatible data D such that the

local system LG̃(D,a) is trivial. Let s̄ ∈ H0(G̃0,LG̃(D,a)). Representing s̄ as a Čech 0-cocycle
{cṽ}ṽ∈V (G̃) ⊂ C, we have

cũ = cṽλṽũ.

Define
s|Xv := cṽsṽ.
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This gives a section s of EndG̃ → XG̃, whose pseudo-zero locus is prescribed by the red-colored

cells of G̃. In particular, s vanishes along the divisor
⋃
ẽ∈H(G̃)Xẽ. Hence we can extend s by zero

to obtain a non-trivial section of H0(X0(B,P, s), End0(E0(L))). Put

iLG̃(D,a)(s̄) := s.

This gives the injection

iLG̃(D,a) : H0(G̃0,LG̃(D,a)) ↪→ H0(X0(B,P, s), End0(E0(L))).

Now let s ∈ H0(X0(B,P, s), End0(E(L))). Consider the subgraph G̃ ⊂ G̃(L) such that ṽ ∈ V (G̃)

if and only if Πṽ(s) 6= 0 and ẽ ∈ E(G̃) if and only if ẽ is connecting two vertices in V (G̃). Let

τ̃ ∈ E(G̃)qH(G̃) and σ̃ ∈ F (G̃).

• Color σ̃ by red if Xσ lies in the pseudo-locus of Πṽ(s) for some vertex ṽ ∈ σ̃. Color the
remaining 2-cells by white.

• Color τ̃ by red if τ̃ has two red-colored adjacent faces.

• Color τ̃ by blue if ṽ ∈ τ̃ for some ṽ ∈ V (G̃) ∩ V3(Γ̃) and has two white-colored adjacent

faces or if τ̃ = τ̃+ (See (4) for the definition of τ̃±) for some ṽ ∈ V (G̃) ∩ V6(Γ̃) such that
Πτ̃+ṽ(ι

∗
τv,sΠṽ(s)) (See Remark 6.11 for definition of Πτ̃±ṽ) is non-trivial.

• Color τ̃ by green if τ̃ = τ̃− for some ṽ ∈ V (G̃) ∩ V6(Γ̃) such that Πτ̃−ṽ(ι
∗
τv,sΠṽ(s)) is

non-trivial.
• Color the remaining edges by black.

By the geometry of pseudo-zero loci of sections of OP2(1), En+1,n(−n) ∼= E1,0
∼= E∗n+1,n(n + 1),

Conditions (2a)-(2d), (2(e)i)-(2(e)iii), (2(f)i)-(2(f)iii) are all satisfied. See Figure 5 for the tropical
image of different types of pseudo-zero loci and Figure 4 for their dual. For Condition (2g), let ẽ be

a half-edge of G̃ that contains a vertex ũ ∈ V (G̃). By the definition of a half-edge, ẽ must connect

ũ to a point ũ′ ∈ V (G̃(L))\V (G̃). Then by the definition of G̃, we have Πũ′(s) ≡ 0. In particular,
the two adjacent faces of ẽ must be red-colored. Hence we get Condition (2g). Clearly s induces
a compatible data D such that the associated local system LG̃(D,a) is trivial. Therefore, s lies in
the image of iLG̃(D,a). �

Remark 6.21. As we have mentioned in the introduction, the space H0(X0(B,P, s), End(E0(L)))
can be identified with the 0-th cohomology of a constructible sheaf F on P (L). Via the inclusion

G̃0 ⊂ P (L), the local system LG̃(D,a) can be regarded as a subsheaf of F supported on |G̃0|.

Example 6.22. Suppose the gluing data s is trivial and G̃ has no Type II(c) vertices. Then
we can set dσ(ṽ) = 1 whenever ṽ is not of Type II(b). For a Type II(b) vertex ṽ, we can set
dσ(ṽ) = 1, dσ′(ṽ) = −1, whenever σ, σ′ are images of white-colored adjacent faces of ṽ under πB.
The data D := {δ(ṽ)} is then compatible and hence defines a local system LG̃(D,a). If LG̃(D,a)
is trivial, sections of LG̃(D,a) correspond to those of End0(E0(L)) whose pseudo-zero loci have
tropical images being red edges, red vertices and midpoints of blue edges (see Figure 5).

Theorem 6.20 leads us to make the following

Definition 6.23. A tropical Lagrangian multi-section L ∈ Sn+1,n is called simple if for any well-

colored subgraph G̃ ⊂ G̃(L) and compatible data D, the local system LG̃(D,a) is non-trivial.

Remark 6.24. The proof of Theorem 6.4 show that if γ̃ ⊂ G̃(L) is a minimal cycle whose vertices

are all in V3(Γ̃), then there exists a compatible data D such that Lγ̃(D,a) is trivial.
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Remark 6.25. Definition 6.23 is equivalent to Definition 6.3 when r = 2. For r = 2, the projections
π1, π2 : P0(L) → L\S′ define two homeomorphisms and hence πB |P0(L) : P0(L) → B\S can be

identified with the unbranched covering map π|L\S′ : L\S′ → B\S. Thus the graph G̃(L) can be
regarded as a graph in L\S′ and it has at most trivalent vertices. By Condition (2) in Definition

6.8, we only take half of the vertices in defining G̃(L), so G̃(L) and G(L) are actually homeomorphic
via π|L\S′ . Moreover, we have already seen that any minimal cycle γ ⊂ G(L) with trivalent vertices
is well-colored and always carry a compatible data D such that Lγ(D,a) is trivial. This explains
why, when r = 2, we just need non-existence of minimal cycles to define simplicity of L.

Theorem 6.20 implies the following

Theorem 6.26. A tropical Lagrangian multi-section L ∈ Sn+1,n is simple if and only if E0(L) is
simple.

Again, by applying Serre duality and Corollary 4.7 of [2], we obtain the following

Corollary 6.27. If L ∈ Sn+1,n is simple, then the pair (X0(B,P, s), E0(L)) is smoothable.

Finally, let us briefly discuss how one may define simplicity of L ∈ Sm,n for m ≥ n + 2. For
m ≥ n+2, pseudo-zero loci of sections of OP2(m−n) have more combinatorial types as m grows. For
instance, there are 15 types of pseudo-zero loci when m = n+2. One can use the transition functions
given in (3) to study sections of Em,n(−n) and classify their pseudo-zero loci. Afterwards, one can
modify the definition of well-colored subgraphs and compatible data according to the pseudo-zero
loci of OP2(m − n) and Em,n(−n) and also define a local system {LG̃(D,a)} so that its triviality
corresponds to a 1-parameter family of sections of End0(E(L)) as in Theorem 6.20. In the case
m > n+ 2, one can easily deduce that E0(L) is simple if and only if for any well-colored subgraph

G̃ ⊂ G̃(L) which has only 6-valent vertices and any compatible data D on G̃, the local system
LG̃(D,a) is non-trivial. For m = n+ 2, E0(L) is simple if and only if for any well-colored subgraph

G̃ ⊂ G̃(L) whose edges have at least one 6-valent vertex and any compatible data D on G̃, the local
system LG̃(D,a) is non-trivial.
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244, Birkhäuser Boston, Boston, MA, 2006, pp. 321–385.

21. Z. N. Ma, From Witten-Morse Theory to Mirror Symmetry, ProQuest LLC, Ann Arbor, MI, 2014, Thesis

(Ph.D.)–The Chinese University of Hong Kong (Hong Kong).
22. S. Payne, Toric vector bundles, branched covers of fans, and the resolution property, J. Algebraic Geom. 18

(2009), no. 1, 1–36.
23. H. Ruddat and B. Siebert, Period integrals from wall structures via tropical cycles, canonical coordinates in

mirror symmetry and analyticity of toric degenerations, Publ. Math. Inst. Hautes Études Sci., to appear,

arXiv:1907.03794.
24. R. L. E. Schwarzenberger, Vector bundles on the projective plane, Proc. London Math. Soc. (3) 11 (1961),

623–640.

25. A. Strominger, S.-T. Yau, and E. Zaslow, Mirror symmetry is T -duality, Nuclear Phys. B 479 (1996), no. 1-2,
243–259.

26. Y.-H. Suen, Reconstruction of TP2 via tropical Lagrangian multi-section, preprint (2019), arXiv:1904.12449.
27. A. Tyurin, Geometric quantization and mirror symmetry, preprint (1999), arXiv:9902027.

Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong

Email address: kwchan@math.cuhk.edu.hk

The Institute of Mathematical Sciences and Department of Mathematics, The Chinese University of

Hong Kong, Shatin, Hong Kong

Email address: zmma@math.cuhk.edu.hk

Center for Geometry and Physics, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea

Email address: yhsuen@ibs.re.kr

http://arxiv.org/abs/1601.07081
https://arxiv.org/abs/1907.03794
https://arxiv.org/abs/1904.12449
https://arxiv.org/abs/math/9902027

	1. Introduction
	Acknowledgment

	2. The Gross-Siebert program
	2.1. Affine manifolds with singularities and their polyhedral decompositions
	2.2. Toric degenerations

	3. Tropical Lagrangian multi-sections
	4. A local model around the ramification locus
	5. Construction of E0(L) for L S
	6. Simplicity and smoothability
	6.1. Smoothing in rank 2
	6.2. Smoothing in general rank

	References

