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Chapter 6

TRANSPORTATION
PROBLEMS |,

6.1 Transportation Model

Transportation models deal with the determination of a minimum-cost plan for transporting a com-
modity from a number of sources to a number of destinations. To be more specific, let there be
m sources (or origins) that produce the commodity and n destinations (or sinks) that demand the
commodity. At the i-th source, i = 1,2,--- ,m, there are s; units of the commodity available. The
demand at the j-th destination, j = 1,2,---n, is denoted by d;. The cost of transporting one unit
of the commodity from the i-th source to the j-th destination is c¢;;. Let z;5, 1 <i<m,1<j <mn,
be the numbers of the commodity that are being transported from the i-th source to the j-th des-
tination. Our problem is to determine those z;; that will minimize the overall transportation cost.
An optimal solution z;; to the problem is called a transportation plan.

51 Qez---- =D d
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n @c- D b
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We note that at the i-th source, we have the i-th source equation
T A
Zfﬂij < i, 1<i<m,
j=1
while at the j-th destination, we have the j-th destination equation

m S
domij=d;, 1<j<n
i=1

| oeee—

Notice that if the total demand equals the total supply, then we have the following balanced trans-

1

DS



2 Chapter 6.  TRANSPORTATION PROBLEMS
portation equation:

m n n n m n

Dos=D_D wg=) > w=) d;

i=1 i=1 j=1 j=11i=1 Jj=1

and the model is said to be balanced.

In the case of an unbalanced model, i.e. the total demand is not equal to the total supply,
we can always add dummy source or dummy destination to complement the difference. In the
following, we only consider balanced transportation models. They can be written as the following
linear programming problem: m——

——
m n
Zo = E E CijTij

subject to (6.1)

m n .
where g 5; = E d;.
=1 7j=1

Notice that there are mn variables but only m + n equations. To initiate the simplex method,
we have to add m+n more artificial variables and solving the problem by the simplex method seems
to be a very tedious task even for moderate values of m and n. However, the transportation models
possess some important properties that make the calculation easier to be handled.

Using the vector notations

- T
x = [z11, %12, %13, * s T10, T21,* * * 3 T2 "+ s Bmds " 2 Tm]”
_ T
C—[C]1,012,013,"',Cln,Cgl,"‘,CQ,n,"',le,"',Cmn] )

T
bz[SIaSZy"'asmvdladZa""dn] )

the transportation model can be stated as the following linear programming problem:

min zo=cTx
bject t Ax=b, (6.2)
s ‘
ubject to x> 0.
where t}}g  technology matrix A of the model is of the form: g
. 11 1 0] \
11 1
A= (6.3)
11 1
1 1 1
1 1 1
0 1 1 1
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6.6 Transshipment Model

The standard transportation model assumes that the direct route between a source and a destination
is a minimum-cost route. However, in actual application, the minimum-cost route is not known a
priori. In fact, the minimum-cost route from one source to another destination may well pass through
another source first. The transportation techniques we developed in the previous sections can be
adapted to find the minimum-cost route systematically.

The idea is to formulate the problem of finding the minimum-cost route as a transshipment
model and then solve the transshipment model by transportation techniques. In transshipment
model, commodities are allowed to pass transiently through other sources and destinations before
it ultimately reaches its designated destination. It therefore is capable of seeking the minimum-cost
route between a source and a destination.

To put the transshipment model in the context of transportation problem, we note that in
transshipment model, the entire supply from all sources could potentially pass through any source
or destination before it is redistributed again. This means that each source or destination node in
the transportation network can be considered both as a transient source and a transient destination.
Thus the number of sources equals to the number of destinations in the transshipment models and
that number is equal to the sum of sources and destinations in the corresponding transportation
models.

To allow transient passing of the commodity, an additional buffer stock B has to be allowed at
each source and destination. Since potentially, the entire supply from all sources could pass through
any one of the node, the size of the buffer stock has to be at least equals to the sum of supply or
demand of the transportation model, i.e.

m n
B> ai=) b
=1 j=1

This amount of buffer stock has to be added to each source and destination nodes in the transporta-
tion network.

Before one can use the transportation technique to solve the transshipment model, one has to
determine the unit cost of shipping the commodities through the transient nodes. In general, the
shipping cost from one location to itself should be zero and the shipping cost from the source .S; to
the destination D; should be the same as the shipping cost from D; to S;, but that may change
depending on the problem. However, one should note that the unit shipping cost from a source to
another source or from a destination to another destination is in general not given in the original
transportation problem. Thus these figures have to be given before the transshipment models is
completed.
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6.6. Transshipment Model

Ezample 6.7. Consider the following transportation problem.

Dy

D,

&)

6

(52‘} £

X
\/JL X‘; \\A’\K’ @j

e

S3

@

To formulate the problem as a transshipm Kt problem, we

J Nm :\\

assume that the commodities can pass

through any one of the nodes in the network before they finally reach their destinations. We suppose
further that the cost is the same for shipments in opposite directions and unit cost of shipment
amongst the sources is 10 while amonggt destinations is 5. The|transshipment problem is thus
changed into the following transportatioﬁ problem.
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Sometimes in a transportation problem, the commodities have to be shipped to an relocation
centers before they are shipped to their final destinations. In that case, only the relocation centers
can act as both a destination and a source. Clearly, the size of the buffer stock at these relocation
centers should be the same as the total supply of the transportation problem. Notice that if the
commodities are not allowed to be shipped from source S; to destination D; directly, then the unit
cost for such a shipment should be set to an arbitrarily large number, i.e. ¢;; = M > 1.
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Ezample 6.8. Consider the following transportation network.

Relocation

Source C Destinations
enters
S aat }\ / !
\ n f ‘
100 1 & 51— 80

120

w
\ \\'5
Ny

&

/

The buffer size at the relocation centers should be set to 370. The corresponding transportation
tableau is given as follows:

4 5 6 7 8 9 10 M N j

\ / \ 100
h M){ ) * 150

/ M M M
N / 120 LQ p

e o | 1 — ey n
N\
4 = V \ ) 370
. |

\ <

)

(=}

o 370

370 370 80 50 75 100 65

6.7 Assignment Problems

Consider assigning n jobs to n machines such that one job is assigned to one machine and one
machine gets only one job. Thus the total number of possible assignments is n!l. A cost c;; is
associated with assigning job 7 to machine j, 1 = 1,2,--- ,n; j = 1,2,--- ,n. The least total cost

N Q
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assignment is then a (zero-one) linear program as follows:

n n
max To = E E CijTqj

=1 j=1
inj =1 (¢=1,2,---,n) (one job sets one machines)

subject to )
Z.’Eij =1 (j=1,2,---,n) (one machine gets one job)

x5 =0,1 (1:1,2,... n; J=1,2,---,n)

Notice that both the transportation problem and the assignment problem have totally unimod-
ualr coefficient matrices, i.e. the determinants of all their square submatrices are equal to 0,+1 or
—1. This implies that both problems have the integer value property and hence all BFS solutions,
in particular, the optimal solutions, are integer-valued even if the integral constraints are discarded,
provided that all s; and d; are integers in the case of transportation problems.

Standard LP methods and the transportation techniques are applicable for assignment prob-
lems with z;; = 0,1 replaced by 0 < z;; < 1. However, there is a much more efficient direct method
generally known as the assignment algorithm. The key observation of the assignment algorithm is
that without loss of generality, we may assume that the cost ¢;; > 0 for all 7, j.

Theorem 6.5. Let C be the cost matriz with entries ¢;;, 1 <i<m and 1 < j < n. If a constant
is added to or subtracted from any row or column of C, giving C'; the minimization of the modified
objective function o' = ) c;'z;; yields the same solution x;; as the original objective function
,J
To = Zc”:r”
i,j

Proof. Suppose p; is added to row 7 and g¢; is subtracted from column j. Then

o’ = Zc,] i = Z Cij & pi & qj)Ts
= Zc”:v” == sz Z% = qu qu
= Zcija:ij :1: Zpi % Z‘Zi
i i i

= I + constant
O

We use this idea to create a new coefficient matrix C’ with at least one zero element in each
row and in each column, and if using zero elements only (or a subset of which) yields a feasible
assignment (with total cost = 0, of course), then this assignment is optimal because the total cost
of any feasible assignment is nonnegative, since c” > 0 for all 7j.

To determine if the zero elements alone can yield a feasible assignment solution, we first cover
the cost matrix C’ by lines. Define cover c¢ to be the minimum number of lines that can cover all
zero elements. Then ¢ < n. If ¢ = n, then we have an assignment on only the zero elements. The
actual assignment of jobs to machines is obtained by a trace-back as follows:

Let

z;; = number of zeros in row ¢ 4+ column j,

where the (4, 7)th entry is zero. Make successive assignments in increasing z;; order. Delete row i
and column j upon assignment i-j is made.
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Chapter 10 | che

/

m for Linear

Interior- S/

rogramming

We studied two pivoting algorithms for linear programming in Chapter 4. These algorithms

are finite and the simplex method in particular is known to be very efficient practically. Yet,

there is no known pivoting algorithm that is polynomial. There are pathological examples of

linear programs for which the simplex method (or the criss-cross method) behaves badly, i.e.,

generates an exponential number of pivots to find an optimal solution. There is a famous

example due to Klee and Minty, (28, 35]. An explicit description is given by
G U

max Tp
(10.1) subject to 0< =z <1,
€r;j1 <z S<l-ex;1,V5=2,...n

where 0 < e < 1/2.
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As you can see in Figure 10.1, the feasible region is combinatorially a n dimensional hyper-
cube with 2" extreme points and the simplex method can visit all 2" extreme points. This
example is given by a system of 2n inequalities in n variables and in particular the binary
encoding length of the problem is O(n). Thus, any polynomial algorithm uses at most a
polynomial number of arithmetic operations in terms of n. The orientation by the objective
function has a recursive structure. Namely, the orientation restricted to the (bottom) facet
associated with ez,—1 < z, is reversed on the opposite facet associated with z, <1 —ez,_;.
Each of these orientations are isomorphic to the orientation of an (n — 1) dimensional Klee-
Minty’s example. A typical exponential behavior of the simplex method goes though all
vertices of the bottom facet first, moves up to the top facet, and then goes through all
vertices of the facet to reach the optimal vertex.

The first polynomial algorithm for linear programming was proposed by Khachiyan [27]
in 1979. The algorithm is known as the ellipsoid method. Although it was considered a
breakthrough, the algorithm is not known to be practical because it is difficult to imple-
ment it with a reasonable arithmetic precision. The first practical polynomial algorithm
(class), known as interior-point methods, was invented by Karmarker [26] in 1984, and many
variations have been proposed afterwards including the primal-dual interior-point methods.

The purpose of this chapter is to give a brief description of the primal-dual interior-point
methods. Our main goals are to give a basic theoretical framework and to explain key algo-
rithmic components which were developed in the field of nonlinear continuous optimization.

10.1 Notions

For a function f : R® — R, the gradient Vf of f is defined as the vector of its partial
derivatives

9f(z)

Oz1

9f(z)
Ozn

Of course, for the gradient to be defined, the function must be differentiable.

The matrix of second partial derivatives of f is the Hessian matriz denoted by H(z) or
V2f(z) defined by

*f(z) . 0°f(z)
6$16121 6m16xn

(10.3) V3f(z) = H(z) == .,
Pf) . ()

OzndrT1 - ’ Ozn Oxn

In this chapter, for simplicity, we assume that any function f is twice continuously differen-
tiable, i.e. it has a second derivative that is continuous. This class of function is denoted by
a ol



