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Figure 4.4. Infinitely many Optimal Solutions
Any (z1,z2) = (1, k) for k being any positive number is a feasible solution.
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4.4. Degeneracy and Cycling 7

i1

Ty T2 T3 T4 b }(\ 5
z | 0 1 7/45  —2/45 | 7/3 X1 | - ‘7/5
s | 1 0 —2/45  7/45* | 7/3 X o
| 0 0 2 0] | 42 X 0

7(3’4[/),

Thus all convex combinations of the points [0,3,0,15] and [7/3,7/3,0,0] are optimal feasible solu-
tions.

4.4 Degeneracy and Cycling

Degenerate basic solutions are basic solutions with one or more basic variables at zero level. Degen-
eracy occurs when one or more of the constraints are redundant.

. BExample 4.5. Consider the following LLP
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T1 T2 T3 T4 Ts b
zz | O 0 1 =2 1* 4
z2 | O 1 0 1/2 -1/2| 0q
z1 | 1 0 0 1/8 1/8 |2
| O 0 0 3/4 -1/4 | 4
Degenerate Vertex { z2 = 0 and basic }
1
T T2 z3 T4 Ts5 b
zs | O 0 1 -2 1
z2 | 0 1 /2 -1/2 0 2
z1 | 1 o -1/8 3/8 0 | 3/2
0 | O 0 1/4 1/4 0 5
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1 T2 T3 Ty Ts b
0 1 1/2 -1/2 0 2
1 0 -1/8 3/8 0 | 3/2
0 0 1 -2 1 4
0 0 1/4 1/4 0 5

In figure 4.5, we see that the degenerate vertex V' can be represented either by

2.

{I2 = 0, Ty = 0}’

We note that degeneracy guarantees the existence of more than one feasible pivot element, i.e. tie-
ratios exist. For example, in the first tableau, the ratios for variables z4 and x5 are both equal to

{:I)4 = 0, Ts = 0} or

{z2 =0,z5 = 0}.
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Chapter 5

DUALITY
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5.1 The Dual Problems %ﬁ §o & (s

Every linear programming problem has associated with it another linear programming problem and
that the two problems have such a close relationship that whenever one problem is solved, the other
is solved as well. The original LPP is called the primal problem and the associated LPP is called
the dual problem. Together they are called a “dual pair” (primal + dual) in the sense that the dual
of the dual will again be the primal.

Ezample 5.1. (The Diet Problem) How can a dietician design the most economical diet that satisfies
the basic daily nutritional requirements for a good health? For simplicity, we assume that there are
only two foods F} and F3 and the daily nutrition required are N, Ny and N3. The unit cost of the
foods and their nutrition values together with the daily requirement of each nutrition are given in

the following table. \{(% Mest ?‘; I P Eu 3

A oy Fl‘ F; XyDaily Requirement @ @/:\ > @ }
mfllo Cost | 120 180 — 1p (v ic
T el M| 1L 10
Vinna Mo | 2 4 2 (o 29 31
Cebh s (3 6 32

Let zj, j = 1,2 be the number of units of F; that one should eat in order to minimize the cost and
yet fulfill the daily nutrition requirement. Thus the problem is to select the z; such that

min zg = 120z; + 18022
subject to the nutritional constraints:
1+ z2>10
2z + dag > 24
3y + 625 > 32
and the non-negativity constraints: z; > 0, j = 1,2. In matrix form, we have
min zo =cTx C[)eg (£e)
>b

subject to {Ax = FA) \ix [4
= (A
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where

and

Now let us look at the same problem from a pharmaceutical company’s point of view. How
can a pharmaceutical company determine the price for each unit of nutrient pill so as to maximize
revenue, if a synthetic diet made up of nutrient pills of various pure nutrients is adopted? Thus we
have three types of nutrient pills P;, P, and P;. We assume that each unit of P; contains one unit of
the INV;. Let u; be the unit price of P;, the problem is to maximize the total revenue up from selling
such a synthetic diet, i.e.

max up = 10u; + 24us + 32u3

subject to the constraints that the cost of a unit of synthetic food j made up of F; is no greater
than the unit market price of Fj:

ug + 2up + 3ug < 120 oy Ry W ¢ brs’
i Wy [0
uy + 4ug + 6uz < 180 { /;\T G " < \[go

Uy, uz,u3z > 0
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We said the two problems form a dual pair of lianing problem, and we will see that the
solution to one should lead to the solution of the other.

In matrix form, the problem is:

Definition 5.1. Let x and ¢ be column m-vectors, b and u be column m-vectors and A be an

m-by-n matrix. The primal and the dual problems can be defined as follows: PANA heA
Primal CF Dual U Cad Cfﬁ\ C ris.
max c¢T'x min bTu () W GY YW
subject to Ax <b subject to ATu > c G IR Q\ &, T; cxit (,%t
x>0 u>0 C ‘\ v) < > 4

Calling one primal and the other one dual is completely arbjtrary for we have the following
theorem. .

Theorem 5.1. The dual of the dual is the primal..
Proof. Transforming the dual into canonical form, we have
max uy = —bTu FC .:D L
. =ATu< —¢ T
subject to
u>0
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