Chapter 4

SPECIAL CASES IN APPLYING SIMPLEX METHODS

4.1 No Feasible Solutions

In terms of the methods of artificial variable techniques, the solution at optimality could include one or more artificial variables at a positive level (i.e. as a non-zero basic variable). In such a case the corresponding constraint is violated and the artificial variable cannot be driven out of the basis. The feasible region is thus empty.

Example 4.1. Consider the following linear programming problem.

$$\max \qquad x_0 = 2x_1 + x_2 + 2x_3 - 2x_4 + 2x_4 + 2x_5 + 2x_5$$

Using a surplus variable x_3 , an artificial variable x_4 and a slack variable x_5 , the augmented system is:

$$-x_{1} + x_{2} - x_{3} + x_{4} = 2$$

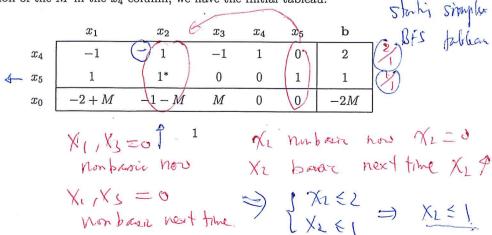
$$x_{1} + \dot{x_{2}} + x_{5} = 1$$

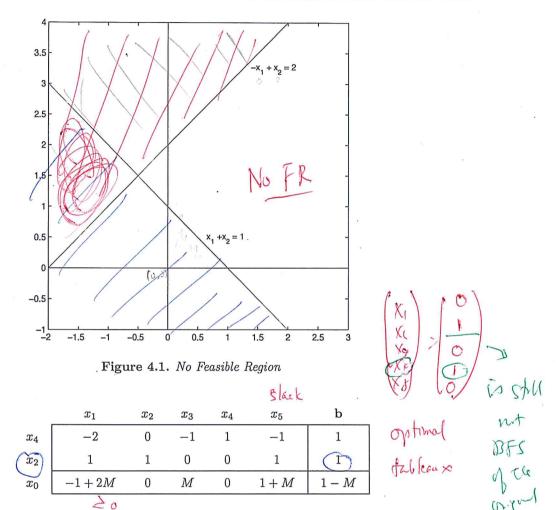
$$x_{0} - 2x_{1} - x_{2} + Mx_{4} = 0$$

Now the columns corresponding to x_4 and x_5 form an identity matrix. In tableau form, we have

	x_1	x_2	x_3	x_4	x_5	b
x_{4}	-1	1	-1	1	0	2
x_5	1	1	0.	0	1	1
x_0	-2	-1	0	M	0	0

After elimination of the M in the x_4 column, we have the initial tableau:





Since M is a very large number, -1+2M is positive. Hence all entries in the x_0 row are nonnegative. Thus we have reached an optimal point. However, we see that the artificial variable $x_4=1$, which is not zero. That means that the solution just found is not a solution to our original problem. Indeed the x that satisfies $Ax + Ix_a = b$ with $x_a \neq 0$ is not a solution to Ax = b. Figure 4.1 shows that the feasible region to the problem is empty.

4.2 Unbounded Solutions

Theorem 4.1. Consider an LPP in feasible canonical form. If in the simplex tableau, there exists a nonbasic variable x_j such that $y_{ij} \leq 0$ for all $i = 1, 2, \dots, m$, i.e. all entries in the x_j column are non positive, then the feasible region is unbounded. If moreover that $z_j - c_j < 0$, then there exists a feasible solution with at most m + 1 variables nonzero and the corresponding value of the objective function can be set arbitrarily large.

Proof. Let x_B be the current BFS with $Bx_B = b$. Let the columns of B be denoted by b_i . Then we have

$$B\mathbf{x}_B = \sum_{i=1}^m x_{B_i} \mathbf{b}_i = \mathbf{b}.$$

Let a_j be the column of A that corresponds to the variable x_j . By (??), we have

$$\mathbf{a}_j = B\mathbf{y}_j = \sum_{i=1}^m y_{ij} \mathbf{b}_i.$$

Hence for all $\theta > 0$, we have

$$\mathbf{b} = \sum_{i=1}^{m} x_{B_i} \mathbf{b}_i - \theta \mathbf{a}_j + \theta \mathbf{a}_j$$
$$= \sum_{i=1}^{m} x_{B_i} \mathbf{b}_i - \theta \sum_{i=1}^{m} y_{ij} \mathbf{b}_i + \theta \mathbf{a}_j$$
$$= \sum_{i=1}^{m} (x_{B_i} - \theta y_{ij}) \mathbf{b}_i + \theta \mathbf{a}_j.$$

Thus we obtain a new nonbasic solution of m+1 nonzero variables. This solution is feasible as

$$x_{B_i} - \theta y_{ij} \ge 0$$
, for all i .

Moreover, the value of x_j , which is equal to θ , can be set arbitrarily large, indicating that the feasible region is unbounded in the x_j direction.

If moreover that $c_j > z_j$, then the value of the objective function can be set arbitrarily large since

$$\hat{z} = \sum_{i=1}^{m} (x_{B_i} - \theta y_{ij}) c_{B_i} + \theta c_j = \sum_{i=1}^{m} x_{B_i} c_{B_i} - \theta \sum_{i=1}^{m} y_{ij} c_{B_i} + \theta c_j$$
$$= c_B x_B - \theta c_B^T y_j + \theta c_j = z - \theta z_j + \theta c_j = z + \theta (c_j - z_j).$$

This proves our assertion.

Example 4.2. This is an example where the feasible region and the optimal value of the objective function are unbounded. Consider the LPP

max
$$x_0 = 2x_1 + x_2$$
 $x_0 = 2x_1 + x_2$ $x_0 = 2x_1 + x_2$ subject to
$$\begin{cases} x_1 - x_2 \le 10 \\ 2x_1 - x_2 \le 40 \\ x_1, x_2 \ge 0 \end{cases}$$

The initial tableau is

No positive ratio exists in x_2 column. Hence x_2 can be increased without bound while maintaining feasibility. It is evident from Figure 4.2.

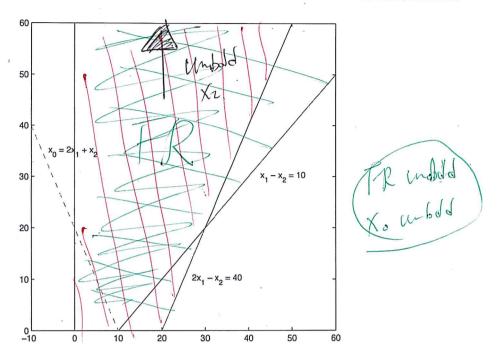
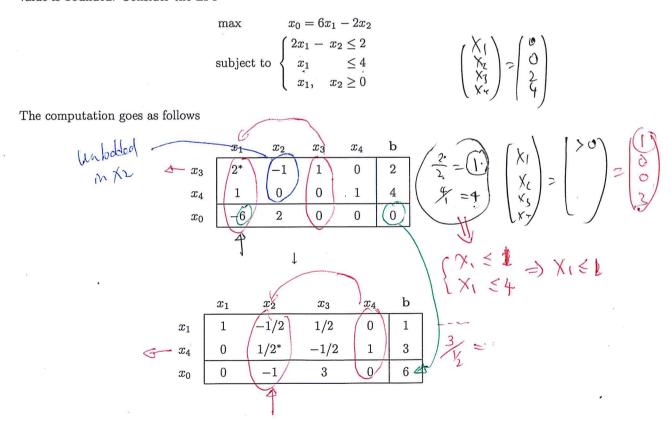


Figure 4.2. Unbound Feasible Region with Bounded Optimal Value

Example 4.3. The following is an example where the feasible region is unbounded yet the optimal value is bounded. Consider the LPP



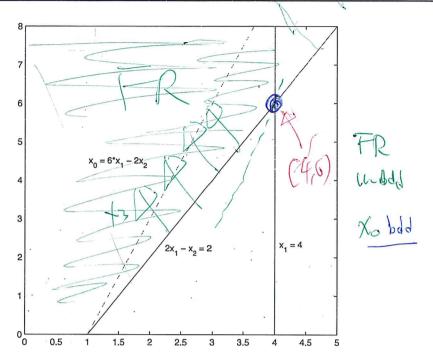
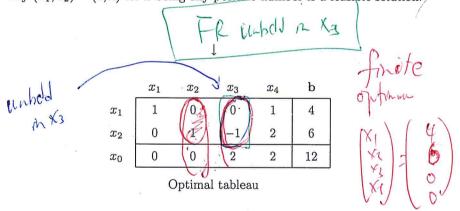


Figure 4.3. Unbounded Feasible Region with Unbounded Optimal Value Any $(x_1, x_2) = (1, k)$ for k being any positive number is a feasible solution.



4.3 Infinite Number of Optimal Solutions

Zero reduced cost coefficients for non-basic variables at optimality indicate alternative optimal solutions, since if we pivot in those columns, x_0 value remains the same after a change of basis for a different BFS, see Section 3.5. Notice that simplex method yields only the extreme point optimal (BFS) solutions. More generally, the set of alternative optimal solutions is given by the convex combination of optimal extreme point solutions. Suppose $\mathbf{x}^1, \mathbf{x}^2, \cdots, \mathbf{x}^p$ are extreme point optimal solutions, then $\mathbf{x} = \sum_{k=1}^p \lambda_k \mathbf{x}^k$, where $0 \le \lambda_k \le 1$ and $\sum_{k=1}^p \lambda_k = 1$ is also an optimal solution. In fact, if $\mathbf{c}^T \mathbf{x}^k = z_0$ for $1 \le k \le p$, then

$$\mathbf{c}^T\mathbf{x} = \sum_{k=1}^p \lambda_k \mathbf{c}^T\mathbf{x}^k = \sum_{k=1}^p \lambda_k z_0 = z_0.$$

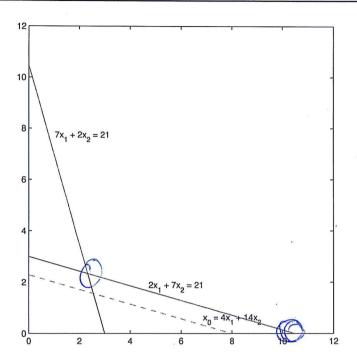


Figure 4.4. Infinitely many Optimal Solutions Any $(x_1, x_2) = (1, k)$ for k being any positive number is a feasible solution.

Example 4.4. Consider

$$\begin{array}{c}
\text{max} & x_0 = 4x_1 + 14x_2 \\
x_0 = 4x_1 + 14x_2 \\
2x_1 + 7x_2 \le 21 \\
7x_1 + 2x_2 \le 21 \\
x_1, x_2 \ge 0
\end{array}$$

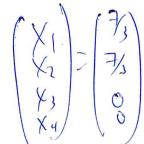
	x_1	x_2	x_3	x_4 ,	b
x_3	2	7*	1	0	21
x_4	7	2	0	1	21
x_0	-4	-14	0	0	0

1

$$\begin{pmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 3 \\ 0 \\ 15 \end{pmatrix}$$

11

	**		[(•)		e 1,		
	x_1	x_2	x_3	x_4	b		
x_2	- 0	1	7/45	-2/45	7/3		
x_1	. 1	0	-2/45	7/45*	7/3		
x_0	0	0	2	0	42		



Thus all convex combinations of the points [0,3,0,15] and [7/3,7/3,0,0] are optimal feasible solutions.

4.4 Degeneracy and Cycling

Degenerate basic solutions are basic solutions with one or more basic variables at zero level. Degeneracy occurs when one or more of the constraints are redundant.

Example 4.5. Consider the following LLP

$$\max \qquad x_0 = 2x_1 + x_2$$

$$\text{subject to} \begin{cases} 4x_1 + 3x_2 \le 12 \\ 4x_1 + x_2 \le 8 \\ 4x_1 - x_2 \le 8 \\ x_1, x_2 \ge 0 \end{cases}$$

	x_1	x_2	x_3	x_4	x_5	b
x_3	0	4	1	0	-1	4
x_4	0	2*	0	1	-1	0
x_1	1	-1/4	0	0	1/4	2
x_0	0	-3/2	0	0	1/2	4

Degenerate Vertex $\{x_4 = 0 \text{ and basic }\}$

Degenerate Vertex $\{x_5 = 0 \text{ and basic }\}$

1

1

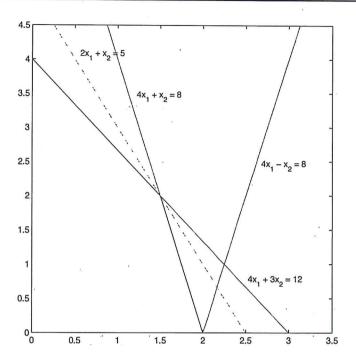


Figure 4.5. Degeneracy and Cycling

	x_1	x_2	x_3	x_4	x_5	b
x_3	0	0	1	-2	1*	4
x_3 x_2	0	1	0	1/2	-1/2	0 2
x_1	1	0	0	1/8	1/8	2
x_0	0	0	0	3/4	-1/4	4

	x_1	x_2	x_3	x_4	x_5	b
x_2	0	1	1/2	-1/2	0	2
x_1	1	0	-1/8	3/8	0	3/2
x_5	0	0	1	-2	1	4
x_0	0	0	1/4	1/4	0	5

Degenerate Vertex { $x_2 = 0$ and basic }

b x_1 x_3 x_5 0 1 x_5 1 1/2-1/20 2 x_2 3/2 0 3/8 x_1 1 -1/80 0 0 1/4 1/40 5 x_0

In figure 4.5, we see that the degenerate vertex V can be represented either by

$${x_2 = 0, x_4 = 0}, {x_4 = 0, x_5 = 0}$$
 or ${x_2 = 0, x_5 = 0}.$

We note that degeneracy guarantees the existence of more than one feasible pivot element, i.e. tie-ratios exist. For example, in the first tableau, the ratios for variables x_4 and x_5 are both equal to 2.

FCF -> Starting BFS -> Simplex -> cyphial Method Scholini

For $C\vec{x}$ antifred varieties $\vec{x} \geq \vec{0}$

Max CTX - MXa

Sol (A | I | X | = b)

X, Xa = 0

Starty

OFF

Once Xa is

outside bank

public

(no. non besix)

Staty BFS to

Staty BFS to

Augmented

Once Xa is

Outside basic

(no. non besic)

> Xa = 0 fn all later tableaux.

Ma=0 > Xa>0
nonbarre basic

Cost - M x a = 0 - M x a (=-01)

To Sty Sty Corner pt

optimility auth

directed deriches

FCF => FR + P DEFR

FR= P 3 FFR M-method and antifice variables

Soylex nefw

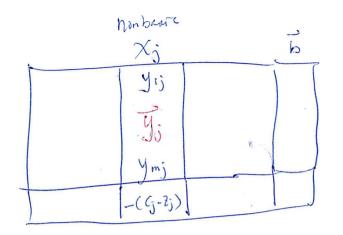
all Xa = 0

Stratig BFS of original proble U FR + p

3 Xa 70 Smyler itableans reacles maxim

\$ BFS for ongoing

Tobleand:



Mij, Yzj -... Ymj < 0 => FR ib unbedd Fact 1: in Xj - direchi

aptival fad 2 In addition $-(C_j-Z_j)<0 \Rightarrow \chi_0-sshin$

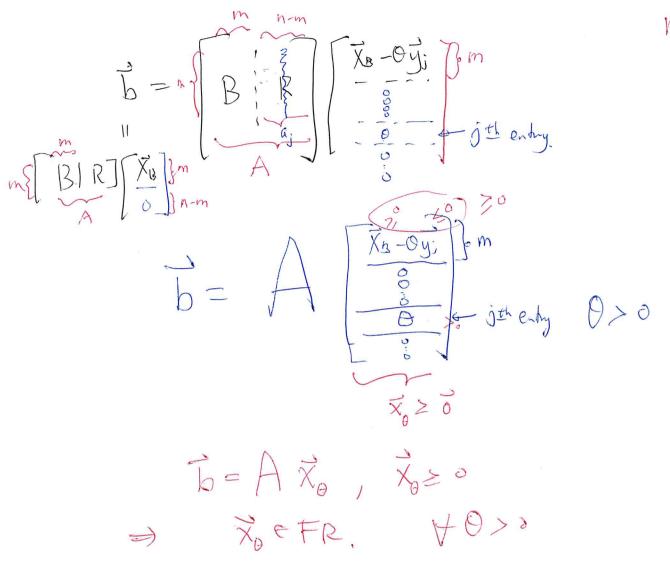
is also bunbdded

Fact! (i) AXZB

 $\begin{array}{c|c}
\hline
A = B Y \\
\hline
\vec{a}_{j} = B \vec{y}_{j} & (i) & \vec{y}_{j} \leq \vec{o} & (ii)
\end{array}$

 $\vec{d} = \vec{\lambda} A$ (ii) $\begin{bmatrix} B | R \end{bmatrix} \begin{bmatrix} \vec{X}_{0} \\ \vec{\delta} \end{bmatrix} = \vec{b} \Rightarrow B \vec{X}_{0} = \vec{b} \quad (\vec{n})$

¥0>0 $B\vec{X}_B = B\vec{X}_B - 0\vec{a}_j + 0\vec{a}_j$ 40>0 (i) BXB - OBJ; + OB; 4000 $\vec{b} = B(\vec{x}_3 - O\vec{y}_j) + O\vec{a}_j$



) > 00 (Xo); -> 00. FR 00 mbHd n Kg-duch

Fact 2: $f_{C_j-2j>0} \Rightarrow \chi_0 \not = \infty$

Pt: Current
$$X_0 = \overrightarrow{C} \overrightarrow{X}_{aurent}$$

$$= (\overrightarrow{C}_B, \overrightarrow{C}_R)(\overrightarrow{X}_R) = \overrightarrow{C}_B \overrightarrow{X}_R$$

$$A = \begin{bmatrix} M & M-M \\ B & R \end{bmatrix}_{m}$$

$$A = BY$$

$$\frac{1}{2} = \frac{1}{2} = \frac{1}$$

hew
$$X_0 = \overrightarrow{C}^T \overrightarrow{X}_{Rew} = \overrightarrow{C}^T \overrightarrow{X}_{R$$

$$= \overrightarrow{C_B} \left(\overrightarrow{X_B} - 0 \overrightarrow{y_j} \right) + C_j 0$$

$$= \overrightarrow{C_B} \overrightarrow{X_B} - 0 \overrightarrow{C_B} \overrightarrow{y_j} + 0 C_j$$

$$= \overrightarrow{C_B} \overrightarrow{X_B} - 0 \overrightarrow{C_B} \overrightarrow{y_j} + 0 C_j$$

$$= \overrightarrow{C_B} \overrightarrow{X_B} - 0 \overrightarrow{C_B} \overrightarrow{y_j} + 0 C_j$$

$$= \overrightarrow{C_B} \overrightarrow{X_B} - 0 \overrightarrow{C_B} \overrightarrow{y_j} + 0 C_j$$

$$= \overrightarrow{C_B} \overrightarrow{X_B} - 0 \overrightarrow{C_B} \overrightarrow{y_j} + 0 C_j$$

$$= \overrightarrow{C_B} \overrightarrow{X_B} - 0 \overrightarrow{C_B} \overrightarrow{y_j} + 0 C_j$$

$$= \overrightarrow{C_B} \overrightarrow{X_B} - 0 \overrightarrow{C_B} \overrightarrow{y_j} + 0 C_j$$

$$= \overrightarrow{C_B} \overrightarrow{X_B} - 0 \overrightarrow{C_B} \overrightarrow{y_j} + 0 C_j$$

$$= \overrightarrow{C_B} \overrightarrow{X_B} - 0 \overrightarrow{C_B} \overrightarrow{y_j} + 0 C_j$$

$$= \overrightarrow{C_B} \overrightarrow{X_B} - 0 \overrightarrow{C_B} \overrightarrow{y_j} + 0 C_j$$

$$= \overrightarrow{C_B} \overrightarrow{X_B} - 0 \overrightarrow{C_B} \overrightarrow{y_j} + 0 C_j$$

$$= \overrightarrow{C_B} \overrightarrow{X_B} - 0 \overrightarrow{C_B} \overrightarrow{y_j} + 0 C_j$$

$$= \overrightarrow{C_B} \overrightarrow{X_B} - 0 \overrightarrow{C_B} \overrightarrow{y_j} + 0 C_j$$

$$= \overrightarrow{C_B} \overrightarrow{X_B} - 0 \overrightarrow{C_B} \overrightarrow{y_j} + 0 C_j$$

$$= \overrightarrow{C_B} \overrightarrow{X_B} - 0 \overrightarrow{C_B} \overrightarrow{y_j} + 0 C_j$$

$$= \overrightarrow{C_B} \overrightarrow{X_B} - 0 \overrightarrow{C_B} \overrightarrow{y_j} + 0 C_j$$

$$= \overrightarrow{C_B} \overrightarrow{X_B} - 0 \overrightarrow{C_B} \overrightarrow{y_j} + 0 C_j$$

$$= \overrightarrow{C_B} \overrightarrow{X_B} - 0 \overrightarrow{C_B} \overrightarrow{y_j} + 0 C_j$$

$$= \overrightarrow{C_B} \overrightarrow{X_B} - 0 \overrightarrow{C_B} \overrightarrow{y_j} + 0 C_j$$

$$= \overrightarrow{C_B} \overrightarrow{X_B} - 0 \overrightarrow{C_B} \overrightarrow{y_j} + 0 C_j$$

$$= \overrightarrow{C_B} \overrightarrow{X_B} - 0 \overrightarrow{C_B} \overrightarrow{y_j} + 0 C_j$$

$$= \overrightarrow{C_B} \overrightarrow{X_B} - 0 \overrightarrow{C_B} \overrightarrow{y_j} + 0 C_j$$

$$= \overrightarrow{C_B} \overrightarrow{X_B} - 0 \overrightarrow{C_B} \overrightarrow{y_j} + 0 C_j$$

$$= \overrightarrow{C_B} \overrightarrow{X_B} - 0 \overrightarrow{C_B} \overrightarrow{y_j} + 0 C_j$$

$$= \overrightarrow{C_B} \overrightarrow{X_B} - 0 \overrightarrow{C_B} \overrightarrow{y_j} + 0 C_j$$

$$= \overrightarrow{C_B} \overrightarrow{X_B} - 0 \overrightarrow{C_B} \overrightarrow{y_j} + 0 C_j$$

$$= \overrightarrow{C_B} \overrightarrow{X_B} - 0 \overrightarrow{C_B} \overrightarrow{y_j} + 0 C_j$$

$$= \overrightarrow{C_B} \overrightarrow{X_B} - 0 \overrightarrow{C_B} \overrightarrow{y_j} + 0 C_j$$

$$= \overrightarrow{C_B} \overrightarrow{X_B} - 0 \overrightarrow$$

