Chapter 4

SPECIAL CASES IN F
APPLYING SIMPLEX
METHODS

4.1 No Feasible Solutions

In terms of the methods of artificial variable techniques, the solution at optimality could include
one or more artificial variables at a positive level (i.e. as a non-zero basic variable). In such a case
the corresponding constraint is violated and the artificial variable cannot be driven out of the basis.
The feasible region is thus empty.

Ezample 4.1. Consider the following linear programming problem.
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Using a surplus variable z3, an artificial variable z4 and a slack variable 5, the augmented system

is: / ;LWMW P hA A
- 1t T2 acg—l— Tq \)(“ e
T+ T + xs—/_v o |
Tog— 2T] — To + Mzy =0
Now the columns corresponding to z4 and zs form an identity matrix. In tableau form, we have
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.Figure 4.1. No Feasible Region
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Since M is a very large number, —1+2M is positive. Hence all entries in the zg row are nonnegative.
Thus we have reached an optimal point. However, we see that the artificial variable 4 = 1, which is
not zero. That means that the solution just found is not a solution to our original problem. Indeed
the x that satisfies Ax + Ix, = b with x, # 0 is not a solution to Ax = b. Figure 4.1 shows that
the feasible region to the problem is empty.

4.2 Unbounded Solutions

Theorem 4.1. Consider an LPP in feasible canonical form. If in the simplex tableau, there exists
a nonbasic variable z; such that y;; <0 for alli=1,2,--- ,m, i.e. all entries in the z; column are
non positive, then the feasible region is unbounded. If moreover that z; — c¢; < 0, then there exists a
feasible solution with at most m + 1 variables nonzero and the corresponding value of the objective
function can be set arbitrarily large.

Proof. Let xpg be the current-BFS with Bxg = b. Let the columns of B be denoted by b;. Then
we have

m
Bxp = ZmBibi =bh.
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Let a; be the column of A that corresponds to the variable z;.. By (?7), we have

m
a; = Byj = Zyi]‘bi.
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Hence for all 8 > 0, we have
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Thus we obtain a new nonbasic solution of m 4 1 nonzero variables. This solution is feasible as
zp;, —0y;; >0, foralld

Moreover, the value of z;, which is equal to 6, can be set arbitrarily large, indicating that the feasible

region is unbounded in the z; direction.

If moreover that c; > z;, then the value of the objective function can be set arbitrarily large
since

m m m
Z zp, —Oyij)ce; + Oc; = ngic&. - HZyijcBi + 0c;
i=1 i=1 =
= cpxp — Ocpy; +0c; = z — 0z; +0c; = 2+ 0(c; — ;).
This proves our assertion. O

Ezample 4.2. This is an example where the feasible region and the optimal value of the objective
function are unbounded. Consider the LPP -
A K T2

max To = 221 + zo
T — 29 <10 T:C [j
subject to < 2x; — 29 < 40
1,72 20
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The initial tableau is 1o
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| -2 1) 0 0| 0 v
- 52}

No positive ratio exists in 2o column. Hence z3 can be increased without bound while maintaining
feasibility. It is evident from Figure 4.2.
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Figure 4.2. Unbound Feasible Region with Bounded Optimal Value

Ezample 4.3. The following is an example where the feasible region is unbounded yet the optimal
value is bounded. Consider the LPP

max Tg = 61 — 229
2¢1 — T2 <2 X‘ L)
subject to T <4 Y | = q]
T1, T > 0 X} 2

The computation goes as follows
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4.3. Infinite Number of Optimal Solutions v‘“\ 5
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Figure 4.3. Unbounded Feasible Region with Unbounded Optimal Value
Any (z1,22) = (1,k) for k being any positive number-is-a feasible solution. ,
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4.3 Infinite Number of Optimal Solutions

Zero reduced cost coefficients for non-basic variables at optimality indicate alternative optimal so-
lutions, since if we pivot in those columns, z¢ value remains the same after a change of basis for a
different BF'S, see Section 3.5. Notice that simplex method yields only the extreme point optimal
(BFS) solutions. More generally, the set of alternative optimal solutions is given by the convex
combination of optimal extreme point solutions. Suppose x!,x2, .-+ ,xP are extreme point optimal
P P
solutions, then x = ) A\gx*, where 0 < A\ < 1 and >~ M = 1is also an optimal solution. In fact,
k=1 k=1
if cTx® = 2y for 1 < k < p, then

P P
cIx = Z AecT xF = Z’\"’ZO = 2p.
k=1 k=1
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Figure 4.4. Infinitely many Optimal Solutions
Any (z1,z2) = (1, k) for k being any positive number is a feasible solution.

Example 4.4. Consider

max A To = 4z + 14z,
21 + Tzo <21
subject to ¢ Tz; + 229 < 21

\_W ’

T T2 T3 Ty . b
z3 | 2 7* 1 0 |2
Ty 7 2 0 1 21
o | -4 -14 0 0 | 0 (
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4.4, Degeneracy and Cycling
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Thus all convex combinations of the points [0,3,0,15] and [7/3,7/3,0,0] are optimal feasible solu-
tions. - ;

4.4 Degeneracy and Cycling

Degenerate basic solutions are basic solutions with one.or more basic variables at zero level. Degen-
eracy occurs when one or more of the constraints are redundant.

Ezample 4.5. Consider the following LLP

max To = 231 + T2
4dzy + 39 < 12
4z, + 290 <8
subject to ! 2
4, — 29 <8
Ty, T2 > 0

x3 4 3 1 0 0 |12
T4 | 4 1 0 il 0 8
zs | 4 -1 0 0 118
o | =2 -1 0 0 0 0
(x) N (#)

T To T3 x4 Tz b T To T3 X4 Ts b
zz3 | O 4 1 0 -1 (4 zz | 0 2 1 -1 0|4
za |0 22 0 1 -1|0| ‘=z |1 1/4 0 1/4 0 |2
T1 1 -1/4 0 0 1/41| 2 zs | O -2 0 -1 110
% | 0 -3/2 0 0 1/2|4| z|0 -1/2 0 1/2 0 |4
Degenerate Vertex { z4 = 0 and basic } Degenerate Vertex { 5 = 0 and basic }

! !
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Figure 4.5. Degeneracy and Cycling

T ) I3 T4 Ts5 b 1 o Z3 T4 Is b
zz3 | 0 0 1 =2 1* 4 z2 | O 1 /2 -1/2 0 2
zo | O 1 0 1/2 -=-1/2|0 z; | 1 0o -1/8 3/8 0 | 3/2
zp | 1 0 0 1/8 1/8 |2 z5 | O 0 1 -2 1 4
9| O 0 0 3/4 -1/4 ] 4 9 | O 0 1/4 1/4 0 5

Degenerate Vertex { z2 = 0 and basic }

i
1  Tg T3 T4 Ts b
zs | 0 0 1 -2 1
| 0 1 1/2 -1/2 0| 2
@ |1 0 -—1/8 3/8 0 |3/2
2| 0 0 1/4 1/4 0| 5

In figure 4.5, we see that the degenerate vertex V can be represented either by
{z2=0,24 =0}, {z4a=0,25 =0} or {zz=0,z5=0}.

We note that degeneracy guarantees the existence of more than one feasible pivot element, i.e. tie-
ratios exist. For example, in the first tableau, the ratios for variables z4 and x5 are both equal to
2
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