Assume $$\vec{X}$$, is optimal $$\vec{Z} - (\vec{C}_s) \ge \vec{0}$$ \ge$$ $$\begin{array}{lll} \overleftarrow{b}^{T}\overrightarrow{U}_{0} &= \overrightarrow{b}^{T}\overrightarrow{B}^{T}\overrightarrow{C}_{B} \\ &= \overrightarrow{C}_{B}^{T}\overrightarrow{X}_{B} &= (\overrightarrow{C}_{B},\overrightarrow{C}_{R})(\overrightarrow{X}_{B}) \\ &= \overrightarrow{C}_{S}^{T}\overrightarrow{X}_{S} &= (\overrightarrow{C}_{B},\overrightarrow{C}_{R})(\overrightarrow{X}_{B}) \end{array}$$ W.D.T => The is also optimal st Since x_{n+j} are slack variables, the corresponding columns in A are just the jth unit vector \mathbf{e}_j and the corresponding cost coefficients $c_{n+j} = 0$. Thus $$\mathbf{e}_{j}^{T}(B^{-1})^{T}\mathbf{c}_{B} \ge c_{n+j} = 0, \quad j = 1, 2, \dots, s.$$ Hence $\mathbf{u}_0 = (B^{-1})^T \mathbf{c}_B \ge \mathbf{0}$. Finally, since $$\mathbf{b}^T \mathbf{u}_0 = \mathbf{b}^T (B^{-1})^T \mathbf{c}_B = \mathbf{c}_B^T B^{-1} \mathbf{b} = \mathbf{c}^T \mathbf{x}_0,$$ we see that u_0 satisfies (5.2) and by Theorem 5.3, it is an optimal solution to the dual problem. \Box This theorem also give us an explicit form of the optimal solution to the dual problem **Theorem 5.5.** If B is the basis matrix for the primal corresponding to an optimal solution and \mathbf{c}_B contains the prices of the variables in the basis, then an optimal solution to the dual is given by $(B^{-1})^T \mathbf{c}_B$, i.e., the entries in the x_0 row under the columns corresponding to the slack variables give the values of the dual structural variables. Moreover, the entries in the x_0 row under the columns for the structural variables will give the optimal values of the dual surplus variables. *Proof.* We only have to prove that $\mathbf{u}_B \equiv (B^{-1})^T \mathbf{c}_B$ is given by the entries in the x_0 row under the columns corresponding to the slack variables. In fact, for the slack variables, we have $$z_{n+j} - c_{n+j} = z_{n+j} = \mathbf{e}_j^T (B^{-1})^T \mathbf{c}_B = \mathbf{u}_{B_j}.$$ Next we prove that the entries in the x_0 row under the columns for the structural variables give the optimal values of the dual surplus variables. Since $$z_j = \mathbf{c}_B^T \mathbf{y}_j = \mathbf{c}_B^T (B^{-1} \mathbf{a}_j) = \mathbf{a}_j^T B^{-T} \mathbf{c}_B = \mathbf{a}_j^T \mathbf{u}_B, \quad j = 1, \dots, n,$$ and $A^T \mathbf{u}_B - \mathbf{u}_{B_s} = \mathbf{c}$ where \mathbf{u}_{B_s} is the vector of dual surplus variables, we have $$\mathbf{z} - \mathbf{c} = A^T \mathbf{u}_B - \mathbf{c} = \mathbf{u}_{B_a}$$ Example 5.5. Let the primal problem be $$\max \quad x_0 = 4x_1 + 3x_2 \qquad (4,3) = C$$ $$\sup \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & A_1 \\ 3 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \le \begin{bmatrix} 6 \\ 8 \\ 7 \\ 15 \\ 1 \end{bmatrix} \right\}$$ $$\sup \left\{ x_1, x_2 \ge 0 \right\}$$ we have $$\left\{ \begin{bmatrix} 0 & 0 \\ 0 & C_1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \le \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \right\}$$ Standardizing the problem, we have The optimal tableau is given by Thus the optimal solution is $[x_1, x_2] = [4, 3]$ with $[x_3, x_4, x_5, x_6, x_7] = [2, 5, 0, 0, 4]$. From the x_0 row, we see that the optimal solution to the dual is given by $$[u_1, u_2, u_3, u_4, u_5, u_6, u_7] = \left[0, 0, \frac{5}{2}, \frac{1}{2}, 0, 0, 0\right].$$ Let us verify this by considering the dual. The dual of the primal is given by $$\begin{aligned} & \min & u_0 = 6u_1 + 8u_2 + 7u_3 + 15u_4 + u_5 \\ & \left[\begin{bmatrix} 1 & 0 & 1 & 3 & 0 \\ 0 & 1 & 1 & 1 & -1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \end{bmatrix} \right] & \text{Surphs varieble} \\ & u_i \geq 0, i = 1, 2, 3, 4, 5 \end{aligned}$$ Changing the minimization problem to a maximization problem and using simplex method (or the dual simplex method to be introduced in §4), we obtain the optimal tableau for the dual: | | | -8 | ma | fore | L | ,_5 | up | | C (1 - 2 | FR | |-------|----------------|----------------|----------------|-------|----------------|----------------|----------------|---------------|----------|-------| | | $\bigcup u_1$ | u_2 | u_3 | u_4 | u_5 | u_6 | u_7 | c | W W | (0) | | u_4 | $\frac{1}{6}$ | $-\frac{1}{2}$ | 0 | 1 | $\frac{1}{2}$ | $-\frac{1}{2}$ | $\frac{1}{2}$ | $\frac{1}{2}$ | 102 W | 5/2 (| | u_3 | $-\frac{1}{2}$ | $\frac{3}{2}$ | 1 | 0 | $-\frac{3}{2}$ | $\frac{1}{2}$ | $-\frac{3}{2}$ | $\frac{5}{2}$ | Wa | 2/1/2 | | u_0 | 2 | . 5 | ['] 0 | .0 | À | 4 | 3) | -25 | - del | 6 | | | | | | | | | * | | uj | (3) | Thus the optimal solution for the dual is $[u_1, u_2, u_3, u_4, u_5] = \left[0, 0, \frac{5}{2}, \frac{1}{2}, 0\right]$ with optimal surplus variables $[u_6, u_7] = [0, 0]$. Notice that the optimal solution to the primal is given by the reduced cost coefficients for u_4 and u_5 , i.e. $[x_1, x_2] = [4, 3]$ and the optimal values of the primal slack variables are given by $[x_3, x_4, x_5, x_6, x_7] = [2, 5, 0, 0, 4]$. ## 5.3 The Existence Theorem and The Complementary Slackness Theorem 5.6 (Existence Theorem). (i) An LPP has a finite optimal solution if and only if both it and its dual have feasible solutions.