
Solution to HW2
the solution is for reference only

1. LetD ⊂ R2 denote the interior of the first quadrant in R2. More precisely,

D =
{
(x, y) ∈ R2|x > 0, y > 0

}
.

Take E = R2 \ D, then E is easily seen to be star shaped by taking the dis-
tinguished point x0 to be the origin. However, E is not convex, the reason
is as follows. Consider the points x1 = (0, 1) and x2 = (1, 0), then we have
x1, x2 ∈ E. Let ` denote the line segment joining x1 and x2, it’s clear that
` * E, which implies E is not convex.

2. (a) Suppose a bounded convex subset S ⊂ Rn has a direction v, then by
definition there exists some x0 ∈ S such that

R := {x0 + λv|λ ≥ 0} ⊂ S,

but notice that R is unbounded, which implies that S is unbounded, a contra-
diction.
(b) There are two directions of S, determined respectively by the vectors

v1 = (1, 0),v2 = (−1, 0).

(c) Consider S = D with D being the first quadrant. Then S has a unique
extreme point, which is the origin. Also notice that every vα = (1, α) with
α ≥ 0 is a direction of S.

3. We first show that S is a convex set. Take two points (x1, y1), (x2, y2) ∈
S, by definition of S this is equivalent to y1 ≥ x21 and y2 ≥ x22. Consider
the point λ(x1, y1) + (1 − λ)(x2, y2) with 0 < λ < 1, which is just the point
(λx1 + (1− λ)x2, λy1 + (1− λ)y2) ∈ R2. Since

λy1 + (1− λ)y2 ≥ λx21 + (1− λ)x22
≥ (λx1 + (1− λ)x2)2

by our assumption and elementary inequality, we see that λ(x1, y1) + (1 −
λ)(x2, y2) ∈ S for every 0 < λ < 1. For every point p ∈ ∂S, consider the
tangent line ` of ∂S passing through p, then it’s clear by definition that ` is
the supporting hyperplane of S at p. Since x ≥ 0 and y ≥ 0 for every point
(x, y) ∈ S, S is a set bounded from below. By Theorem 1.5 in the lecture notes,
` contains an extreme point of S. Because ` ∩ S = {p}, p must be an extreme
point of S. Since that the above argument works for every point of ∂S, we
conclude that every point of ∂S is an extreme point of S.
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4. Let y2 = −x2 and introduce slack variables y0 and y1 we get the following
LPP of standard form.
Maximize z = 3x1 − 2y2 − x3 + x4 subject to

x1 − 2y2 + x3 − x4 + y0 = 5,

−2x1 + 4y2 + x3 + x4 + y1 = −1,
x1, x2, x3, x4 ≥ 0,

y0, y1 ≥ 0.

5. Let y3 = 3− x3, then by the restriction that x3 ≤ 3 we have y3 ≥ 0. The
canonical form of the LPP is given as follows.
Maximize z = −3x1 − 2y3 subject to

−x1 + 2x2 + y3 ≤ 2,

x1 − 2x2 − y3 ≤ −2,
−x1 − x2 ≤ −4,
x1, x2, y3 ≥ 0.

6. (a) Simply sketch the feasible region, we see that the feasible set is
bounded by four boundary components.

(b) It’s easy to see from the constraints that we can take x and y to be
sufficiently large provided that x ≥ y. This is because when x and y are suffiently
large then the sencond condition x + 2y ≥ 2 is automatically satisfied. Since
x ≥ y, the first condition is also satisfied because −3x + 2y ≤ 0. This shows
that (x, y) with x ≥ y and x, y � 0 is always feasible. But such a choice will
make z to be sufficiently large as the coefficients before x and y in z are both
positive. This shows that there is no feasible solution of z.

7. (a) The extreme points are given by (0, 3), (0, 1), (2, 0) ∈ R2.
(b) Let S be the feasible set of the given LPP, consider a closed subset E of
S bounded by the x-axis, y-axis, y = − 1

2x + 1 and 3x + 5y = 15. Then it’s
quite clear from the pircture that all points in S \ E gives larger values of z
than the points in E. Because of this, we can replace the unbounded feasible
set S by the bounded set E. By the extreme point theorem, we only need to
compute the values of z at all the extreme points and then compare them. When
(x, y) = (0, 3), z = 15; when (x, y) = (0, 1), z = 5; when (x, y) = (2, 0), z = 6;
when (x, y) = (5, 0), z = 15. From this we conclude that zmin = 5.
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8. (a) Let a1,a2,a3,a4,a5 be the columns of A. Notice that

a1 + a2 − a3 − a4 − 2a5 = 0,

so α1 = 1, α2 = 1, α3 = −1, α4 = −1, α5 = −2. We compute

x1
α1

= 2,
x2
α2

= 3,
x3
α3

= −2, x4
α4

= −3, x5
α5

=
3

2
.

From this we see that r = 1. By definition of the new solution x′ we get

x′ = (0, 1, 4, 5, 7)T .

Repeat the above process once again, we get a basic feasible solution

x1 = (0, 0, 4, 6, 8)T .

(b) Use the method of (a), we can move x1 to the basic feasible solution

x2 = (0, 4, 6, 0, 4)T ,

which is adjacent to x1 in the sense that it differs from x1 by only one basic
variable.
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