Solution to HW2

the solution is for reference only
1. Let D C R? denote the interior of the first quadrant in R2. More precisely,
D ={(z,y) € R*|z > 0,y > 0}.

Take £ = R? \ D, then F is easily seen to be star shaped by taking the dis-
tinguished point zg to be the origin. However, E is not convex, the reason
is as follows. Consider the points 21 = (0,1) and x5 = (1,0), then we have
1,22 € E. Let £ denote the line segment joining x; and xs, it’s clear that
¢ ¢ E, which implies E is not convex.

2. (a) Suppose a bounded convex subset S C R™ has a direction v, then by
definition there exists some x¢ € S such that

R:={xo+ Av|]A >0} CS,

but notice that R is unbounded, which implies that S is unbounded, a contra-
diction.
(b) There are two directions of S, determined respectively by the vectors

Vi = (1,0),V2 = (—1,0)

(¢) Consider S = D with D being the first quadrant. Then S has a unique
extreme point, which is the origin. Also notice that every v, = (1,a) with
«a > 0 is a direction of S.

3. We first show that S is a convex set. Take two points (x1,y1), (z2,¥2) €
S, by definition of S this is equivalent to y; > 2% and y, > 23. Consider
the point A(z1,11) + (1 — A)(z2,y2) with 0 < A < 1, which is just the point

(Az1 + (1 = Nz2, Ay1 + (1 — N)ya) € R% Since

A+ (1 =Ny > daf+(1-N)a3
Az + (1= Nag)?

\%

by our assumption and elementary inequality, we see that A(z1,y1) + (1 —
A)(z2,y2) € S for every 0 < A < 1. For every point p € 95, consider the
tangent line ¢ of 95 passing through p, then it’s clear by definition that £ is
the supporting hyperplane of S at p. Since x > 0 and y > 0 for every point
(z,y) € S, S is a set bounded from below. By Theorem 1.5 in the lecture notes,
£ contains an extreme point of S. Because £N .S = {p}, p must be an extreme
point of S. Since that the above argument works for every point of 95, we
conclude that every point of 95 is an extreme point of S.



4. Let y2 = —x9 and introduce slack variables yy and y; we get the following
LPP of standard form.
Maximize z = 3x1 — 2yo — x3 + x4 subject to

T1 —2y2 +x3 — T4 + Yo =5,
—2x1 +4ys + 23+ 24 +1y1 = —1,
X1, T2, T3, Ty >0,
Yo, Y1 > 0.

5. Let y3 = 3 — x3, then by the restriction that 3 < 3 we have y3 > 0. The
canonical form of the LPP is given as follows.

Maximize z = —3x1 — 2y3 subject to
—x1 + 222 +ys <2,
T1 — 2w2 — Y3 < -2,
—x — Ty < —4,
21,22, Y3 > 0.

6. (a) Simply sketch the feasible region, we see that the feasible set is
bounded by four boundary components.

(b) It’s easy to see from the constraints that we can take xz and y to be
sufficiently large provided that x > y. This is because when x and y are suffiently
large then the sencond condition x + 2y > 2 is automatically satisfied. Since
x > vy, the first condition is also satisfied because —3x + 2y < 0. This shows
that (x,y) with © > y and z,y > 0 is always feasible. But such a choice will
make z to be sufficiently large as the coefficients before  and y in z are both
positive. This shows that there is no feasible solution of z.

7. (a) The extreme points are given by (0, 3), (0, 1), (2,0) € R2.
(b) Let S be the feasible set of the given LPP, consider a closed subset E of
S bounded by the z-axis, y-axis, y = f%x + 1 and 3z + 5y = 15. Then it’s
quite clear from the pircture that all points in S\ E gives larger values of z
than the points in E. Because of this, we can replace the unbounded feasible
set S by the bounded set E. By the extreme point theorem, we only need to
compute the values of z at all the extreme points and then compare them. When
(zvy) = (033)7 z = 15; when (I7y) = (071)5 z = 5; when (IE,y) = (230)’ z = 6;
when (x,y) = (5,0), z = 15. From this we conclude that z, = 5.



8. (a) Let a;, ap, a3, a4, a5 be the columns of A. Notice that

a; +as —ag —ay — 2a; =0,

soa; =1l,as =1, a3 = -1, a4 = —1, a5 = —2. We compute
X1 i) X3 X4 xIs 3
e 2’ —_— =9, = —27 e —37 _— = =
o o) Qg oy as 2

From this we see that r = 1. By definition of the new solution x’ we get
x' =(0,1,4,5,7)T.

Repeat the above process once again, we get a basic feasible solution
x; = (0,0,4,6,8)T.

(b) Use the method of (a), we can move x; to the basic feasible solution
x2 = (0,4,6,0,4)7,

which is adjacent to x; in the sense that it differs from x; by only one basic
variable.



