Crystals and Crystalline Cohomology

Dr. Lei Zhang

Exercise sheet 7^1

Definition 1. Suppose that we have a commutative diagram

in which i is a closed immersion and f is smooth. Let D be the p-adic completion of the PD-envelope of $i: X \hookrightarrow Y$ with respect to (S, \mathcal{I}, γ) . A quasi-nilpotent connection associated with this diagram is a pair (M, ∇) satisfying the following conditions:

- (1) M is a quasi-coherent \mathcal{O}_D -module and it is p-adically complete;
- (2) $\nabla : M \to M \otimes_{\mathcal{O}_D} \Omega_D$ is a connection of D/S in the sense that it is \mathcal{O}_S -linear and satisfies the Leibniz rule. Here Ω_D denotes the PD-differential $\Omega^1_{D/S,\bar{\gamma}}$, see https://stacks.math. columbia.edu/tag/07HR for the definition of $\Omega^1_{D/S,\bar{\gamma}}$;
- (3) ∇ is integrable in the obvious sense;
- (4) ∇ is topologically quasi-nilpotent: For any section s on an affine open $U \subseteq D$ which admits a system of local coordinates

$$\{dx_1,\cdots,dx_n\}$$

coming from Y, there exists $k \in \mathbb{N}$ such that $(\frac{\partial}{\partial x_i})^k(s) \in pM$.

We denote the category of quasi-nilpotent connections with respect to the diagram above by QNC(Y/S).

Exercise 1. Show that the category of quasi-nilpotent connections in quasi-coherent modules QNC(Y/S) is equivalent to the category of quasi-coherent crystals on Cris(X/S).

¹If you have any questions concerning these exercises you can contact me via l.zhang@fu-berlin.de.