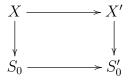
Crystals and Crystalline Cohomology


Dr. Lei Zhang

Exercise sheet 3^1

Exercise 1. Let *B* be a ring. Let $d_B: B \to \Omega_{B/\mathbb{Z}}$ be the differential. Let *M* be the free *B*-module generated on the free basis $\{db|b \in B\}$. Show that there exists a unique map of abelian groups $M \to \Omega_{B/Z}^2$ sending $adb \mapsto da \wedge db$, where $a, b \in B$.

Exercise 2. In the class we have defined the categoris $\operatorname{CRIS}(X/S)$ and $\operatorname{Cris}(X/S)$ and the notion of coverings of an object. Check that with the so defined covering $\operatorname{CRIS}(X/S)$ and $\operatorname{Cris}(X/S)$ become sites.

Exercise 3. Suppose that we have a PD-morphism $(S, I, \gamma) \rightarrow (S', I', \gamma')$ and a diagram:

where $S_0 = \text{Spec}(\mathcal{O}_S/I)$. Then we have an obvious functor

$$f: \operatorname{CRIS}(X/S) \longrightarrow \operatorname{CRIS}(X'/S')$$

Show that the functor f is both continuous and cocontinuous, hence it induces a map between topoi

$$(X/S)_{\text{CRIS}} \xrightarrow{f_{\text{CRIS}}} (X'/S')_{\text{CRIS}}$$

 $^{^1\}mathrm{If}$ you have any questions concerning these exercises you can contact me via l.zhang@fu-berlin.de.