Suggested Solution to Homework 3

Yu Mei[†]

P114, 15.(Half Space) Let $f \neq 0$ be a bounded linear functional on a real normed space X. Then for any scalar c we have a hyperplane $H_c = \{x \in X | f(x) = c\}$, and H_c determines the two half spaces

$$X_{c1} = \{x \in X | f(x) \le c\}$$
 and $X_{c2} = \{x \in X | f(x) \ge c\}$

Show that the closed unit ball lies in X_{c1} where c = ||f||, but for no $\varepsilon > 0$, the half space X_{c1} with $c = ||f|| - \varepsilon$ contains that ball.

Proof. For any $x \in \tilde{B}(0;1) := \{x \in X | ||x|| \le 1\},\$

$$f(x) \le \|f\| \|x\| = \|f\|.$$

So, $x \in X_{c1}$, i.e. the closed ball lies in X_{c1} . Since $||f|| = \sup_{\|x\|=1} |f(x)|$, then for any $\varepsilon > 0$, there exist a x_0 with $||x_0|| = 1$ such that

$$|f(x)| > ||f|| - \varepsilon.$$

So, for no $\varepsilon > 0$, the half space X_{c1} with $c = ||f|| - \varepsilon$ contains the closed ball.

P225, 14.(Hyperplane) Show that for any sphere S(0;r) in a normed space X and any point $x_0 \in S(0;r)$ there is a hyperplane $H_0 \ni x_0$ such that the ball $\tilde{B}(0;r)$ lies entirely in one of the two half spaces determined by H_0 .

Proof. Since $S(0;r) \ni x_0 \neq 0$, it follows from Theorem 4-3-3 in the textbook that there exists a bounded linear functional \tilde{f} such that $\tilde{f}(x_0) = ||x_0||$ and $||\tilde{f}|| = 1$. Set $H_0 = \{x \in X | \tilde{f}(x) = r\}$. It is clear that $x_0 \in H_0$. Moreover, for any $x \in \tilde{B}(0;r)$, $|f(x)| \leq ||f|| ||x|| \leq r$. Therefore, $\tilde{B}(0;r)$ lies entirely in the half plane $X_r = \{x \in X | f(x) \leq r\}$ which determined by H_0 .

P225, 15. If x_0 in a normed space X is such that $|f(x_0)| \le c$ for all $f \in X'$ of norm 1, show that $||x_0|| \le c$.

Proof. If $x_0 = 0$, then it is obvious that $||x_0|| = 0 \le c$. For $x_0 \ne 0$, by Theorem 4-3-3 in the textbook, there exist a bounded linear functional \tilde{f} on X such that $||\tilde{f}|| = 1$ and $\tilde{f}(x_0) = ||x_0||$. If $||x_0|| > c$, then $|\tilde{f}(x_0)| = ||x_0|| > c$, which is a contradiction. Hence $||x_0|| \le c$.

[†] Email address: ymei@math.cuhk.edu.hk. (Any questions are welcome!)