Suggested Solution to Homework 1

Yu Mei[†]

P70, 3. In ℓ^{∞} , let Y be the subset of all sequences with only finitely many nonzero terms. Show that Y is a subspace of ℓ^{∞} but not a closed subspace.

Proof.

(1) Let $x = \{\xi_j\}, y = \{\eta_j\}$ be any two elements in $Y \subset \ell^{\infty}$. Then there exist $N \in \mathbb{N}^+$ such that

$$\xi_j = \eta_j = 0, \quad \forall j \ge N,$$

otherwise x, y has infinitely many nonzero terms. Moreover, for any $j, |\xi_j| \leq C_x$ and $|\eta_j| \leq C_y$ for some nonnegetive constants C_x, C_y since $x, y \in \ell^{\infty}$. Hence, for any $\alpha, \beta \in \mathbb{R}$,

$$\alpha\xi_j + \beta\eta_j = 0, \quad \forall j \ge N; \quad |\alpha\xi_j + \beta\eta_j| \le |\alpha|C_x + |\beta|C_y, \quad \forall j \in \mathbb{N}^+,$$

which implies that $\alpha x + \beta y \in Y$. So, Y is a subspace of ℓ^{∞} .

(2) Y is not a closed subspace. For example, let x_n be a sequence such that

$$x_j^{(n)} = \begin{cases} 1/j, & j \le n, \\ 0, & j > n. \end{cases}$$

i.e. $x_n == \{1, \dots, \frac{1}{n}, 0, \dots\}$. It is clear that $x_n \in Y$. Set x be a sequence in ℓ^{∞} such that $x_j = \frac{1}{j}$. Thus,

$$||x_n - x||_{\ell^{\infty}} = \frac{1}{n+1} \to 0, \ as \ n \to +\infty.$$

But $x \notin Y$ since it has infinitely many nonzero terms.

P71, 7. Show that convergence of $||y_1|| + ||y_2|| + ||y_3|| + \cdots$ may not imply convergence of $y_1 + y_2 + y_3 + \cdots$. **Proof.** Consider Y in the above problem. Set $y_n = \{\eta_j^{(n)}\} \in Y$ to be a sequence with

$$\eta_n^{(n)} = 1/n^2, \eta_j^{(n)} = 0, \text{ for all } j \neq n.$$

Then, for any $n \in \mathbb{N}^+$, $||y_n|| = 1/n^2$ which implies that $\sum_{n=1}^{\infty} ||y_n|| = \sum_{n=1}^{\infty} 1/n^2 < +\infty$. Set $y = \{1, 1/2^2, \dots, 1/n^2, \dots\}$. Then,

$$\|\sum_{j=1}^{n} y_j - y\|_{\ell^{\infty}} = \frac{1}{(n+1)^2} \to 0, \quad as \quad n \to +\infty.$$

But y has infinitely many nonzero terms, i.e. $\sum_{n=1}^{\infty} y_n \notin Y$. So, $\sum_{n=1}^{\infty} y_n$ does not converge in Y.

P71, 14, Let Y be a closed subspace of a normed space $(X, \|\cdot\|)$. Show that a norm $\|\cdot\|_0$ on X/Y is defined by

$$\|\hat{x}\|_0 = \inf_{x \in \hat{x}} \|x\|$$

where $\hat{x} \in X/Y$, that is, \hat{x} is any coset of Y.

Proof. Recall that $X/Y = {\hat{x} | \hat{x} = x + Y, x \in X}$ and algebraic operations in X/Y are defined as:

$$\alpha \hat{x} = \alpha x + Y; \quad \hat{x} + \hat{z} = x + z + Y.$$

[†] Email address: ymei@math.cuhk.edu.hk. (Any questions are welcome!)

- (1) $\|\hat{x}\|_0 = \inf_{x \in \hat{x}} \|x\| = \inf_{y \in Y} \|x+y\| \ge 0$, since $\|\cdot\|$ is a norm on X.
- (2) On the one hand, $\hat{0} = Y$ yields that

$$\|\hat{0}\|_0 = \inf_{y \in Y} \|y\| = \|0\| = 0.$$

On the other hand, if $\|\hat{x}\|_0 = 0$, then

$$\inf_{y \in Y} \|x + y\| = \inf_{y \in Y} \|x - y\| = 0$$

which implies $x \in \overline{Y}$. Since Y is a closed subspace, then $\overline{Y} = Y$. Thus, $x \in Y$ so that $\hat{x} = 0$. Hence $\|\hat{x}\|_0 = 0$ if and only if $\hat{x} = \hat{0}$

(3) If $\alpha = 0$, then $\|\alpha \hat{x}\|_0 = \inf_{y \in Y} \|0x + y\| = 0$. For any $\alpha \in \mathbb{R} - \{0\}$, it holds that

$$\|\alpha \hat{x}\|_{0} = \inf_{y \in Y} \|\alpha x + y\| = \inf_{y \in Y} \|\alpha (x + \frac{y}{\alpha})\| = |\alpha| \inf_{y \in Y} \|x + \frac{y}{\alpha}\| = |\alpha| \inf_{y \in Y} \|x + y\| = |\alpha| \|\hat{x}\|_{0},$$

since Y is a subspace which yields that $\inf_{y \in Y} \|x + \frac{y}{\alpha}\| = \inf_{y \in Y} \|x + y\|.$

(4) For any $\hat{x}, \hat{z} \in X/Y$, by the definition of *infimum*, for any $\varepsilon > 0$, there exist $y_1, y_2 \in Y$ such that

$$||x + y_1|| \le ||\hat{x}||_0 + \varepsilon, ||z + y_2|| \le ||\hat{z}||_0 + \varepsilon.$$

Thus,

$$||x + z + y_1 + y_2|| \le ||x + y_1|| + ||z + y_2|| \le ||\hat{x}||_0 + ||\hat{z}||_0 + 2\varepsilon.$$

which implies that

$$\|\hat{x} + \hat{z}\|_0 = \inf_{y \in Y} \|x + z + y\| \le \|\hat{x}\|_0 + \|\hat{z}\|_0 + 2\varepsilon$$

Since ε is arbitrary, it holds that

$$\|\hat{x} + \hat{z}\|_0 \le \|\hat{x}\|_0 + \|\hat{z}\|_0$$