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Abstract. A generating IFS of a Cantor set F is an IFS whose attractor is F . For a
given Cantor set such as the middle-3rd Cantor set we consider the set of its generating
IFSs. We examine the existence of a minimal generating IFS, i.e. every other generating
IFS of F is an iterating of that IFS. We also study the structures of the semi-group of
homogeneous generating IFSs of a Cantor set F in R under the open set condition (OSC).
If dimH F < 1 we prove that all generating IFSs of the set must have logarithmically
commensurable contraction factors. From this Logarithmic Commensurability Theorem
we derive a structure theorem for the semi-group of generating IFSs of F under the OSC.
We also examine the impact of geometry on the structures of the semi-groups. Several
examples will be given to illustrate the difficulty of the problem we study.

1. Introduction

In this paper, a family of contractive affine maps Φ = {φj}Nj=1 in Rd is called an iterated

function system (IFS). According to Hutchinson [12], there is a unique non-empty compact

F = FΦ ⊂ Rd, which is called the attractor of Φ, such that F =
⋃N
j=1 φj(F ). Furthermore,

FΦ is called a self-similar set if Φ consists of similitudes.

It is well known that the standard middle-third Cantor set C is the attractor of the

iterated function system (IFS) {φ0, φ1} where

(1.1) φ0(x) =
1
3
x, φ1(x) =

1
3
x+

2
3
.

A natural question is: Is it possible to express C as the attractor of another IFS?

Surprisingly, the general question whether the attractor of an IFS can be expressed as the

attractor of another IFS, which seems a rather fundamental question in fractal geometry, has
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hardly been studied, even for some of the best known Cantor sets such as the middle-third

Cantor set.

A closer look at this question reveals that it is not as straightforward as it may appear.

It is easy to see that for any given IFS {φj}Nj=1 one can always iterate it to obtain another

IFS with identical attractor. For example, the middle-third Cantor set C satisfies

C = φ0(C) ∪ φ1(C)

= φ0 ◦ φ0(C) ∪ φ0 ◦ φ1(C) ∪ φ1(C)

= φ0 ◦ φ0(C) ∪ φ0 ◦ φ1(C) ∪ φ1 ◦ φ0(C) ∪ φ1 ◦ φ1(C).

Hence C is also the attractor of the IFS {φ0 ◦ φ0, φ0 ◦ φ1, φ1} and the IFS {φ0 ◦ φ0, φ0 ◦
φ1, φ1 ◦ φ0, φ1 ◦ φ1}, as well as infinitely many other iterations of the original IFS {φ0, φ1}.
The complexity doesn’t just stop here. Since C is centrally symmetric, C = −C + 1, we

also have

C =
(
−1

3
C +

1
3

)
∪
(
−1

3
C + 1

)
.

Thus C is also the attractor of the IFS {−1
3x+ 1

3 ,−
1
3x+ 1}, or even {−1

3x+ 1
3 ,

1
3x+ 2

3}.

Definition 1.1. Let Φ = {φi}Ni=1 and Ψ = {ψj}Mj=1 be two IFSs. We say that Ψ is derived

from Φ if for each 1 ≤ j ≤M , ψj = φi1 ◦ · · · ◦ φik for some 1 ≤ i1, . . . , ik ≤ N . We say that

Ψ is an iteration of Φ if Ψ is derived from Φ and FΦ = FΨ, where FΦ and FΨ denote the

attractors of Φ and Ψ, respectively.

We point out that the multiplicities in an IFS are not counted in our study. An IFS Φ,

after an iteration, may contain redundant maps. For example, let Φ = {φ0, φ1, φ2} where

φi = 1
2(x + i). Then in {φi ◦ φj : 0 ≤ i, j ≤ 2} both 1

4(x + 2) and 1
4(x + 4) appear twice.

After removing redundancies we have Ψ = {1
4(x+ j) : 0 ≤ j ≤ 6} as an iteration of Φ.

Definition 1.2. Let F be a compact set in Rd. A generating IFS of F is an IFS Φ whose

attractor is F . A generating IFS family of F is a set I of generating IFSs of F . A generating

IFS family I of F is said to have a minimal element Φ0 ∈ I if every Ψ ∈ I is an iteration

of Φ0.

The objective of this paper is to study the existence of a minimal IFS in a generating

IFS family of a self-similar set F ⊂ R. We have already pointed out the complexity of this

problem even for the middle-third Cantor set. Naturally, one cannot expect the existence
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of a minimal IFS in a generating IFS family I of a set F to be the general rule — not

without first imposing restrictions on I and F . But what are these restrictions? A basic

restriction is the open set condition (OSC) [12]. Recall that an IFS Φ = {φi}Ni=1 in Rd

is said to satisfy the OSC if there exists a nonempty open set V ⊂ Rd such that φi(V ),

i = 1, . . . , N , are disjoint subsets of V . Without the OSC either the existence of a minimal

IFS is hopeless, or the problem appears rather intractable. But even with the OSC a

compact set may have generating IFSs that superficially seem to bear little relation to one

another. One such example is the unit interval F = [0, 1]. For each integer N ≥ 2 the

IFS ΦN = { 1
N (x + j) : 0 ≤ j < N} is a generating IFS for F satisfying the OSC, and for

N2 > N1 that is not a power of N1, ΦN2 is not an iteration of ΦN1 . It is evident that other

restrictions will be needed. We study this issue in this paper.

While the questions we study in the paper appear to be rather fundamental questions of

fractal geometry in themselves, our study is also motivated by several questions in related

areas. One of the well known questions in tiling is whether there exists a 2-reptile that is

also a 3-reptile in the plane ([5]). A compact set T with T = T o is called a k-reptile if

there exists a measure disjoint partition T =
⋃k
j=1 Tj of T such that each Tj is similar to T

and all Tj are congruent. Suppose that Tj = φj(T ) for some similarity φj . Then T is the

attractor of the IFS {φj}kj=1. So this question, or more generally whether an m-reptile can

also be an n-reptile, is a special case of the questions we study here.

Another motivation comes from the application of fractal geometry to image compression,

see Barnsley [2] or Lu [15]. The basic premise of fractal image compression is that a digital

image can be partitioned into pieces in which each piece is the attractor of an affine IFS. So

finding a generating IFS of a given set plays the central role in this application. Naturally,

better compressions are achieved by choosing a minimal generating IFS for each piece if

possible, see also Deliu, Geronimo and Shonkwiler [6].

Although not directly related, there are two other questions that have also motivated our

study. One is a question raised by Mattila: Is there a non-trivial self-similar subset F of

the middle-third Cantor set C in the sense that F has a generating IFS that is not derived

from the generating IFS {φ0, φ1} of C given in (1.1)? We shall give a positive answer in

§6. The other question concerns the symmetry of a self-similar set such as the Sierpinski

Gasket, see e.g. [4], [10] and [23]. We have already seen from the middle-third Cantor set
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that symmetry complicates the study of existence of minimal IFSs. How the two questions

relate is perhaps a problem worth further exploiting.

For any IFS Φ we shall use FΦ to denote its attractor. We call an IFS Φ = {ρjx+aj}Nj=1

homogeneous if all contraction factors ρj are identical. In this case we use ρΦ to denote

the homogeneous contraction factor. We call Φ positive if all ρj > 0. A fundamental

result concerning the structures of generating IFSs of a self-similar set is the Logarithmic

Commensurability Theorem stated below. It is the foundation of many of our results in

this paper.

Theorem 1.1 (The Logarithmic Commensurability Theorem). Let F be the attrac-

tor of a homogeneous IFS Φ = {φi}Ni=1 in R satisfying the OSC.

(i) Suppose that dimH F = s < 1. Let ψ(x) = λx + d, λ 6= 0, such that ψ(F ) ⊆ F .

Then log |λ|/ log |ρΦ| ∈ Q.

(ii) Suppose that dimH F = 1 and F is not a finite union of intervals. Let ψ(x) = λx+d,

λ > 0, such that ψ(F ) ⊆ F and min(F ) ∈ ψ(F ). Then log λ/ log |ρΦ| ∈ Q.

An immediate corollary of the above theorem is:

Corollary 1.2. Let F be the attractor of a homogeneous IFS Φ = {φi}Ni=1 satisfying the

OSC. Suppose that Ψ = {ψj(x) = λjx+ bj}Mj=1 is another generating IFS of F .

(i) If dimH F = s < 1, then log |λj |/ log |ρΦ| ∈ Q for all 1 ≤ j ≤M .

(ii) If dimH F = 1 and F is not a finite union of intervals, and if Ψ is homogeneous,

then log |ρΨ|/ log |ρΦ| ∈ Q.

Note that the set of all homogeneous generating IFSs of a self-similar set F forms a semi-

group. Let Φ = {φi}Ni=1 and Ψ = {ψj}Mj=1 be two generating IFSs of F . We may define

Φ◦Ψ by Φ◦Ψ = {φi ◦ψj : 1 ≤ i ≤ N, 1 ≤ j ≤M}. Then clearly Φ◦Ψ is also a generating

IFS of F .

Definition 1.3. Let F be any compact set in R. We shall use IF to denote the set of

all homogeneous generating IFSs of F satisfying the OSC, augmented by the “identity”

Id = {id(x) := x}. We shall use I+
F to denote the set of all positive homogeneous generating

IFSs of F satisfying the OSC, augmented by the identity Id.
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Clearly both IF and I+
F , equipped with the composition as product, are semi-groups. If

F is not the attractor of a homogeneous IFS with OSC then IF is trivial. The Logarithmic

Commensurabilty Theorem leads to the following structure theorem for IF and I+
F :

Theorem 1.3. Let F be a compact set in R that is not a finite union of intervals. Then

IF is Abelian. Let Φ = {φi}Ni=1 ∈ IF , N > 1.

(i) Both IF and I+
F are finitely generated semi-groups.

(ii) Suppose that N is not a power of another integer. If ρΦ > 0 then Φ is the minimal

element for I+
F , namely I+

F =< Φ >:= {Φm : m ≥ 0}. If ρΦ < 0 then either I+
F

has a minimal element, or I+
F =< Φ2,Ψ > for some Ψ with ρΨ = ρqΦ where q ∈ N

is odd and Ψ2 = Φ2q.

(iii) Suppose that N is not a power of another integer. Then either IF =< Φ > or

IF =< Φ,Ψ > for some Ψ with ρΨ = −ρqΦ where q ∈ N and Ψ2 = Φ2q.

Due to the technical nature of the proof of the Logarithmic Commensurability Theorem

we shall postpone it until §5. Theorem 1.3 establishes the structures of IF and I+
F purely

on algebraic grounds. However, the structures of the semi-groups are also dictated by the

geometric structures of F . We shall exploit the impact of geometry on the structures of

the semi-groups in §2. In §3 we further study the structures of the semi-groups under the

convex open set condition. In §4 we study the existence of minimal IFSs for IFS families

with non-homogeneous contraction factors. Geometry plays a considerably bigger role in

this setting. In §5 we prove the Logarithmic Commensurability Theorem, along with other

related results. Finally in §6 we present various counterexamples, including an example to

Mattila’s question.

Acknowledgements. The authors wish to thank Zhiying Wen and Jun Kigami for helpful

comments. They are grateful to the anonymous referee for his/er many suggestions that

led to the improvement of the paper.

2. Structures of the Semi-groups

In this section we prove Theorem 1.3, and examine the impact of geometry to the struc-

tures of the semi-groups IF and I+
F . Although the proof of Theorem 1.1 and Corollary 1.2
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will be given later in §5, their proofs do not depend on the results in this section. Hence

we shall assume their validity in this section and use them to prove our results.

Proposition 2.1. Let Φ and Ψ be two homogeneous IFSs in R satisfying the OSC. If

ρΦ = ρΨ and FΦ = FΨ, then Φ = Ψ.

Proof. Let Φ = {φi(x) := ρx+ai}Ni=1 and Ψ = {ψj(x) := ρx+bj}Mj=1. Denote F = FΦ = FΨ.

To see N = M observe that by the OSC of Φ and Ψ we have dimH F = logN
− log |ρ| = logM

− log |ρ| .

It follows that N = M .

Let νF be the normalized s-dimensional Hausdorff measure restricted to F , where s =

dimH F , i.e. νF = 1
Hs(F )H

s. We assert that νF is the self-similar measure defined by Φ

with equal weights, i.e.

νF =
1
N

N∑
j=1

νF ◦ φ−1
j .

For any E ⊂ F let Ei = φi(F ) ∩ E. Note that φ−1
j (Ei) ∩ F ⊆ φ−1

j (φi(F ) ∩ φj(F )). The

OSC now implies νF (φ−1
j (Ei)) = 0, as well as νF (Ei ∩ Ej) = 0 for any i 6= j. Therefore

νF ◦ φ−1
j (E) = νF (φ−1

j (Ej)) = ρ−sνF (Ej) = NνF (Ej).

It follows that

1
N

N∑
j=1

νF ◦ φ−1
j (E) =

N∑
j=1

νF (Ej) = νF (E).

This proves the assertion. Similarly, νF is also the self-similar measure defined by the IFS

Ψ with equal weights.

Now taking the Fourier transform of νF and applying the self-similarity yield

ν̂F (ξ) = A(ρξ)ν̂F (ρξ) = B(ρξ)ν̂F (ρξ)

where A(ξ) := 1
N

∑N
j=1 e

−2πiajξ and B(ξ) := 1
M

∑M
j=1 e

−2πibjξ. Observe that A,B and ν̂F

are real analytic, not identically zero on R. Let V ⊂ R be a non-empty open set so that

ν̂F (ξ) 6= 0 for any ξ ∈ V . Then A(ξ) = B(ξ) for ξ ∈ V , which implies A = B on R. Hence

we have N = M and {aj} = {bj}, proving the proposition. �

Proposition 2.2. Let Φ and Ψ be two homogeneous IFSs satisfying the OSC. Then FΦ =

FΨ if and only if Φ ◦Ψ = Ψ ◦ Φ.
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Proof. Suppose that FΦ = FΨ then both Φ ◦ Ψ and Ψ ◦ Φ are generating IFSs of F with

identical contraction factors, and both satisfy the OSC. Hence Φ◦Ψ = Ψ◦Φ by Proposition

2.1.

Conversely, if Φ◦Ψ = Ψ◦Φ then Φ◦Ψm = Ψm◦Φ for any m ∈ N. Therefore Φ◦Ψm(FΨ) =

Ψm ◦ Φ(FΨ). But Ψm(E) −→ FΨ as m−→∞ in the Hausdorff metric for any compact set

E. Taking limit we obtain Φ(FΨ) = FΨ. Therefore FΦ = FΨ. �

Proof of Theorem 1.3. By Proposition 2.2, IF is Abelian. Let k be the largest integer

such that N = Lk for some L ∈ N. Suppose that Ψ = {ψj}Mj=1 ∈ IF and Ψ 6= Id.

By Corollary 1.2, log |ρΨ|/ log |ρΦ| ∈ Q. Then the dimension formula N−s = |ρΦ| and

M−s = |ρΨ| where s = dimH F implies that logM/ logN ∈ Q. It follows that M = Lm and

ρΨ = ±|ρΦ|
m
k for some m ∈ N.

We first prove (ii). By assumption N = L. Let Ψ = {ψj}Mj=1 ∈ I
+
F . Then M = Nm

for some m, which implies that ρΨ = |ρΦ|m. If ρΦ > 0 then Ψ = Φm via Proposition 2.1

because they have the same contraction factor. Thus I+
F =< Φ >. Suppose that ρΦ < 0.

We have two cases: Either every Ψ ∈ I+
F has ρΨ = |ρΦ|2m

′
for some m′, or there exists a

Ψ ∈ I+
F with ρΨ = |ρΦ|m for some odd m. In the first case every Ψ ∈ I+

F has Ψ = (Φ2)m

again by Proposition 2.1. Hence I+
F =< Φ2 >. In the second case, let q be the smallest odd

integer such that ρΨ0 = |ρΦ|q for some Ψ0 ∈ I+
F . For any Ψ ∈ I+

F we have ρΨ = |ρΦ|m. If

m = 2m′ then Ψ = (Φ2)m
′
. If m is odd then m ≥ q and m− q = 2m′. Thus ρΨ = ρΦ2m′◦Ψ0

,

and hence Ψ = Φ2m′ ◦Ψ0. It follows that I+
F =< Φ2,Ψ0 > with Ψ2

0 = (Φ2)q. This proves

(ii).

We next prove (iii), which is rather similar to (ii). Again, any Ψ ∈ IF must have ρΨ =

±|ρΦ|m for some m. If IF =< Φ > we are done. Otherwise there exists a Ψ0 ∈ IF such that

Ψ0 6∈< Φ > and it has the largest contraction factor in absolute value. Since ρΨ0 = ±|ρΦ|q

for some q, and Ψ0 6= Φq, we must have ρΨ0 = −ρqΦ. We show that IF =< Φ,Ψ0 >. For

any Ψ ∈ IF either Ψ = Φm for some m or ρΨ = −ρmΦ . In the latter case m ≥ q. So

ρΨ = ρΦm−q◦Ψ0
, implying that Ψ = Φm−q ◦Ψ0 by Proposition 2.1. Also it is clear Ψ2

0 = Φ2q

because they have the same contraction factor. We have proved (iii).

Finally we prove (i). We have already seen that ρΨ = ±|ρΦ|
m
k for some m ∈ N for any

Ψ ∈ IF . Set ρ = |ρΦ|
1
k . Then ρΨ = ±ρm.



8 DE-JUN FENG AND YANG WANG

Define P+ = {m : ρm = ρΨ for some Ψ ∈ IF } and P− = {m : ρm = −ρΨ for some Ψ ∈
IF }. We will show that I+

F is finitely generated. Set a = gcd(P+). Let Ψ1, . . . ,Ψn ∈ IF with

ρΨj = ρmj such that gcd(m1,m2, . . . ,mn) = a. By a standard result in elementary number

theory every sufficiently large integer ma ≥ N0 can be expressed as ma =
∑n

j=1 pjmj with

pj ≥ 0. Thus every Ψ ∈ I+
F with ρΨ = ρma, ma ≥ N0, can be expressed as Ψ = Πn

j=1Ψpj

j

since the two IFSs have the same contraction factor. Let {Ψn+1, . . . ,ΨK} ⊆ I+
F consist of

all elements Ψ ∈ I+
F with ρΨ ≥ ρN0 that are not already in {Ψ1, . . . ,Ψn}. Then I+

F =<

Ψ1,Ψ2, . . . ,ΨK >, and it is finitely generated.

The proof that IF is finitely generated is virtually identical, and we omit it. �

3. The Convex Open Set Condition

In this section, we study the attractors of homogeneous IFSs satisfying the convex open

set condition.

Definition 3.1. Let Φ = {φj}Nj=1 be an IFS in R. We say Φ satisfies the separation

condition (SC) if φi(FΦ) ∩ φj(FΦ) = ∅ for all i 6= j. We say Φ satisfies the convex open set

condition (COSC) if Φ satisfies the OSC with a convex open set.

The following is another main theorem in this paper:

Theorem 3.1. Let F ⊂ R be a compact set that is not a finite union of intervals such that

F is the attractor of a homogeneous IFS satisfying the COSC. We have:

(i) The semi-group I+
F has a minimal element Φ0, namely I+

F =< Φ0 >.

(ii) Suppose that F is not symmetric. Then IF has a minimal element Φ0, IF =< Φ0 >.

(iii) Suppose that F is symmetric. Then there exist Φ+ and Φ− in IF with ρΦ+ =

−ρΦ− > 0 such that every Ψ ∈ IF can be expressed as Ψ = Φm
+ if ρΨ > 0 and

Ψ = Φm
+ ◦ Φ− if ρΨ < 0 for some m ∈ N.

We shall first prove several results leading up to our main theorem.

Lemma 3.2. Let Φ = {φj} be an IFS in R. Then Φ satisfies the COSC if and only if for

all i 6= j we have φi(x) ≤ φj(y) for all x, y ∈ FΦ or φi(x) ≥ φj(y) for all x, y ∈ FΦ.
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Proof. Suppose that Φ satisfies the COSC. Then the convex open set for the OSC must be

an interval U = (a, b). Since φi(U) ∩ φj(U) = ∅ for all i 6= j, and noting that FΦ ⊆ U , we

immediately know that φi(F ) must lie entirely on one side of φj(F ).

Conversely, suppose that φi(F ) lies entirely on one side of φj(F ), i 6= j. Let U be the

interior of the convex hull of F , which is an interval. Then φi(U) ∩ φj(U) = ∅, and clearly

φi(F ) ⊂ F implies that φi(U) ⊂ U . Hence Φ satisfies the COSC. �

Lemma 3.3. Under the assumption of Theorem 3.1, let Φ be any generating homogeneous

IFS of F with the OSC. Then Φ also satisfies the COSC.

Proof. Let Ψ be a generating homogeneous IFS of F with the COSC. By Corollary 1.2 and

Proposition 2.1, there exist integers m,n such that ρmΦ = ρnΨ. It follows from Lemma 2.1

that Φm = Ψn. Assume that Φ does not satisfy the COSC. Then there exist φi, φj ∈ Φ so

that φi(x) < φj(y) and φi(z) > φj(w) for some x, y, z, w ∈ F . The same or the opposite

inequalities will hold if we replace φi, φj by φm−1
1 ◦φi and φm−1

1 ◦φj , respectively. But this

is impossible because both φm−1
1 ◦ φi and φm−1

1 ◦ φj are in Φm, and hence in Ψn, which

satisfies the COSC. �

The following lemma is also needed in the proof of the theorem.

Lemma 3.4. Let Φ and Ψ be two homogeneous IFSs such that ρΦ = −ρΨ and FΦ = FΨ.

Assume that Φ satisfies the COSC and Ψ satisfies the OSC. Then FΦ must be symmetric.

Proof. Let Φ = {φi(x) := ρx + ai}Ni=1 and Ψ = {ψj(x) := −ρx + bj}Mj=1. Ψ also satisfies

the COSC by Lemma 3.3. Without loss of generality we assume that ρ > 0 and a1 < a2 <

· · · < aN , b1 < b2 < · · · < bM . Denote A = {ai} and B = {bj}. By Proposition 2.1, the

OSC for Φ and Ψ as well as ρΦ2 = ρΨ2 imply Φ2 = Ψ2. Observe that

Φ2 = {ρ2x+ ai + ρaj}Ni,j=1, Ψ2 = {ρ2x+ bi − ρbj}Mi,j=1.

It follows from the COSC for Φ2 that the lexicographical order for {ai + ρaj}Ni,j=1 also

yields a strictly increasing order for the set. Similarly, the lexicographical order for {bi −
ρbM+1−j}Mi,j=1 also yields a strictly increasing order for the set. Therefore M = N and

ai + ρaj = bi − ρbN+1−j for all i, j. Fix j = 1 yields ai = bi + c for some constant c. Fix

i = 1 yields aj = −bN+1−j + c′ for some constant c′. Thus aj = aN+1−j + c′′ for some

constant c′′. Hence A is symmetric, which implies that FΦ is symmetric. �
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Proof of Theorem 3.1. We first give the following claim.

Claim. Let Φ,Ψ be any two elements in IF with |ρΦ| > |ρΨ|. Then there exists a Γ ∈ IF
such that Ψ = Φ ◦ Γ, where Φ ◦ Γ := {φ ◦ γ : φ ∈ Φ, γ ∈ Γ}.

Proof of Claim. Let Φ = {φi(x)}Ni=1 and Ψ = {ψj(x)}Mj=1. Since both Φ and Ψ satisfy

the COSC, we may without loss of generality assume that φ1(F ) ≤ · · · ≤ φM (F ) and

ψ1(F ) ≤ · · · ≤ ψN (F ), where X ≤ Y for two sets X and Y means x ≤ y for all x ∈ X and

y ∈ Y . Set a = minF , b = maxF and F0 = [a, b]. Clearly each φi(F0) (resp. ψj(F0)) is a

sub-interval of F0, with end points φi(a) and φi(b) (resp. ψi(a) and ψi(b)). The COSC for

Φ and Ψ now imply that φ1(F0) ≤ · · · ≤ φM (F0) and ψ1(F0) ≤ · · · ≤ ψN (F0).

It follows from Corollary 1.2 that log |ρΦ|
log |ρΨ| = n

m for some positive integers m and n with

gcd(m,n) = 1. Thus Nm = Mn, or N = M
n
m , by dimH F = logN

− log |ρΦ| = logM
− log |ρΨ| . This

forces K = M
1
m to be an integer, for otherwise the co-primeness of n,m makes N = M

n
m

an irrational number. Therefore M = Km and N = Kn. In particular, M
N = L ∈ Z.

Now Φq = Ψr by Proposition 2.1, where q = 2m and r = 2n. For each i = i1i2 · · · iq ∈
{1, . . . , N}q denote φi := φi1 ◦ · · · ◦ φiq , and similarly define ψj for j ∈ {1, . . . ,M}r. Then

Φq = {φi : i ∈ {1, . . . , N}q} and Ψr = {ψi : i ∈ {1, . . . ,M}r}. It is clear that both Φq and

Ψr satisfy the COSC. We rank the maps in Φq in the increasing order of φi(F0), and rank

the maps in Ψr in the increasing order of ψj(F0) respectively. Then the first N q−1 maps

in (φi : i ∈ {1, . . . , N}q) are J1 = {φ1i′ : i′ ∈ {1, . . . , N}q−1}, while the first N q−1 maps

in (ψj : j ∈ {1, . . . ,M}r) are J2 = {ψj1j′ : 1 ≤ j1 ≤ L, j′ ∈ {1, . . . ,M}r−1}. Therefore

J1 = J2. Note that

⋃
ϕ∈J1

ϕ(F ) = φ1(F ),
⋃
ϕ∈J2

ϕ(F ) =
L⋃
j=1

ψj(F ).

It follows that F =
⋃L
j=1 φ

−1
1 ◦ ψj(F ), so Γ1 := {φ−1

1 ◦ ψj}Lj=1 is a generating IFS for F . It

clearly satisfies the COSC.

We can continue the same argument by counting the next N q−1 elements in the two

sequences. This yields F =
⋃2L
j=L+1 φ

−1
2 ◦ ψj(F ), so Γ2 := {φ−1

2 ◦ ψj}2Lj=L+1 is a generating

IFS for F . Continue to the end yields Γ1, . . . , ΓN in IF , with the property that

(3.1) {ψj : (k − 1)L+ 1 ≤ j ≤ kL} = {φk ◦ ϕ : ϕ ∈ Γk}.
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But by Proposition 2.1, all Γk are equal because they have the same contraction factor. It

follows from (3.1) that Ψ = Φ ◦ Γ, with Γ := Γk. This proves the Claim. �

To prove part (i) of the theorem, let Φ0 ∈ I+
F have the largest contraction factor. Such

a Φ0 exists because for any Φ = {φi}Ni=1 ∈ I
+
F we must have ρΦ = N−dimH(F ). Now by

Proposition 2.1, for any Φ 6= Φ0 in I+
F we have ρΦ < ρΦ0 . By the Claim Φ = Φ0 ◦ Γ1 for

some Γ1 ∈ I+
F . If Γ1 = Φ0 then Φ = Φ2

0, and we finish the proof. If not then ρΓ1 < ρΦ0 ,

yielding Γ1 = Φ0 ◦ Γ2 for some Γ2 ∈ I+
F . Apply the Claim recursively, and the process will

eventually terminate since |ρΦ| > 0. Hence Φ = Φk
0 for some k. The proof of part (i) is now

complete.

To prove part (ii) of the theorem, if IF = I+
F then there is nothing we need to prove.

Assume that IF 6= I+
F . Let I−F ⊂ IF consisting of all homogeneous IFSs with negative

contraction factors, and Φ− ∈ I−F have the largest contraction factor in absolute value. Let

Φ+ ∈ I+
F have the largest contraction factor in I+

F . If |ρΦ− | = ρΦ+ then F is symmetric

by Lemma 3.4, a contradiction. So |ρΦ− | 6= ρΦ+ . Note that Φ2
− = Φm

+ for some m by part

(i). Thus m = 1 or m > 2. If m > 2 then ρΦ+ > |ρΦ− |. Following the Claim we have

Φ− = Φ+ ◦ Γ for some Γ ∈ IF . But ρΓ < 0 and |ρΓ| > |ρΦ− |. This is a contradiction.

Therefore m = 1 and Φ2
− = Φ+. Part (ii) of the theorem follows from part (i) and the

Claim.

Finally we prove (iii). If F is symmetric, then for any IFS Ψ ∈ IF there is another

Ψ′ ∈ IF such that ρΨ = −ρΨ′ because F = −F + c for some c. Let Φ+ and Φ− be the

elements in IF whose contraction factors have the largest absolute values, ρΦ+ = −ρΦ− > 0.

Proposition 2.1 and the same argument to prove part (i) now easily apply to prove that for

any Ψ ∈ IF , Ψ = Φm
+ if ρΨ > 0 and Ψ = Φm

+ ◦ Φ− if ρΨ < 0 for some m ∈ N. This finishes

the proof of Theorem 3.1. �

The COSC in Theorem 3.1 cannot be replaced by the condition SC. We give a counterex-

ample in §6.

4. Non-homogeneous IFS

When we do not require that the contraction factors be homogeneous, the main result

in §2 no longer holds. In §6 we give a counterexample showing that the COSC no longer
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guarantees the existence of a minimal element. For the existence to hold we need stronger

assumptions. The following is our main result:

Theorem 4.1. Let F ⊂ R be a compact set such that F is the attractor of an IFS Φ =

{ρix + ci}Ni=1 with the OSC. Assume that dimH F = s < 1 and Hs(F ) = (b − a)s, where

a = minF and b = maxF .

(i) Let G+
F denote the set of all positive generating IFSs of F with the OSC. Then G+

F

contains a minimal element.

(ii) Let GF denote the set of all generating IFSs of F with the OSC. Suppose that F is

not symmetric. Then GF contains a minimal element.

(iii) Suppose that F is symmetric. Then there exists a Φ0 = {φi}Mi=1 in GF such that for

any Ψ ∈ GF and each ψ ∈ Ψ, there exist i1, . . . , i` ∈ {1, . . . ,M} so that

ψ = φi1 ◦ · · · ◦ φi` or ψ = φi1 ◦ · · · ◦ φi` ,

where ψ denote the unique affine map on R satisfying ψ(a) = ψ(b) and ψ(b) = ψ(a).

Remark 4.1. The condition Hs(F ) = (b−a)s is very strong. In general if F is the attractor

of an IFS in R with the OSC, we always have 0 < Hs(F ) ≤ (b − a)s. Let µ = Hs/Hs(F ).

Then the condition Hs(F ) = (b− a)s is equivalent to

(4.1) µ([u, v]) ≤
(
v − u
b− a

)s
for any interval [u, v] ⊂ R.

(See e.g. (1.3) and (1.5) in [1].) Let Φ = {φi}Ni=1 ∈ G
+
F . Assume that φ1(a) < φ2(a) < . . . <

φN (a). Marion [18] showed that Hs(F ) = (b− a)s if and only if

(4.2)
∑n

i=m |ρi|s

|φn(b)− φm(a)|s
≤ (b− a)−s, ∀ 1 ≤ m < n ≤ N.

See [1, Theorem 4.2] for a shorter proof. We remark that (4.2) is an easily checkable

condition. For any given ρ1, . . . , ρN > 0 with
∑N

i=1 ρi < 1, one can choose c1, . . . , cN

such that (4.2) holds for the IFS {ρix + ci}Ni=1. For instance, one may take c1 = 0 and

cj =
∑j−1

k=1(ρk + `k) for 2 ≤ j ≤ N , where{
`j = (ρsj + · · ·+ ρN )1/s − (ρj+1 + · · ·+ ρsN )1/s − ρj for 1 ≤ j < N − 1,
`N−1 = (ρsN−1 + ρsN )1/s − ρN−1 − ρN .

Furthermore (4.2) remains valid if we perturb the above cj ’s slightly (see [1, Corollary 4.5.]).

If we drop the condition Hs(F ) = (b− a)s, then Theorem 4.1 is no longer true. We present

a counterexample in §6.
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Proof of Theorem 4.1. We first prove the following claim:

Claim. Let ψ1, ψ2 be any two contractive affine maps with ψ1(F ) ⊂ F and ψ2(F ) ⊂ F .

Then one of the following cases must happen:

(A) ψ1(F ) ∩ ψ2(F ) = ∅;
(B) ψ1(F ) ⊇ ψ2(F );

(C) ψ2(F ) ⊇ ψ1(F ).

Proof of Claim. Let νF denote the s-dimensional Hausdorff measure restricted to F . It

follows from (4.1) that for all intervals [u, v],

(4.3) νF ([u, v]) ≤ (v − u)s.

Denote [a1, b1] := ψ1([a, b]) and [a2, b2] := ψ2([a, b]). There are at most 5 different possible

scenarios for these two intervals:

(1) [a1, b1] ∩ [a2, b2] = ∅;
(2) [a1, b1] ⊇ [a2, b2];

(3) [a2, b2] ⊇ [a1, b1];

(4) a1 < a2 ≤ b1 < b2;

(5) a2 < a1 ≤ b2 < b1.

We prove the claim by examining ψ1(F ) and ψ2(F ) in each of the above scenarios.

It is clear that with scenario (1) we have ψ1(F )∩ψ2(F ) = ∅. We show that ψ1(F ) ⊇ ψ2(F )

with scenario (2) by contradiction. Assume it is not true. Then there exists an x0 ∈ F such

that dist(ψ2(x0), ψ1(F )) > 0. This means there exists a small cylinder E = φi1 ◦ · · · ◦φin(F )

of the IFS Φ containing x0 such that ψ2(E)∩ψ1(F ) = ∅. Note that by the scaling property

of the measure νF we have νF (ψ2(E)) > 0. Hence

νF ([a1, b1]) ≥ νF (ψ1(F ) ∪ ψ2(F )) ≥ νF (ψ1(F )) + νF (ψ2(E)) > νF (ψ1(F )).

But because νF (F ) = (b− a)s we also have νF (ψ1(F )) = (b1 − a1)s by the scaling property

of νF and the fact that ψ1(F ) ⊆ F . Therefore νF ([a1, b1]) > (b1 − a1)s, a contradiction to

(4.3). Similarly ψ2(F ) ⊇ ψ1(F ) with scenario (3).
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Now we prove that scenarios (4) and (5) never occur. Assume this is false. Without loss

of generality we assume that scenario (4) has occurred. Then

νF ([a1, b2]) = νF ([a1, b1]) + νF ([a2, b2])− νF ([a2, b1])

= (b1 − a1)s + (b2 − a2)s − νF ([a2, b1])

≥ (b1 − a1)s + (b2 − a2)s − (b1 − a2)s

> (b2 − a1)s,

a contradiction. Note that for the last inequality we have employed an easily checked fact

(x+ y)s + (y + z)s − ys > (x+ y + z)s

with x = a2 − a1 > 0, y = b1 − a2 ≥ 0 and z = b2 − b1 > 0. So have completed the proof of

the claim. �

Going back to the proof, suppose that Φ0 = {φi}Mi=1 is an element in GF (resp. G+
F ) with

the smallest integer M . By the claim Φ0 satisfies the SC. To prove the theorem, it suffices

to prove that if ψ(x) = ρx+ b is an affine map (reps. ρ > 0) satisfying ψ(F ) ⊂ F , then

ψ(F ) = φi1 ◦ · · · ◦ φi`(F )

for some indices i1, . . . , i` ∈ {1, . . . ,M}.

First we assert that ψ(F ) ⊆ φi(F ) for some i ∈ {1, . . . ,M}. To see this, denote

Λ = {j : 1 ≤ j ≤M and ψ(F ) ∩ φj(F ) 6= ∅}.

We only need to show that Λ is a singleton. Assume it is not true. That is, #Λ ≥ 2. Then

by the claim we have ψ(F ) ⊇
⋃
j∈Λ φj(F ), and thus ψ(F ) =

⋃
j∈Λ φj(F ). It follows that

{ψ} ∪ {φj′}1≤j′≤M,j′ 6∈Λ constitutes an IFS for F , which contradicts the minimality of M .

Now let ` be the largest integer such that

ψ(F ) ⊆ φi1 ◦ · · · ◦ φi`(F )

for some indices i1, . . . , i`. We show that ψ(F ) = φi1 ◦ · · · ◦φi`(F ) as required. Denote ψ̂ :=

φ−1
i`
◦· · ·◦φ−1

i1
◦ψ. Then ψ̂(F ) ⊆ F . Assume that ψ(F ) 6= φi1 ◦· · ·◦φi`(F ), that is, ψ̂(F ) 6= F .

Then again ψ̂(F ) ⊆ φi`+1
(F ) for some index i`+1. Therefore ψ(F ) ⊆ φi1 ◦ · · · ◦ φi`+1

(F ),

contradicting the maximality of `.
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Observe that by the scaling property of νF again, ψ(F ) = φi1 ◦ · · · ◦ φi`(F ) implies that

the two maps on both side of the equality must have the same contraction factor in absolute

values. Therefore ψ̂ = x+c or −x+c for some c. If ψ̂ = x+c then ψ̂(F ) = F yields c = 0, so

ψ = φi1 ◦· · ·◦φi` . In the case of G+
F this is the only possibility. If ψ̂ = −x+c then ψ̂(F ) = F

implies F is symmetric and ψ̂ = ψ. The proof of the theorem is now complete. �

5. Logarithmic Commensurability of Contraction Factors

In this section we prove Theorem 1.1 and Corollary 1.2. The most difficult part of the

proof by far is for part (i) of Theorem 1.1, which is rather tedious and technical, requiring

delicate estimates and analysis. We first prove a stronger form of part (ii) of Theorem 1.1.

A compact set F is said to satisfy the no interval condition if F 6⊇ [min(F ),min(F ) + ε] for

any ε > 0.

Lemma 5.1. Let Φ = {φi(x) := ρix+ ci}Ni=1 be an IFS in R with attractor F satisfying the

no interval condition. Assume that x0 := min(F ) ∈ φ1(F ) but x0 6∈ φj(F ) for all j > 1, and

ρ1 > 0. Let ψ(x) = λx+ b such that x0 ∈ ψ(F ) ⊂ F and λ > 0. Then log λ/ log ρ1 ∈ Q.

Proof. Since ρ1, λ > 0 it is clear that x0 is a fixed point of φ1 and ψ, i.e. x0 = φ1(x0) =

ψ(x0). By making a translation F ′ = F − x0 it is easy to see that we may without loss of

generality assume that x0 = min(F ) = 0, which forces φ1(x) = ρ1x and ψ(x) = λx.

From the definition and φ1(x) = ρ1x, we have

(5.1) ρ−m1 F = ρ−m1

⋃
φ∈Φm

φ(F ) = F ∪
( ⋃
φ∈Φm\{φm

1 }

ρ−m1 φ(F )
)
,

Since ψn(F ) = λnF ⊂ F , by (5.1) we have

(5.2) ρ−m1 λnF ⊆ ρ−m1 F = F ∪
( ⋃
φ∈Φm\{φm

1 }

ρ−m1 φ(F )
)
.

Observe that 0 ∈ φ1(F ) but dist (0, φj(F )) ≥ δ for some δ > 0 and all j > 1. This means

0 ∈ φm1 (F ) but dist (0, φ(F )) ≥ ρm1 δ for all other φ ∈ Φm. Hence dist (0, ρ−m1 φ(F )) ≥ δ for

all φ ∈ Φm \ {φm1 }. Now, [0, δ] 6⊆ F by the no interval condition. So there exists an interval

I0 ⊆ (0, δ) \ F . Clearly I0 has no intersection with the set on the righthand side of (5.2).

Assume that log λ/ log ρ1 6∈ Q. Then {−m log ρ1 + n log λ} is dense in R, and hence ρ−m1 λn

is dense in R+. In particular we may choose m,n such that ρ−m1 λn max(F ) ∈ I0. For such

m,n (5.2) is clearly violated, yielding a contradiction. �
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We remark that Lemma 5.1 does not require the IFS to satisfy the OSC. Clearly the no

interval condition is satisfied if dimH F < 1. If a homogeneous IFS Φ satisfying the OSC

and dimH FΦ = 1, then the no interval condition is equivalent to FΦ is not a finite union of

intervals:

Proposition 5.2. Let Φ be a homogeneous IFS with the OSC. Suppose that FΦ does not

satisfy the no interval condition. Then ρΦ = 1
p for some integer p and FΦ is a finite union

of intervals.

Proof. This is proved in Lagarias and Wang [13], using a result of Odlyzko [19]. In fact, the

structure of Φ is known. �

We now prove part (i) of Theorem 1.1. This is done by breaking it down into several

lemmas.

Lemma 5.3. Under the assumptions of Theorem 1.1, there exists a positive number t

(depending on F ) such that

(5.3) Hs(F ∩ [a, b]) ≤ t (b− a)s, ∀ [a, b] ⊂ R.

Proof. It is included implicitly in the proof of Theorem 8.6 in Falconer [9]. �

As a result of the above lemma, we introduce

dmax = sup{Hs(F ∩ [a, b])/(b− a)s : [a, b] ⊂ R},

and clearly 0 < dmax <∞. The following lemma plays a central role in the proof of Theorem

1.1.

Lemma 5.4. There exist an interval [a, b] and an integer k > 0 such that

(i) [a, b] ∩ F 6= ∅.
(ii)

[
x− |ρΦ|kdiamF, x+ |ρΦ|kdiamF

]
∩ F = ∅ for x = a, b.

(iii) Denote M =
{
i ∈ {1, · · · , N}k : φi(F ) ⊂ [a, b]

}
and M = #M, then

(5.4) (M + 1/2)|ρΦ|ksHs(F ) > dmax(b− a)s.

Proof. Denote ρ = |ρΦ|. Since 0 < s < 1, using L’Hospital’s rule we have

lim
x→0

(1 + ux)s − 1
xs

= 0, ∀ u > 0.
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Therefore there exist ` ∈ N and ε > 0 such that

(5.5)
1
2
ρ`sHs(F )− ε > dmax

(
(1 + 8ρ`−1diamF )s − 1

)
.

By the definition of dmax there exists an interval [c, d] such that [c, d] ∩ F 6= ∅ and

Hs(F ∩ [c, d]) ≥ (dmax − ε) (d− c)s.

Let r be the integer so that ρr+1 < d− c ≤ ρr. Then we have

Hs(F ∩ [c, d]) +
1
2
ρ(r+`)sHs(F ) > (dmax − ε)(d− c)s +

1
2
ρ`sHs(F )(d− c)s

≥
(
dmax − ε+

1
2
ρ`sHs(F )

)
(d− c)s

≥ dmax

(
1 + 8ρ`−1diamF

)s
(d− c)s (by (5.5))

≥ dmax

(
d− c+ 8ρ`−1(d− c)diamF

)s
≥ dmax

(
d− c+ 8ρ`+rdiamF

)s
.

That is

(5.6) Hs(F ∩ [c, d]) +
1
2
ρ(r+`)sHs(F ) > dmax

(
d− c+ 8ρ`+rdiamF

)s
.

Define k = ` + r and [a, b] = [c − 2ρkdiamF, d + 2ρkdiamF ]. We show that [a, b] and k

satisfy (i), (ii) and (iii). Part (i) is obvious since [a, b] ⊃ [c, d]. Assume that (ii) is not true.

Then

F ∩
(

[c− 3ρkdiamF, c− ρkdiamF ] ∪ [d+ ρkdiamF, d+ 3ρkdiamF ]
)
6= ∅.

Therefore there exists at least one i ∈ {1, . . . , N}k such that

φi(F ) ⊂ [c− 4ρkdiamF, c] ∪ [d, d+ 4ρkdiamF ].

Then it would follow from (5.6) that

Hs(F ∩ [c− 4ρkdiamF, d+ 4ρkdiamF ]) ≥ Hs(F ∩ [c, d]) + ρksHs(F )

> dmax(d− c+ 8ρkdiamF )s,

which leads to a contradiction. This finishes the proof of part (ii). According to (ii), we

have
⋃

i∈M φi(F ) ⊇ F ∩ [c, d]. Thus MρksHs(F ) ≥ Hs(F ∩ [c, d]). Hence by (5.6),

(M + 1/2)ρksHs(F ) ≥ Hs(F ∩ [c, d]) +
1
2
ρksHs(F )

> dmax(d− c+ 8ρkdiamF )s

> dmax(b− a)s,
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proving part (iii). �

Proof of Theorem 1.1. Part (ii) is a corollary of Lemma 5.1 and Proposition 5.2. To see

it, we observe that under the assumption of (ii), F satisfies the no interval condition by

Proposition 5.2. Then we apply Lemma 5.1 to the positive homogeneous IFS Φ2 to yield

log λ/ log ρ2
Φ ∈ Q.

In the following we prove part (i) of the theorem. Note that IF and I+
F are Abelian as a

result of Proposition 2.2. Let [a, b], k, M and M be given as in Lemma 5.4. Assume that

Theorem 1.1 is false, that is, log |λ|/ log |ρΦ| 6∈ Q. We derive a contradiction.

Let ε > 0 be a small number such that (1−ε)s(M+1) ≥ (M+1/2). Since log |λ|/ log |ρΦ| 6∈
Q, there exist m,n ∈ N such that

1− ε < |ρΦ|m/|λ|n < 1.

Define J = ψn([a, b]). We show that

(5.7) Hs(J ∩ F ) > dmax|diamJ |s,

which contradicts the maximality of dmax.

To show (5.7), let

J̃ := ψn
[
a+ |ρΦ|kdiamF, b− |ρΦ|kdiamF

]
.

By Lemma 5.4 (ii),

J̃ ∩ F ⊇ J̃ ∩ ψn(F )

= ψn
([
a+ |ρΦ|kdiamF, b− |ρΦ|kdiamF

]
∩ F

)
= ψn([a, b] ∩ F )

= ψn

( ⋃
i∈M

φi(F )

)
.

Hence

(5.8) Hs(J̃ ∩ F ) ≥ Hs
(
ψn
( ⋃

i∈M
φi(F )

))
= M |λ|ns |ρΦ|ks Hs(F ).

Define

R :=
{

i ∈ {1, · · · , N}m+k : φi(F ) ∩ J̃ 6= ∅
}
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and R = #R. Then φi(F ) ⊂ J for any i ∈ R, and
⋃

i∈R φi(F ) ⊃ J̃ ∩ F . Thus

Hs(J ∩ F ) ≥ Hs(
⋃
i∈R

φi(F )) = R |ρΦ|(m+k)s Hs(F ) ≥ Hs(J̃ ∩ F ).

Combining the second inequality with (5.8) and with |ρΦ|m/|λ|n < 1 we obtain R > M ,

and thus R ≥M + 1. Hence we have

Hs(J ∩ F ) ≥ (M + 1) |ρΦ|(m+k)s Hs(F )

> (M + 1) (1− ε)s |λ|ns |ρΦ|ks Hs(F )

> (M + 1/2) |λ|ns |ρΦ|ks Hs(F )

> dmax |λ|ns (b− a)s ( by (5.4))

= dmax |J |s.

This is a contradiction, proving part (i) of the theorem. �

6. Counterexamples and Open Questions

In this section we present various counterexamples, including an example to Mattila’s

question. We also propose some open questions.

Let us first give an example to show that the condition COSC in Theorem 3.1 cannot be

replaced with the SC.

Example 6.1. Let F be the attractor of the IFS Φ = { 1
16(x + a) : a ∈ A} where A =

{0, 1, 64, 65}. It is not difficult to check that Φ satisfies the SC but does not satisfy the

COSC. We prove that I+
F does not contain a minimal element by contradiction. Assume

this is not true. Let Φ0 = {ρx + ci}Ni=1 be the minimal element of I+
F . By the dimension

formula and Corollary 1.2, log ρ/ log 16−1 = logN/ log 4 ∈ Q. Therefore N = 2 and ρ = 1
4

or N = 4 and ρ = 1
16 . But it is easy to check that if N = 2 then the IFS Φ0 must

satisfy the COSC, but Φ does not, a contradiction to Theorem 3.1. Hence we must have

N = 4 and hence Φ0 = Φ by Lemma 2.1. Now let Ψ = { 1
64(x + b) : b ∈ B} where

B = {0, 1, 16, 17, 256, 257, 272, 273}. One can check directly B + 64B = A + 16A + 162A.

Thus Ψ2 = Φ3, which implies Ψ ∈ IF . However Ψ is not derived from Φ, which leads to a

contradiction. Hence I+
F does not contain a minimal element.
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Now we give a counterexample showing that the COSC no longer guarantees the existence

of a minimal element if we do not require that the contraction factors be homogeneous.

Example 6.2. Let F be the attractor of the IFS Φ = { 1
10(x + a) : a ∈ A} where A =

{0, 1, 5, 6}. As before let G+
F denotes the set of all positive generating IFSs of F satisfying

the OSC. We claim that Φ satisfies the COSC and G+
F does not contain a minimal element.

Indeed one can check directly that F is symmetric with minF = 0 and maxF = 2/3. Since

F < F + 1 < F + 5 < F + 6, F satisfies the COSC by Lemma 3.2. To see that G+
F does not

contain a minimal element, note that any φ in a generating IFS of F must map F either to

the left or to the right part of F , because the hole in the middle (having length diam(F )/2

) would be too large for a subset of F to be similar to F . Thus φ must have contraction

factor ≤ 1/4. Assume that G+
F contains a minimal element Φ0. Then Φ0 = Φ, because each

map in Φ (with contraction factors > 1/16) cannot be a composition of two maps in Φ0.

Consider

Ψ :=
{

x

100
,
x+ 1
100

,
x+ 1/2

10
,
x+ 15

100
,
x+ 16

100
,
x+ 5

10
,
x+ 6

10

}
.

We see that Ψ is a generating IFS of F , since F satisfies the following relation:

F =
F + {0, 1, 5, 6}

10
=
F + {0, 1, 5, 6, 10, 11, 15, 16}

100
∪ F + {5, 6}

10

=
F + {0, 1, 15, 16}

100
∪ F + 1/2

10
∪ F + {5, 6}

10
.

Furthermore Ψ satisfies the OSC (one can take (0, 2/3) as the open set). Thus Ψ ∈ G+
F .

This is a contradiction because the map x+1/2
10 is not the composition of elements in Φ0.

Hence G+
F does not contain a minimal element.

Remark 6.1. Example 6.2 also shows that the condition Hs(F ) = (diamF )s in Theorem

1.3 cannot be dropped. An example essentially identical to Example 6.2 has recently been

obtained in [8] independently.

Example 6.3. In this example we consider the questions raised by Mattila (see Period.

Math. Hungar. 37 (1998), 227–237) : What are the self-similar subsets of the middle-third

Cantor set C? Is there a non-trivial self-similar subset F of C, in the sense that F has a

generating IFS that is not derived from the generating IFS {φ0, φ1} of C given in (1.1)?

We give a positive answer to the second question here by constructing a concrete example.

In fact for the first question, we have obtained a complete classification of self-similar
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subsets of C with positive homogeneous contraction factors and with minimum 0. This

will be presented in a separate note [11]. For now, let Φ = {1
9x,

1
9(x + 2)}. Choose a

sequence (εk)∞k=1 with εk ∈ {0, 2} so that w =
∑∞

k=1 εk3
−2k+1 is an irrational number.

Then by looking at the ternary expansion of the elements in FΦ + w it is easy to see that

FΦ +w ⊂ C. Observe that FΦ +w a self-similar subset of C since it is the attractor of the

IFS Ψ = {1
9(x+ 8w), 1

9(x+ 2 + 8w)}. However any generating IFS of FΨ can not be derived

from the original IFS {φ0, φ1}, since w = minFΨ can not be the fixed point of any map

φi1i2...in composed from φ0, φ1 due to the irrationality of w.

Open Question 1. We pose the following question concerning the symmetry of a self-

similar set: Let Φ and Ψ be two homogeneous IFSs satisfying the OSC, with ρΦ = −ρΨ and

FΦ = FΨ. Does it follow that F is symmetric?

This is answered in affirmative under the strong assumption of COSC. But is it true in

general? If so, then the results in part (ii) and (iii) of Theorem 1.3 will be much cleaner.

It should be pointed out that this is not true for self-similar measures. We’ll leave to the

readers to construct a counterexample.

Open Question 2. We do not have a good way to generalize our results to higher dimen-

sions.

The challenge here is to generalize the Logarithmic Commensurability Theorem to higher

dimensions for affine IFSs. There is a possibility to do it for similitude IFSs.

Remark 6.2. Recently Elekes, Keleti and Máthé [8] have proved the Logarithmic Commen-

surability Theorem for similitude IFSs in Rd with the SC. Shmerkin [22] told the authors

that an argument using the results on sum of Cantor sets in [20] can prove the Logarithmic

Commensurability Theorem for any IFS in R of the form {ρkix+ ci}Ni=1, ki ∈ N, under the

assumption that the Hausdorff dimension of the attractor is less than 1 and coincides with

its self-similar dimension.
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