
On the distribution of long-term time average

on the symbolic space

Ai-Hua FAN De-Jun FENG

Abstract.- The pressure was studied in a rather abstract theory as an important notion

of the thermodynamic formalism. The present paper gives a more concrete account in the

case of the symbolic spaces, including subshifts of finite type. We relate the pressure of

an interaction function Φ to its long-term time averages through the Hausdorff and packing

dimensions of the subsets on which Φ has prescribed long-term time average values. Functions

Φ with values in Rd
are considered. For those Φ depending only on finitely many symbols,

we get complete results, unifying and completing many partial results.
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1. Introduction

Consider the Ising model whose energy of spin system is assumed to be

EN (x) = −J
∑
〈j,k〉

xjxk −mH
∑
j

xj

where J is a positive constant, m the magnitude of the atomic magnetic moments and H the
external magnetic field; the first sum is over all pairs of nearest neighbor spins. The model may be
generalized by removing the restriction to nearest neighbor interactions to k-range interactions
(k ≥ 2). For the generalized model, the energy can be rewritten as

EN (x) =
N−1∑
j=0

Φ(T jx) + errors

where T is the shift map on the configuration space and Φ(x) = Φ(x1, · · · , xk) is a function
which depends only on the first k coordinates of x. The ”Ising problem” to calculate the free
energy per spin F in the thermodynamic limit:

F = −kT lim
N→∞

1

N
log

∑
x1,···,xN

e−
1
kT
EN (x)
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and other derived quantities as the energy and the specific heat at constant field, the magneti-
zation and susceptibility.

It is true that, in principle, an algebraic method provides a way to calculate F . However,
it is not very effective when k is large because the maximal eigenvalue of a big matrix must
be evaluated. In this paper, we present a way to relate F to the long-term time average of Φ
defined by

σΦ(x) = lim
N→∞

1

N

N−1∑
j=0

Φ(T jx)

or more exactly to the Hausdorff dimensions of the subsets {x : σΦ(x) = α} of prescribed long-
term time average values (see the formula at the end of this Introduction). We prove an exact
formula for the dimension in many interesting cases (see Theorem 1 and Theorem 2).

The paper is written from a dynamical system point of view where we use the terminology
pressure instead of the free energy. Then we raise our problem to study in the following way.

For a dynamical system T : X → X and a finite number of subsets A1, · · · , Ad in X, how
often does a point x ∈ X go into Aj for each 1 ≤ j ≤ d ? This is a multi recurrence problem,
which was rarely treated before. We shall tackle the problem by using a method different
from the thermodynamical formalism, which was usually used in the case d = 1. Indeed, the
thermodynamical formalism is a good theoretical method, but is not very practical because the
pressure function is difficult to effectively calculate. For this reason we avoid to use it. It turns
out that the results obtained in this paper will actually provide a new method to explicitly
calculate the pressure functions for many finite range interactions on a one-dimensional system
of lattice particles.

More generally, let Φ : X → Rd be a vector valued function. We would like to know the
possible values of the following limits, if exist, for different points x

σΦ(x) = lim
n→∞

1

n

n−1∑
j=0

Φ(T jx).

We call σΦ(x) the long-term time average or recurrence of x relative to Φ. We also would like
to measure the size of the set of points x such that σΦ(x) is equal to a prescribed value. To be
more precise, let

LΦ =
{
α ∈ Rd : α = σΦ(x) for some x ∈ Rd

}
.

For α ∈ LΦ, let
EΦ(α) = {x ∈ X : σΦ(x) = α} .

What is the limit set LΦ? How big is the set EΦ(α) for each α ∈ LΦ?

The answers to these questions depend upon the dynamical system (X,T ). In the present
paper we will discuss them in the special case of symbolic dynamical space (Σ, T ) where Σ =

{0, 1}N, T is the shift on Σ. It will be proved that for any continuous function Φ, LΦ is a
non-empty compact convex set and that the Hausdorff dimension and the packing dimension of
EΦ(α) are equal to a certain concave function of α (Theorem 4). When Φ is locally constant,
we will give a more precise description of the set LΦ and prove a formula for the dimension of

2



EΦ(α) in a variational form (Theorems 2, 3). Closed form formulas are found in some special
cases (Theorem 1, see also the examples at the end of the paper).

There is a way to interpret (Σ, T ) as an interval mapping system by taking X = [0, 1),
Tx = 2x (mod 1). Because every real number x ∈ [0, 1) is developed dyadically into x =
∞∑
n=1

xn
2n (xn = 0 or 1). Without confusion, at least for dyadic irrational numbers, we will write

x = (xn). Recall that Σ can be equipped with the metric ρ(x, y) = 2−n(x,y) where n(x, y) =
inf{n ≥ 1 : xn 6= yn} and that the shift transformation T on Σ is defined by (xn)n≥1 7→
(xn+1)n≥1. The space Σ being a metric space, different notions of dimensions may be defined in
the usual way ([27], see also [11, 24]). We shall use dimH A and dimP A to denote respectively
the Hausdorff dimension and the Packing dimension of a set A.

The first historic example would be the following. For α ∈ [0, 1], let

E(α) =

x = (xn) ∈ [0, 1) : lim
n→∞

1

n

n∑
j=1

xj = α

 .
A.S. Besicovitch [1] and H.G. Eggleston [10] considered these sets E(α) and obtained that

dimH E(α) = h(α) + h(1− α)

where h(α) = −α log2 α with log2 α = logα
log 2 . It is noticed that this example corresponds to

Φ(x) = 1[1/2,1), the characteristic function of the interval [1/2, 1).

A natural generalization of the above case will be studied and a complete answer will be
given, which is the first result in the paper. Let k ≥ 2 be an integer and let α1, α2, · · · , αk be k
real numbers in [0, 1] such that α1 ≥ α2 ≥ · · · ≥ αk. Let

E(α1, α2, · · · , αk) =

x = (xn) ∈ [0, 1) : lim
n→∞

1

n

n∑
j=1

xj · · ·xj+i−1 = αi, 1 ≤ i ≤ k

 .
Let us also introduce the function

Λ(α1, α2, · · · , αk)

= 2h(αk−1 − αk) + h(αk)− h(αk−1)− h(1− α1) +
k−2∑
j=0

h(αj − 2αj+1 + αj+2).

(where α0 = 1). Let {αj}kj=0 be a sequence of real numbers. We say it is convex if αi− 2αi+1 +
αi+2 ≥ 0 (∀0 ≤ i ≤ k − 2),

Theorem 1 Let E(α1, α2, · · · , αk) be defined as above, where 1 = α0 ≥ α1 ≥ · · · ≥ αk ≥ 0.
(1) If {αj}kj=0 is convex , then E(α1, α2, · · · , αk) 6= ∅ and

dimH E(α1, α2, · · · , αk) = dimP E(α1, α2, · · · , αk) = Λ(α1, α2, · · · , αk).

(2) If {αj}kj=1 is not convex, then E(α1, α2, · · · , αk) = ∅.

The above situation corresponds to the function:

Φ(x) = (x1, x1x2, · · · , x1x2 · · ·xk), (x = (xn)n≥1).
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For a general function Φ which depends only on a finite number of coordinates, we are also able
to provide a satisfactory answer. Let ∆k be the compact convex set of all probability vectors
p = p(·) defined on Σk = {0, 1}k satisfying the restriction

p(x1, · · · , xk−1, 0) + p(x1, · · · , xk−1, 1) = p(0, x1, · · · , xk−1) + p(1, x1, · · · , xk−1).

(If k = 1, there is no restriction). Define a map ϕ : ∆k → Rd by

ϕ(p) =
∑
x∈Σk

p(x)Φ(x).

Theorem 2 Suppose that Φ : Σ → Rd is a function which depends only upon the first k
coordinates (k ≥ 1). Then

(1) LΦ = ϕ(∆k).
(2) For α ∈ LΦ, we have

dimH EΦ(α) = dimP EΦ(α) = max
p:p∈∆k,ϕ(p)=α

H(p)

where

H(p) =
∑

x1,···,xk
p(x1, · · · , xk) log2

p(x1, · · · , xk−1, 0) + p(x1, · · · , xk−1, 1)

p(x1, · · · , xk)
.

A. Bisbas et al have studied the special case Φ(x) = x1x2 · · ·xk in a different way ([3, 4]). We
shall see that the result for this special case may be deduced from either Theorem 1 or Theorem
2. The case Φ(x) = ((1 − x1)(1 − x2), (1 − x1)x2, x1(1 − x2), x1x2) studied by P. Billingsley in
[2] is a direct consequence of Theorem 2. We shall see these in Section 8.

The formula in Theorem 2 is not explicit as that in Theorem 1. But for concrete cases, the
maximum in the theorem can be computed as an explicit function of α and the domain LΦ may
also be explicitly described (see Section 8).

Our third result is a formal solution to the problem for those Φ which are Hölder continuous
in the sense that |Φ(x)− Φ(y)| ≤ cδn(x,y) for some constants c > 0, 0 < δ < 1. For β ∈ Rd, let

PΦ(β) = lim
n→∞

1

n
log

2n
∫

Σ
exp〈β,

n−1∑
j=0

Φ(T jx)〉dx

 .
It is known that the above limit exists and the function PΦ(·) is analytic and convex (see [32]).
We call PΦ(β) the pressure function of Φ.

Theorem 3 Suppose that Φ : Σ → Rd is a Hölder function. If α = ∇PΦ(β) for some β ∈ Rd,
then α ∈ LΦ and

dimH EΦ(α) = dimP EΦ(α) = − 1

log 2
(〈β, α〉 − PΦ(β)).

The theorem says that the image of Rd under the gradient ∇PΦ is a subset of LΦ. It is
usually a proper subset because boundary points of LΦ may not be images of the gradient. The
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following result describes the situation for a continuous function Φ (without further regularity
like Hölder continuity).

Theorem 4 Suppose that Φ : Σ→ Rd is a continuous function.
(1) LΦ is a non-empty compact convex set.
(2) For any α ∈ LΦ, we have

dimH EΦ(α) = dimP EΦ(α) = ΛΦ(α)

where ΛΦ(α) is a concave function.

Let us give immediately a definition of the function ΛΦ(α). For n ≥ 1 and ε > 0, let f(α, n, ε)
be the number of n-cylinders (see its definition in the next section) which contain a point x such
that ∣∣∣∣∣∣ 1n

n−1∑
j=0

Φ(T jx)− α

∣∣∣∣∣∣ < ε.

We define

ΛΦ(α) = lim
ε→0

lim inf
n→∞

log f(α, n, ε)

log 2n
.

The proof of Theorem 3 uses Gibbs measures. It is classical but our consideration of vector
valued function Φ is new. Gibbs measures are also used in the proof of theorem 2 but in
a unusual and indirect way. One of the basic ideas in proving Theorems 1, 2 and 4 is to
approximate E(α1, α2, · · · , αk) or EΦ(α) by a sequence of homogeneous Moran sets.

What we state above is a kind of multifractal analysis. But it is a little different from the
multifractal analysis of measures to which the term ” multifractal ” is often attached. Let us
mention [7, 8, 9, 12, 13, 15, 16, 17, 20, 21, 25, 26, 28, 29, 30, 31, 33] (it is far from exhaustive).
Another kind of multifractal analysis was engaged in [22] (see more references herein) where
functions rather than measures are studied.

The main feature of the present study consists in the following aspects. The function Φ
(Theorem 4) is only continuous and the classical thermodynamical formalism doesn’t work no
longer. Indeed, if Φ is Hölder continuous, the thermodynamical formalism provides a formula
involving the pressure function (Theorem 3). But there is no effective way to compute the
gradient of the pressure and the formula is not practical. However, our formula in Theorem 2
reduces the difficulty of calculation of pressure to a concave programming problem on a convex
set of finite dimension and this programming problem is resolvable in many interesting cases.
It should be pointed out that even in the one dimensional case where Φ is real valued, there
were few discussions on the boundary of LΦ and it is actually a subtle question. Fortunately,
formulas in Theorems 1, 2 and 4 are valid either for interior points or boundary points. When
Φ is vector valued, it is worthy to study the shape of LΦ which is not always as one imagines
(Theorem 1, see also [23]). Both results in Theorem 3 and Theorem 4 provide us the following
formula for pressure functions

PΦ(β) = inf
α

(〈α, β〉+ log 2 · Λ(α)) .

In the case where Φ depends only upon the first k coordinates (Φ is a finite range interaction),
Λ(α) can be calculated by the formula in Theorem 2. Therefore, when the sets {p : ϕ(p) = α}
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is well understood, we may find an explicit formula for Λ(α) and then an explicit formula for
the pressure function PΦ(β).

The materials are organized as follows. In section 2, we introduce some notation and present
necessary known results which will be useful in the sequel and to which the reader is asked to
refer to when necessary. In this introduction, the results are presented in an increasing order of
generality. But their proofs will be presented in an inverse order. So, Theorems 4, 3, 2 and 1
will be respectively proved in sections 3, 4, 5 and 6. The section 7 is devoted to applications of
Theorem 3 and the section 8 to applications of Theorem 1 and 2. In the last section 9, we point
out how to generalize Theorems 2, 3 and 4 to subshifts of finite type.

2. Notation and preliminary

We first give a list of notation which may be referred as to when it is necessary. Then, for
the convenience of the reader, we mention three known results which will be useful.

The following notation will be used.

Σk {0, 1}k. Sequences in Σk are called words of length k.
x|n (xj)

n
j=1 if x = (xj) ∈ Σ. We sometimes write x|n = x1 · · ·xn.

uv u1 · · ·unv1 · · · vm if u = u1 · · ·un ∈ Σn and v = v1 · · · vm ∈ Σm.
In(x) n-cylinder consisting of y such that y|n = x|n. We also write I(x|n).
varn(Φ) supx|n=y|n |Φ(x)− Φ(y)|, | · | denoting the Euclidean norm.
Vn(Φ)

∑n
j=1 varn(Φ).

Sn(Φ, x)
∑n−1
j=0 Φ(T jx).

An(Φ, x) 1
nSn(Φ, x).

σΦ(x) limn→∞An(Φ, x).
P (α, n, ε) {x ∈ Σ : |An(Φ, x)− α| < ε}.
F (α, n, ε) {ω ∈ Σn : I(ω)

⋂
P (α, n, ε) 6= ∅}.

f(α, n, ε) Card F(α,n, ε).

The following result concerns the existence of Gibbs measure.

Proposition 1.([6, 14, 32]) Suppose that φ : Σ → R is a function of summable variation,
i.e.

∑∞
n=1 varn(φ) <∞. There exists a unique probability T -invariant measure µ = µφ such that

c ≤ µ(In(x)

exp[−nP +
∑n−1
j=0 φ(T jx)]

< c−1 (∀x ∈ Σ, ∀n ≥ 1)

where c > 0 and P are two constants.

The measure µ is called the Gibbs measure of φ. The constant P is also uniquely determined
by φ and is called the pressure of φ.

For a general account of the different notions of dimensions, we can refer as to [11, 24, 27, 34].
Recall that the Hausdorff dimension and packing dimension are σ-stable and that if dimB and
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dimB denote respectively the lower and upper box dimension we have

dimH A ≤ dimBA, dimP A ≤ dimBA (∀A).

Here is a very useful result for computation of dimensions, called Billingsley theorem.

Proposition 2.([27] p.99, see also [2, 35]) Let (X, d) be a (compact) metric space. Let µ
be a Borel probability measure on X. For a Borel set E ⊂ X, we have a ≤ dimH E ≤ b if

µ(E) > 0, E ⊂ {x ∈ X : a ≤ lim inf
r→0

logµ(Br(x))

log r
≤ b}.

For a Borel set F , we have c ≤ dimP F ≤ d if

µ(F ) > 0, F ⊂ {x ∈ X : c ≤ lim sup
r→0

logµ(Br(x))

log r
≤ d}.

(Br(x) being the ball centered at x with radius r).

Now we discuss a class of Moran sets. Let {nk}k≥1 be a sequence of positive integers and
{ck}k≥1 be a sequence of positive numbers satisfying nk ≥ 2, 0 < ck < 1, n1c1 ≤ δ and nkck ≤ 1
(k ≥ 2), where δ is some positive number. Let

D =
⋃
k≥0

Dk with D0 = {∅},Dk = {(i1, · · · , ik); 1 ≤ ij ≤ nj, 1 ≤ j ≤ k}.

If σ = ( σ1, · · · , σk) ∈ Dk, τ = (τ1, · · · , τm) ∈ Dm, we define σ ∗ τ = ( σ1, · · · , σk, τ1, · · · , τm).

Suppose J be a closed interval of length δ. A collection F = {Jσ : σ ∈ D} of closed
subintervals of J is said to have a homogeneous Moran structure if it satisfies

(1) J∅ = J ;
(2) For any k ≥ 0 and σ ∈ Dk, J σ∗1, J σ∗2, · · · , J σ∗nk+1

are subintervals of Jσ and
o
J σ∗i

⋂ o
J σ∗j = ∅ (i 6 =j) where

o
A denotes the interior of A;

(3) For any k ≥ 1 and any σ ∈ Dk−1, 1 ≤ j ≤ nk, We have

|J σ∗j |
|J σ|

= ck

where |A| denotes the diameter of A.

Suppose that F is a collection of closed subintervals of J having homogeneous Moran struc-
ture, E( F) :=

⋂
k≥1

⋃
σ∈Dk

Jσ is called a homogeneous Moran set determined by F and the intervals

in Fk = {Jσ; σ ∈ Dk} are called the k-order fundamental intervals of E(F) and J is called
the original interval of E(F). It can be seen from above definition that for any fixed J , {nk}k≥1,
{ck}k≥1, if the positions of k-order fundamental intervals are changed, we get different homo-
geneous Moran sets. We use M(J, {nk}, {ck}) to denote the collection of all such homogeneous
Moran sets determined by J , {nk}k≥1, {ck}k≥1. One may refer to [18, ?] for more informations
about homogeneous Moran sets. For the purpose of the present paper, we only need a simplified
version of a result contained in [18], whose simpler proof will be given here for the convenience
of the reader.
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Proposition 3. For any E ∈M(J, {nk}, {ck}), we have

dimH E ≥ lim inf
n→∞

log n1n2 · · ·nk
− log c1c2 · · · ck+1nk+1

.

Proof Denote by t the right hand side of the above inequality. Suppose t > 0. Let µ be the
probability measure concentrated on E such that µ(A) = (n1n2 · · ·nk)−1 for any A ∈ Fk. Let
0 < s < t. By the definition of t, there exists c > 0 such that

n1n2 · · ·nk(c1c2 · · · ck+1nk+1)s ≥ c (∀k ≥ 1).

Let U ⊂ [0, 1] be an arbitrary closed interval with |U | ≤ c1. There exists a positive integer k
such that c1c2 · · · ck+1 ≤ |U | < c1c2 · · · ck. It follows that

i) U intersects at most
3|U |

c1c2 · · · ck+1
(k + 1)-order fundamental intervals;

ii) U intersects at most 2 k-order fundamental intervals.
By using the inequality min(a, b) ≤ a1−sbs ( 0 ≤ s ≤ 1), we have

µ(U) ≤ min(
2

n1n2 · · ·nk
,

3|U |
c1c2 · · · ck+1nk+1

× 1

n1n2 · · ·nk
)

≤ 1

n1n2 · · ·nk

(
3|U |

c1c2 · · · ck+1nk+1

)s
21−s

≤ 1

c
3s21−s|U |s ≤ 6

c
|U |s.

This implies dimHE ≥ s then dimHE ≥ t. 2

We can define homogenous Moran set in Σ by identifying cylinders with intervals. The same
result holds. It is actually this result that we shall use.

3. Proof of Theorem 4

We divide the proof into small steps. There is a simpler argument for proving that LΦ is
a non-empty convex set. But we are content with an elementary and direct proof.

Step 1. LΦ is non-empty and bounded.
For any p-periodic point x, i.e. T px = x, we have σΦ(x) = Ap(Φ, x). So, LΦ contains

Ap(Φ, x). The boundedness of LΦ is implied by the boundedness of Φ.

Step 2. Closedness of LΦ.
Suppose αi ∈ LΦ such that limi→∞ αi = α. We want to prove α ∈ LΦ. We can find a

sequence of points x(i) ∈ Σ and a sequence of integers ni ↑ ∞ such that x(i) ∈ P (αi, ni, 2
−i).

Let ωi = x(i)|ni . Choose mi = 2ni+1 . Then define a sequence in Σ as follows

ω = ω1ω1 · · ·ω1︸ ︷︷ ︸
m1

ω2ω2 · · ·ω2︸ ︷︷ ︸
m2

ω3ω3 · · ·ω3︸ ︷︷ ︸
m3

· · ·
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We are going to show that σΦ(ω) = α. Following the construction of ω, we cut the set of non-
negative integers into disjoint groups such that each of the first m1 groups, noted N1,1, · · · , N1,m1 ,
has cardinal n1 and each of the next m2 groups, noted N2,1, · · · , N2,m2 , has cardinal n2 and so
on. For any i ≥ 1 and any 1 ≤ ` ≤ mi, we have∣∣∣∣∣∣

∑
j∈Ni,`

Φ(T jω)− Sni(Φ, x(i))

∣∣∣∣∣∣ ≤ Vni(Φ).

For any n sufficiently large (n > m1n1), there are unique integers k and 0 ≤ q < mk+1 such that

m1n1 + · · ·mknk + qnk+1 ≤ n < m1n1 + · · ·mknk + (q + 1)nk+1.

¿From the above obtained inequality, it follows that∣∣∣∑m1n1+···mknk+qnk+1−1
j=0 Φ(T jω)−

∑k
i=1miSni(Φ, x

(i))− qSnk+1
(Φ, x(k+1))

∣∣∣
≤

∑k
i=1miVni(Φ) + qVnk+1

(Φ).

Recall the following elementary result, called Stokes theorem. Let {ai} be a sequence of real
numbers and {bi} be a sequence of positive numbers such that

∑n
i=1 bi →∞. Suppose limi

ai
bi

=

α. Then limn

∑n

i=1
ai∑n

i=1
bi

= α. ¿From the last inequality, the fact n−1Vn(Φ) → 0 and the Stokes

theorem, it follows that the subsequence An(Φ, ω) (n = m1n1 + · · ·mknk + qnk+1) tends to ∞.
In order to pass the subsequence through to the whole sequence, it suffices to notice that

n−1∑
j=m1n1+···mknk+qnk+1

Φ(T jω) = O(nk+1) = O(logmk) = o(n).

and that
lim
n→∞

n

m1n1 + · · ·mknk + qnk+1
= 1.

2

Step 3. Convexity of LΦ.
It suffices to show the rational convexity in the sense that if α, β ∈ LΦ and p, q are positive

integers, then pα+qβ
p+q ∈ LΦ. Take x ∈ EΦ(α) and y ∈ EΦ(β). For n ≥ 1, construct a finite

sequence
ωn = x|n · · ·x|n︸ ︷︷ ︸

p

y|n · · · y|n︸ ︷︷ ︸
q

.

Then construct an infinite sequence ω = ω1ω2 · · ·. As in Step 2, we can see that for any n ≥ 1,∣∣∣S(p+q)n(Φ, ω)− pSn(Φ, x)− qSn(Φ, y)
∣∣∣ ≤ (p+ q)Vn(Φ).

This, together with a similar but simpler argument as in Step 2, allows us to get σΦ(ω) = pα+qβ
p+q .

2

Step 4. For α ∈ LΦ, we have

lim
ε→0

lim inf
n→∞

log f(α, n, ε)

log 2n
= lim

ε→0
lim sup
n→∞

log f(α, n, ε)

log 2n
(=: ΛΦ(α)).
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We want to show that as a sequence of n, log f(α, n, ε) shares a kind of subadditivity. That
means, for any ε > 0, there is a N such that

[f(α, n, ε)]m ≤ f(α, nm, 2ε) (∀n ≥ N, ∀m ≥ 1).

In fact, suppose ω1, · · · , ωm ∈ F (α, n, ε). Let ω = ω1 · · ·ωm. If x ∈ I(ω), again by the argument
in Step 2 we get

|Snm(Φ, x)− nmα| ≤ nmε+mVn(Φ).

It follows that ω ∈ F (α, nm, ε + n−1Vn). Consequently, since different choices (ω1, · · · , ωm)
produce different ω,

[f(α, n, ε)]m ≤ f(α, nm, ε+ n−1Vn(Φ)).

Take a sufficiently large N so that n−1Vn(Φ) ≤ ε (n ≥ N). Thus the claimed subadditivity is
proved. By using the subadditivity, it is easy to see that

lim sup
n→∞

log f(α, n, ε)

log 2n
≤ lim inf

n→∞
log f(α, n, 2ε)

log 2n

which finishes Step 4. 2

Step 5. For α ∈ LΦ, we have dimP EΦ(α) ≤ ΛΦ(α).
Let

G(α,m, ε) =
∞⋂
n=m

{x ∈ Σ : |An(Φ, x)− α| < ε} .

It is clear that for any ε > 0,

EΦ(α) ⊂
∞⋃
m=1

G(α,m, ε).

Note that if n ≥ m, G(α,m, ε) is covered by the union of all cylinders I(ω) with ω ∈ F (α, n, ε)
whose total number is f(α, n, ε). Therefore we have the following estimate

dimBG(α,m, ε) ≤ lim sup
n→∞

log f(α, n, ε)

log 2n
(∀ε > 0,∀m ≥ 1).

On the other hand, by using the σ-stability of the packing dimension, we have

dimP EΦ(α) ≤ dimP

( ∞⋃
m=1

G(α,m, ε)

)
≤ sup

m
dimP G(α,m, ε) ≤ sup

m
dimBG(α,m, ε).

This, together with the above estimate and Step 4, leads to the desired result. 2

Step 6. For α ∈ LΦ, we have dimH EΦ(α) ≥ ΛΦ(α).
Given δ > 0. By Step 4, there are `j ↑ ∞ and εj ↓ 0 such that

f(α, `j , εj) > 2`j(ΛΦ(α)− δ
2

).

Write simply F`j = F (α, `j , εj) and f`j = f(j, `j , εj). Define a new sequence {`∗j} in the following
manner

`1, · · · , `1︸ ︷︷ ︸
N1

; `2, · · · , `2︸ ︷︷ ︸
N2

; · · · ; `j , · · · , `j︸ ︷︷ ︸
Nj

; · · ·

10



where Nj is defined recursively by

Nj = 2`j+1+Nj−1 (j ≥ 2); N1 = 1.

Let nj = f`∗j and cj = 2−`
∗
j . Define

Θ =
∞∏
j=1

F`∗j .

We are going to show that Θ ⊂ EΦ(α). In fact, for any n(> `1), there is a unique integer J(n)
such that

J(n)∑
i=1

`∗i ≤ n <
J(n)+1∑
i=1

`∗i .

The choice of Nj implies that `k+1 = o(Nk). It follows that

lim
n→∞

∑J(n)
i=1 `∗i∑J(n)+1
i=1 `∗i

= 1.

Let x = (xn) ∈ Θ. Let Λj be the set of integers between `∗1 + · · · + `∗j−1 + 1 and `∗1 + · · · + `∗j .
We have

Sn(Φ, x) =

J(n)∑
j=1

∑
k∈Λj

Φ(T kx) +O(`∗J(n)+1)

=

J(n)∑
j=1

`∗j (α+ o(1)) + o(n)

= αn+ o(n).

It follows that x ∈ Eα. Observe that Θ is a homogeneous Moran set in Σ. More precisely
Θ ∈M(Σ, {nj}, {cj}). By Proposition 3, we have

dimH Θ ≥ lim inf
k→∞

log(n1 · · ·nk)
− log(c1 · · · ckck+1nk+1)

≥ lim inf
k→∞

log(f`∗1 · · · f`∗k)

log(2`
∗
1···+`

∗
k
+`∗

k+1)

= lim inf
k→∞

log(f`∗1 · · · f`∗k)

log(2`
∗
1···+`

∗
k)

≥ ΛΦ(α)− δ.

2

Step 7. ΛΦ : LΦ → [0, 1] is concave.
For α ∈ LΦ, it is evident that ΛΦ(α) ≥ 0. Since f(α, n, ε) ≤ 2n, ΛΦ(α) ≤ 1. Now let

α, β ∈ LΦ. Let p, q be two positive integers. By the subadditivity proved in Step 4, for large n
we have

[f(α, n, ε)]p[f(β, n, ε)]q ≤ f(α, np, 2ε)f(β, nq, 2ε).

Let u ∈ F (α, np, 2ε) and v ∈ F (β, nq, 2ε). Take a point x ∈ I(uv). We have∣∣∣S(p+q)n(Φ, x)− npα− nqβ
∣∣∣ ≤ 2εn(p+ q) + Vnp(Φ) + Vnq(Φ).

11



It follows that if n is sufficient large, uv ∈ F (pα+qβ
p+q , n(p+ q), 3ε). Consequently, for large n we

have

f(α, np, 2ε)f(β, nq, 2ε) ≤ f(
pα+ qβ

p+ q
, n(p+ q), 3ε)

By the result in Step 4, we can get

p

p+ q
ΛΦ(α) +

q

p+ q
ΛΦ(β) ≤ ΛΦ(

p

p+ q
α+

q

p+ q
β).

We could say that we have proved the rational concavity of the (bounded) function ΛΦ. However,
the concavity of ΛΦ is a consequence of its rational concavity. To see this, it suffices to consider
the one-dimensional case. 2

Let us make some remarks on Theorem 4.

Remark 1. LΦ is the closure of the set of all averages Ap(Φ, x) for different p-periodic
points x (p ≥ 1).

We have seen in Step 2 that all such averages are in LΦ. So, we have to check that any point
α ∈ LΦ may be approximated by such averages. Suppose α = σΦ(x) for some x. For m ≥ 1, let
x(m) be the m-periodic point such that x(m)|m = x|m. Then α = limm→∞Am(Φ, x(m)).

Remark 2 For α ∈ LΦ, we have

dimH EΦ(α) = dimH EΦ(α) = dimH EΦ(α)

where

EΦ(α) =

{
x ∈ Σ : lim sup

n
An(Φ, x) = α

}
EΦ(α) =

{
x ∈ Σ : lim inf

n
An(Φ, x) = α

}
.

Let Ẽ(α) be the set of all x such that α is a cluster point of An(Φ, x). Since Theorem 4 is
now available, we have only to show that dimH Ẽ(α) ≤ ΛΦ(α) + δ for any δ > 0. By the result
in Step 4, for some ε > 0 we have

lim sup
n→∞

log f(α, n, ε)

log 2n
≤ ΛΦ(α) +

δ

2
.

Note that , Ẽ(α) ⊂
⋂∞
m=1

⋃
n≥mGn where Gn is the union of all I(ω) with ω ∈ F (α, n, ε). Thus

letting s = ΛΦ(α) + δ, for any m ≥ 1 we have

Hs2−m(Ẽ(α)) ≤
∞∑
n=m

f(α, n, ε)2−ns ≤
∞∑
n=1

f(α, n, ε)2−ns ≤ C
∞∑
n=1

2−
δ
2
n <∞.

4. Proof of Theorem 3

The result of Theorem 3 was well-known for the one-dimensional case, i.e. d = 1 (see [13]).
The following proof for the high-dimensional case consists in introducing the family of energy
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functions φβ = 〈β,Φ〉 (β ∈ Rd) and considering the corresponding family of Gibbs measures
µβ := µφβ . Denote

D(µβ, x) = lim
n→∞

logµβ(In(x))

log |In(x))|
when the limits exists. By the Gibbs property of µβ (Proposition 1), we get the following relation

D(µβ, x) = − 1

log 2

 lim
n→∞

1

n
〈β,

n−1∑
j=0

Φ(T jx)〉 − PΦ(β)

 .
Since the measure µβ is ergodic, by Birkhoff ergodic theorem, µβ-almost everywhere we have

lim
n→∞

1

n

n−1∑
j=0

Φ(T jx) =

∫
Σ

Φdµβ = ∇PΦ(β).

(see [5, 32] for the second equality). Since α = ∇PΦ(β), it follows that µβ(EΦ(α)) = 1 and for
any x ∈ EΦ(α),

D(µβ, x) = − 1

log 2
(〈β,∇PΦ(β)〉 − PΦ(β)).

Thus Theorem 2 follows from the Billingsley theorem (Proposition 2). 2

5. Proof of Theorem 2

5.1. Lemmas

Let ∆+
k be the set of strictly positive probability vectors in ∆k, i.e. p ∈ ∆k such that

p(x) > 0 (∀x ∈ Σk).

Lemma 1 ∆+
k is a dense subset of ∆k.

Proof Since ∆k is convex and p0 = ( 1
2k
, · · · , 1

2k
) ∈ ∆, for any 0 < ε < 1 we have

(1− ε)∆k + εp0 ⊂ ∆+
k .

We get the desired result by letting ε→ 0. 2

For any ω = (xj)1≤j≤n+k−1, we define

Nω(ε1, · · · , εk) = Card {1 ≤ j ≤ n : xj+`−1 = ε`, 1 ≤ ` ≤ k} .

Note that Nω(ε1, · · · , εk) is just the number of repetitions of the word ε1 · · · εk in the word ω.
The following observation is immediate but fundamental and is our starting point.

Lemma 2 For x ∈ Σ and n ≥ 1, we have

n−1∑
j=0

Φ(T jx) =
∑

ε1,···,εk
Nωn(ε1, · · · , εk)Φ(ε1, · · · , εk)

13



where ωn = (xj)1≤j≤n+k−1.

It follows that our problem is reduced to the study of the limits of n−1Nωn(ε1, · · · , εk) as
n→∞. The possible limits will be described through the following lemma.

Lemma 3 For any δ > 0, there is a constant N > 0 such that for every ω = (xj)
n+k−1
j=1 ∈

Σn+k−1 with n ≥ N , there exists a probability vector p ∈ ∆k having the property that for all
(ε1, · · · , εk) ∈ Σk, ∣∣∣∣Nω(ε1, · · · , εk)

n
− p(ε1, · · · , εk)

∣∣∣∣ < δ, p(ε1, · · · , εk) ≥
δ

2k+1
.

Proof Denote ω′ = (xj)1≤j≤(n−1)+k−1 and ω′′ = (xj+1)1≤j≤(n−1)+k−1. Observe the following
relations ∑

ε1,···,εk
Nω(ε1, · · · , εk) = n

Nω(ε1, · · · , εk−1, 0) +Nω(ε1, · · · , εk−1, 1) = Nω′(ε1, · · · , εk−1)

Nω(0, ε1, · · · , εk−1) +Nω(1, ε1, · · · , εk−1) = Nω′′(ε1, · · · , εk−1).

The first relation implies that n−1Nω(·) is a probability vector and the last two relations imply

|Nω(ε1, · · · , εk−1, 0) +Nω(ε1, · · · , εk−1, 1)−Nω(0, ε1, · · · , εk−1)−Nω(1, ε1, · · · , εk−1)| ≤ 1.

Now we deduce by contradiction that the first claimed inequality in the lemma holds. If the
inequality didn’t hold, there would be a positive number δ0, a sequence of integers nj ↑ ∞ and
a sequence of words ωnj ∈ Σnj+k−1 such that for any p ∈ ∆k we have∣∣∣∣∣Nωnj

(ε1, · · · , εk)
nj

− p(ε1, · · · , εk)
∣∣∣∣∣ ≥ δ0 (some (ε1, · · · , εk)).

Since the set of probability vectors is compact, we can suppose that n−1
j Nωnj

(·) converges.
Denote its limit by p̃, which is in ∆k by the above observation. Now note that the last inequality
is violated by p̃, which is a contradiction. Thus we have proved that there exists p ∈ ∆k such
that ∣∣∣∣∣Nωnj

(ε1, · · · , εk)
nj

− p(ε1, · · · , εk)
∣∣∣∣∣ < δ

2
.

(For convenience, we take δ/2 in place of δ). Let p0 = ( 1
2k
, · · · , 1

2k
) and p′ = (1− δ

2)p+ δ
2p0. It

is easy to check that this p′ is what we want. 2

The following lemma is actually already obtained in the proof of the preceding lemma.

Lemma 4 If n−1
j Nωnj

(·)→ p(·), then p ∈ ∆k.

5.2. Proof of Theorem 2

Now we prove Theorem 2 by four steps.
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Step 1. LΦ ⊂ ϕ(∆k).
Suppose α ∈ LΦ. Then there is a x = (xi) ∈ Σ such that σΦ(x) = α. We want to show

α ∈ ϕ(∆k). By Lemma 2, we have

1

n

n−1∑
j=0

Φ(T jx) =
∑

ε1,···,εk
n−1Nωn(ε1, · · · , εk)Φ(ε1, · · · , εk)

where ωn = (xj)1≤j≤n+k−1. There is certainly a convergent subsequence of n−1Nωn(·), whose
limit p is in ∆k by Lemma 4. It follows that α = ϕ(p). 2

Step 2. ϕ(∆+
k ) ⊂ LΦ. Actually, we will prove that if α = ϕ(p) with p ∈ ∆+

k , then

EΦ(α) 6= ∅, dimH EΦ(α) ≥ H(p).

For ε1, · · · , εk ∈ Σk, write

t(ε1, · · · , εk) =
p(ε1, · · · , εk)

p(ε1, · · · , εk−1, 0) + p(ε1, · · · , εk−1, 1)
.

Since p is strictly positive, t is a well defined function on Σk. Then, for any n ≥ 1, define a
function qn on Σn as follows. If n < k, let

qn(a1, · · · , an) =
∑

ε1,···,εk−n
p(a1, · · · , an, ε1, · · · , εn−k).

If n ≥ k, let

qn(a1, · · · , an) = p(a1, · · · , ak)t(a2, · · · , ak+1) · · · t(an−k+1, · · · , an).

Using the fact t(ε1, · · · , εk−1, 0) + t(ε1, · · · , εk−1, 1) = 1, it is easy to check that

q1(0) + q1(1) = 1∑
εn+1

qn+1(a1, · · · , an, εn+1) = qn(a1, · · · , an)

∑
ε1

qn+1(ε1, a1, · · · , an) = qn(a1, · · · , an).

By the first two equalities above and the Kolmogorov consistent theorem, there exists a unique
probability measure νp such that

νp(In(a1, · · · , an)) = qn(a1, · · · , an).

By the third equality, νp is T -invariant. It is clear, from the definition of qn, that νp shares the
Gibbs property relative to the energy function defined by

ψ(x) = log t(x1, · · · , xk), x = (xj) ∈ Σ.

The measure νp being ergodic (see [6]), according to the Birkhoff ergodic theorem, for νp-almost
all x ∈ Σ we have

σΦ(x) =

∫
Σ

Φdνp

=
∑

ε1,···,εk
Φ(ε1, · · · , εk)qk(ε1, · · · , εk)

=
∑

ε1,···,εk
Φ(ε1, · · · , εk)p(ε1, · · · , εk)

= ϕ(p) = α.
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This implies νp(EΦ(α)) = 1 and then EΦ(α) 6= ∅. The ergodic theorem also implies that for
νp-almost all x ∈ Σ we have

lim
n→∞

νp(In(x))

log |In(x)|
= lim

n→∞

n−1∑
j=0

ψ(T jx)

−n log 2
= − 1

log 2

∫
Σ
ψdνp = H(p).

So, the estimate on the dimension follows from the Billingsley theorem (Proposition 2). 2

Step 3. ϕ(∆k) \ ϕ(∆+
k ) ⊂ LΦ. We want to prove the same results as in the Step 2 for a

non-negative vector p.
Let α = ϕ(p). By lemma 1, there is a sequence of pm ∈ ∆+

k such that limm pm = p. Obviously
limm αm = α where αm = ϕ(pm). By what we proved in Step 2,

dimH EΦ(αm) ≥ H(pm), (∀m ≥ 1).

Using this fact, we are going to construct a homogeneous Moran set contained in EΦ(α). We
claim first that for any m ≥ 1, ε > 0 and δ > 0, there exists an integer nm,ε,δ ≥ 1 such that

f(αm, n, ε) ≥ 2n(H(pm)−δ) (∀n ≥ nm,ε,δ).

In fact, we have

EΦ(αm) ⊂
∞⋃
`=1

G(αm, `, ε)

where
G(αm, `, ε) =

⋂
n≥`

P (αm, n, ε).

By the σ-stability of the Hausdorff dimension, there must be an ` = `(αm, ε, δ) such that

dimH G(αm, `, ε) ≥ dimH EΦ(αm)− δ

2
≥ H(pm)− δ

2
.

Since for any n ≥ `, {I(ω)} (ω ∈ F (m,n, ε)) is a net cover of G(αm, `, ε), we have

lim inf
n→∞

log f(m,n, ε)

log 2n
≥ dimBG(αm, `, ε) ≥ H(pm)− δ

2

from which follows the claim.

Take now an increasing sequence `m ≥ `(αm, 1/m, δ) such that

f(αm, `m, 1/m) ≥ 2n(H(pm)−δ).

Write simply Fm = F (αm, `m, 1/m) and fm = f(αm, `m, 1/m). As in Step 6 of the proof of
Theorem 4, define

Θ =
∞∏
j=1

F`∗j .

We are going to show that Θ ⊂ EΦ(α), which proves EΦ(α) 6= ∅, and

dimH Θ ≥ lim
m→∞

H(pm)− δ

2
≥ H(p)− δ

2
.
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In fact, for any n(> `1), let J(n) be the unique integer such that

J(n)∑
i=1

`∗i ≤ n <
J(n)+1∑
i=1

`∗i .

The choice of Nj implies that

lim
n→∞

∑J(n)
i=1 `∗i∑J(n)+1
i=1 `∗i

= 1.

Let x = (xn) ∈ Θ. Let Λj be the set of integers between `∗1 + · · · + `∗j−1 + 1 and `∗1 + · · · + `∗j .
We have

Sn(x) =

J(n)∑
j=1

∑
k∈Λj

Φ(T kx) + o(n)

=

J(n)∑
j=1

`∗j (α
∗
j + o(1)) + o(n)

where α∗j is the sequence defined by αj as `∗j is defined by `j . It follows that x ∈ Eα. Observe that
Θ is a homogeneous Moran set, i.e. Θ ∈M([0, 1], {nj}, {cj}). The estimate dimH Θ ≥ H(p)− δ
may be obtained in the same way as in the proof of Theorem 4. 2

By now, we have proved the first assertion of Theorem 2 and that for α ∈ LΦ we have

dimH EΦ(α) ≥ max
p∈∆k,ϕ(α)=p

H(p).

Step 4. For α ∈ LΦ, we have

dimP EΦ(α) ≤ max
p∈∆k,ϕ(α)=p

H(p).

Denote the right hand side by d(α). For ε > 0 and n ≥ 1, let

B(n, ε) =
{
x ∈ Σ :

∣∣∣n−1Sn(Φ, x)− α
∣∣∣ < ε

}
.

(It is just P (α, n, ε). Since α is fixed, we write simply B(n, ε) = P (α, n, ε)). We have obviously

EΦ(α) ⊂ lim sup
n→∞

B(n, ε) (∀ε > 0).

By the σ-stability of the packing dimension and the inequality dimP ≤ dimB, we have only to
show that

lim inf
ε→0

lim sup
n→∞

dimBB(n, ε) ≤ d(α).

We are then led to find a cover of B(n, ε) and estimate the number of cylinders in it. Take the
cover consisting of all cylinders I(x1, · · · , xn+k−1) containing some y ∈ B(n, ε). Estimate now
T (n, ε), the number of all these cylinders. In order to estimate T (n, ε), we are going to divide

17



the cover into several classes of cylinders and then to estimate the number of cylinders in each
class. Let {n(ε1, · · · , εk)} be a system of 2k non-negative integers such that

n(ε1, · · · , εk) = Nω(ε1, · · · , εk),
∣∣∣∣∣ 1n ∑

ε1,···,εk
n(ε1, · · · , εk)Φ(ε1, · · · , εk)− α

∣∣∣∣∣ < ε

for some ω ∈ Σn+k−1. We denote by T ({n(ε1, · · · , εk)}) the collection of all cylinders I(ω) with
ω having the above mentioned property, and Γ({n(ε1, · · · , εk)}) its cardinal. Let Pk be the set

of all possible systems {n(ε1, · · · , εk)}. It is clear that the cardinal of Pk is at most n2k . Then

T (n, ε) =
∑

Γ({n(ε1, · · · , εk)}) ≤ n2k max Γ({n(ε1, · · · , εk)})

where the sum and the supremum are taken over the set Pk. Thus

log T (n, ε)

log 2n
≤ max

Γ({n(ε1, · · · , εk)})
log 2n

+O

(
log n

n

)
.

Now let us estimate Γ({n(ε1, · · · , εk)}) through some conveniently constructed invariant mea-
sure. Since n(ε1, · · · , εk) = Nω(ε1, · · · , εk), by Lemma 3, we can find p ∈ ∆+

k such that∣∣∣∣n(ε1, · · · , εk)
n

− p(ε1, · · · , εk)
∣∣∣∣ < ε, p(ε1, · · · , εk) >

ε

2k+1
.

As in Step 2, we construct a measure νp by using this p. For any ω = (xi)
n−k+1
i=1 ∈ T ({n(ε1, · · · , εk)}),

Nω(ε1, · · · , εk) = n(ε1, · · · , εk). So, we have

νp(I(ω)) =
p(x1, · · · , xk)
t(x1, · · · , xk)

∏
ε1,···,εk

t(ε1, · · · , εk)n(ε1,···,εk)

≥ ε

2k+1

∏
ε1,···,εk

t(ε1, · · · , εk)n(ε1,···,εk),

where (xi)
k
i=1 = ω|k. Let a denote the right hand side of the above inequality. Then

a · Γ({n(ε1, · · · , εk)}) ≤ νp(
⋃
ω

In+k−1(ω)) ≤ 1.

Combining the last two expressions gives

Γ({n(ε1, · · · , εk)}) ≤
1

a
≤ 2k+1

ε

∏
ε1,···,εk

t(ε1, · · · , εk)−n(ε1,···,εk).

Then

log Γ({n(ε1, · · · , εk)})
log 2n

≤ O

(
log ε

n

)
−

∑
ε1,···,εk

n(ε1, · · · , εk)
n

log2 t(ε1, · · · , εk)

≤ O

(
log ε

n

)
−

∑
ε1,···,εk

p(ε1, · · · , εk) log2 t(ε1, · · · , εk) +O (−ε log ε) .
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Note that ϕ(p) is near α in the sense that

|ϕ(p)− α| =

∣∣∣∣∣ ∑
ε1,···,εk

p(ε1, · · · , εk)Φ(ε1, · · · , εk)− α
∣∣∣∣∣

≤
∣∣∣∣∣ ∑
ε1,···,εk

n(ε1, · · · , εk)
n

Φ(ε1, · · · , εk)− α
∣∣∣∣∣+ 2kε‖Φ‖

≤ (2k‖Φ‖+ 1)ε

where ‖Φ‖ means the maximal value of |Φ|. Now we can conclude that

log T (n, ε)

log 2n
≤ O

(
log ε

n

)
+O(−ε log ε) + sup

p∈∆k,|ϕ(p)−α|<(2k‖Φ‖+1)ε

H(p).

To finish the proof, let n→∞ then ε→ 0. 2

6. Proof of Theorem 1

6.1. Lemmas

Let n ≥ k ≥ 2 be two integers, let ω = (xj)
n
j=1 ∈ Σn. It is natural to introduce the

following quantities. For 1 ≤ i ≤ k, define

Pi(ω) = Card {1 ≤ j ≤ n− i+ 1 : xj · · ·xj+i−1 = 1} .

It is clear that Pi(ω) is the number of 1-blocks 1 · · · 1 of length i in the sequence ω. Here by
1-block (of length i) in ω = (xi)

n
i=1 we mean the words of the form (xm)j+i−1

m=j with x` = 1 for
all j ≤ ` ≤ j + i − 1. Such a 1-block will be said to be maximal if xj−1 = xj+i = 0 (with
convention x0 = 0 and xn+1 = 0). We shall be interested in those ω which are the heads of
points in E(α1, · · · , αk). Our aim is to study the limit of n−1Pi(ω) as n tends to the infinity.

In order to practically estimate Pi(ω) (ω ∈ Σn), we introduce another system of k quantities
which are defined as follows:

N∗(ω) := the number of 1’s in ω,

N∗(ω) := the number of maximal 1-blocks in ω,

Ni(ω) := the number of maximal 1-blocks of length i in ω (1 ≤ i ≤ k − 2).

It is obvious that
k−2∑
i=1

Ni(ω) ≤ N∗(ω) ≤ N∗(ω).

Suppose ω 6 =1 · · · 1, 0 · · · 0 (the two constant sequences). Observe that ω must be in one of
the following four forms

1t10s11t20s2 · · · 1tr0sr , 0s11t10s21t2 · · · 0sr1tr ,
1t10s11t20s2 · · · 1tr , 0s11t10s21t2 · · · 0sr1tr0sr+1 ,
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where 1t means a 1-block of length t (≥ 1) and 0s means a 0-block of length s (≥ 1). When ω
is represented as above, we have the following expression for the interested quantities

N∗(ω) = t1 + · · ·+ tr

N∗(ω) = r

Ni(ω) = Card{1 ≤ j ≤ r : tj = i} (1 ≤ i ≤ k − 2).

Lemma 5 Suppose x ∈ (xj) ∈ E(α1, · · · , αk). Let ω = (xj)
n
j=1 ∈ {0, 1}n. We have

N∗(ω) = α1n+ o(n)

N∗(ω) = (α1 − α2)n+ o(n)

Ni(ω) = (αi − 2αi+1 + αi+2)n+ o(n), (1 ≤ i ≤ k − 2).

Proof Clearly N∗(ω) = P1(ω) = α1n+ o(n). Define a mapping S : {0, 1}n −→ {0, 1}n by

ω = (x1, x2, · · · , xn) 7→ (x1x2, x2x3, · · · , xn−1xn, xn).

Let us observe the change of 1-blocks from ω to Sω. A 1-block of length r in ω is reduced to
a 1-blocks of length r − 1 in Sω, with perhaps one exception (when xn = 1). This observation
implies the following four equalities

Pi+1(ω) = Pi(Sω) +O(1)

N∗(Sω) = N∗(ω)−N∗(ω) +O(1)

N∗(Sω) = N∗(ω)−N1(ω) +O(1)

Ni(ω) = N1(Si−1ω) +O(1).

By using the first equality and the fact P1(ω) = N∗(ω), we have

Pi(ω) = P1(Si−1ω) +O(1) = N∗(Si−1ω) +O(1).

This together with the second equality yields

Pi(ω) = Pi−1(ω)−N∗(Si−2ω) +O(1).

Consider now
P2(ω) = P1(Sω) +O(1) = N∗(ω)−N∗(ω) +O(1).

Since P2(ω) = α2n+ o(n), we get

N∗(ω) = (α1 − α2)n+ o(n).

Let now 1 ≤ i ≤ k − 2. Consider

Pi+2(ω) = N∗(Si+1ω) +O(1)

= N∗(Siω)−N∗(Siω) +O(1)

= [N∗(Si−1ω)−N∗(Si−1ω)]− [N∗(S
i−1ω)−N1(Si−1ω)] +O(1)

= Pi(ω)− 2N∗(S
i−1ω) +Ni(ω) +O(1)

= Pi(ω)− 2[Pi(ω)− Pi+1(ω)] +Ni(ω) +O(1)
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This together with Pi(ω) = αin+ o(n) gives Ni(ω) = (αi − 2αi+1 + αi+2)n+ o(n). 2

Let n ≥ k ≥ 2. For k non-negative integers n∗, n∗, ni (1 ≤ i ≤ k − 2), define

A(n∗, n∗, n1, · · · , nk)
= {ω ∈ Σn : (N∗(ω), N∗(ω), N1, · · · , Nk−2(ω)) = (n∗, n∗, n1, · · · , nk−2)} .

Lemma 6 With the above notation, we have

CardA(n∗, n∗, n1, · · · , nk)
= [2Cn∗−1

n−n∗−1 + Cn∗n−n∗−1 + Cn∗−1
n−n∗−1]Cn1

n∗C
n2
n∗−n1

· · ·Cnk−2
n∗−n1−···−nk−3

·Cn∗−n1−n2−···−nk−2

n∗−(k−2)n∗+(k−3)n1+(k−4)n2+···+nk−3
.

Proof Let’s first remark the following elementary fact Let m,n be two positive integers. Then
there are exactly Cm−1

n−1 different positive integer solutions for the equation x1 + · · · + xm = n.
Consequently, there are Cm−1

n−km−1 different integer solutions for

y1 + · · ·+ ym = n, yi > k for 1 ≤ i ≤ m.

We account first all ω in the form 1t10s11t20s2 · · · 1tr0sr . To get all such ω, we divide n− n∗
0’s into n∗ groups of respective sizes s1, s2, · · · , sn∗ . Then we divide n∗ 1’s into n∗ groups of
respective sizes t1, t2, · · · , tn∗ , ni of which are equal to i for each 1 ≤ i ≤ k − 2. So, the number
of those ω is just the number of solutions of the following system

1◦. s1 + s2 + · · ·+ sn∗ = n− n∗, si ≥ 1 (1 ≤ i ≤ n∗);
2◦. t1 + t2 + · · ·+ tn∗ = n∗

under the condition that among these n∗ integers t1, · · · , tn∗ , there are n1 integers taking value 1,
n2 integers taking value 2, . . ., nk−2 integers taking value k−2; the remaining n∗−(n1+· · ·+nk−2)
integers, if any, take values greater than k − 2 and their sum is n∗ − (n1 + 2n2 + (k − 2)nk−2).

According to the remark, there are Cn∗−1
n−n∗−1 solutions (s1, · · · , sn∗) satisfying 1◦. The number

of the solutions (t1, · · · , tn∗) of 2◦ is equal to

Cn1
n∗C

n2
n∗−n1

· · ·Cnk−2
n∗−n1−···−nk−3

C
n∗−n1−···−nk−2−1
n∗−(n1+2n2+···+(k−2)nk−2)−(k−2)(n∗−n1−···−nk−2)−1.

The last factor in the above expression is obtained like this: After have arranged 1-blocks of
lengths 1, 2, · · · , k−2 there are yet n∗− (n1 +2n2 + · · ·+(k−2)nk−2) 1’s. They are then divided
into n∗ − (n1 + · · · + nk−2) groups each of which is of size strictly greater than k − 2. By the
remark, the number of all possibilities is the number of solutions of the equation

z1 + · · ·+ zn∗−(n1+···+nk−2) = n∗ − (n1 + 2n2 + · · ·+ (k − 2)nk−2).

Thus the cardinal of the subset of elements of the form 1t10s11t20s2 · · · 1tr0sr inA(n∗, n∗, n1, · · · , nk)
is equal to

Cn∗−1
n−n∗−1C

n1
n∗C

n2
n∗−n1

· · ·Cnk−2
n∗−n1−···−nk−3

C
n∗−n1−n2−···−nk−2

n∗−(k−2)n∗+(k−3)n1+(k−4)n2+···+nk−3
.
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In a similar way, we can consider the other three forms

0s11t10s21t2 · · · 0sr1tr , 1t10s11t20s2 · · · 1tr , 0s11t10s21t2 · · · 0sr1tr0sr+1 ,

and obtain the desired result. 2

Lemma 7 Let n ≥ m ≥ ` be three non-negative integers, then

1

n
logC`m = L

(
m

n

)
− L

(
`

n

)
− L

(
m− `
n

)
+O

(
log n

n

)
.

where L(x) = x log x.

Proof By the following form of Stirling formula

log p! = p log p− p+
1

2
log p+O(1),

we have

logC`m = logm!− log `!− log(m− `)!
= m logm− ` log `− (m− `) log(m− `)

+
1

2
[logm− log `− log(m− `)] +O(1).

Therefore

1

n
logC`m =

1

n
[m logm− ` log `− (m− `) log(m− `)] +O

(
log n

n

)
=

m

n
log

m

n
− `

n
log

`

n
− m− `

n
log

m− `
n

+O

(
log n

n

)
2

For n ≥ k ≥ 2 and ε > 0, let F (n, ε) be the set of ω ∈ Σn such that

|N∗(ω)− α1n| ≤ ε n
|N∗(ω)− (α1 − α2)n| ≤ ε n
|Ni(ω)− (αi − 2αi+1 + αi+2)n| ≤ ε n (1 ≤ i ≤ k − 2)

and let
f(n, ε) = Card F (n, ε).

Lemma 8 If (α1, α2, · · · , αk) satisfies the convexity condition (1) in Theorem 1, then

lim
ε↓0

lim
n→∞

log f(n, ε)

log 2n
= lim

ε↓0
lim
n→∞

log f(n, ε)

log 2n
= Λ(α1, α2, · · · , αk).

Proof Without loss of generality, we give only a proof for the case k = 3. For n ≥ 3 and
1
2 ≥ ε > 0, let n∗, n∗, n1 be any integers satisfying

|n∗ − α1n| ≤ ε n
|n∗ − (α1 − α2)n| ≤ ε n
|n1 − (α1 − 2α2 + α3)n| ≤ ε n.
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Let V (n∗, n∗, n1) = Card A(n∗, n∗, n1). By Lemma 6, we have

V (n∗, n∗, n1) = [2Cn∗−1
n−n∗−1 + Cn∗n−n∗−1 + Cn∗−2

n−n∗−1] · Cn1
n∗ · C

n∗−n1
n∗−n∗ .

It is easy to see that V (n∗, n∗, n1) > 0 only when n ≥ n∗ ≥ n∗ ≥ n1, n ≥ n∗+n∗, n∗−2n∗+n1 ≥ 0
and when n is great enough, there are always such n∗, n∗, n1. By Lemma 7,

1

n
log V (n∗, n∗, n1) =

1

n
log(Cn∗n−n∗ · Cn1

n∗ · C
n∗−n1
n∗−n∗ ) +O(

log n

n
)

= L(
n∗ − n∗

n
) + L(

n− n∗

n
)− L(

n1

n
)− L(

n− n∗ − n∗
n

)

−2L(
n∗ − n1

n
)− L(

n∗ − 2n∗ + n1

n
) +O(

log n

n
).

Since
f(n, ε) =

∑
n∗,n∗,n1

V (n∗, n∗, n1) ≤ n3 sup
n∗,n∗,n1

V (n∗, n∗, n1) ≤ n3f(n, ε),

it follows that
log f(n, ε)

n
= sup

n∗,n∗,n1

1

n
log V (n∗, n∗, n1) +O

(
log n

n

)
.

Let n ↑ ∞ and then ε ↓ 0, since L is continuous, it follows that

lim
ε↓0

lim
n→∞

log f(n, ε)

log 2n
= lim

ε↓0
lim
n→∞

log f(n, ε)

log 2n

=
1

log 2
[L(α2) + L(1− α1)− 2L(α2 − α3)− L(α3)

−L(1− 2α1 + α2)− L(α1 − 2α2 + α3)]

= Λ(α1, α2, α3).

2

6.2. Proof of Theorem 1

The basic idea is the same as that for proving Theorem 2. But here we are going to
estimate directly the dimension without using Gibbs measures.

First we prove that dimP E(α1, · · · , αk) ≤ Λ(α1, · · · , αk). Let ε > 0 be an arbitrary positive
number. If x = (xn) ∈ E(α1, · · · , αk), then (x1, · · · , xn) ∈ F (n, ε) when n is large enough (F (n, ε)
was defined before Lemma 8). That means

E(α1, · · · , αk) ⊂
∞⋃
`=1

G(`, ε)

where
G(`, ε) = {y = (yn) ∈ Σ : ∀m ≥ `, (y1, · · · , ym) ∈ F (m, ε)} .

Note that if m ≥ `, G(`, ε) can be covered by f(m, ε) m-cylinders (see the definition of f(m, ε)).

It follows that the upper box dimension of G(`, ε) does not exceed lim
m→∞

log f(m, ε)

log 2m
. By the

23



σ-stability of the packing dimension, we have

dimP E(α1, · · · , αk) ≤ lim
m→∞

log f(m, ε)

log 2m
(∀ε > 0)

Letting ε→ 0, we get the desired inequality.

Now we are going to show the inverse inequality. ∀δ > 0, by lemma 8, there are a sequence
of integers `j ↑ ∞ and a sequence of real numbers εj ↓ 0 such that

f(`j , εj) > 2(Λ− δ
2

)`j .

As in the proof of Theorem 4, define new sequences {`∗j} and {ε∗j}. Then let

nj = f(`∗j , ε
∗
j ), cj = 2−`

∗
j (j ≥ 1).

Θ =
∞∏
j=1

Yj , Yj = F (`∗j , ε
∗
j )

We claim that Θ ⊂ E(α1, · · · , αk) and dimH Θ ≥ Λ − δ. Suppose x = (xi) ∈ Θ. For any
n(> m1), there is a unique integer J(n) such that

J(n)∑
i=1

`∗i ≤ n ≤
J(n)+1∑
i=1

`∗i .

Let ωn = x1 · · ·xn ∈ Σn. Then

N∗(ωn) ≤ `∗1[α1 + ε∗1] + · · ·+ `∗J(n)+1[α1 + ε∗J(n)+1]

N∗(ωn) ≥ `∗1[α1 − ε∗1] + · · ·+ `∗J(n)[α1 − ε∗J(n)].

It follows that

lim
n→∞

N∗(ωn)

n
= α1.

Observe that

N∗(ωn) ≤ `∗1[α1 − α2 + ε∗1] + · · ·+ `∗J(n)+1[α1 − α2 + ε∗J(n)+1]

N∗(ωn) ≥ `∗1[α1 − α2 − ε∗1] + · · ·+ `∗J(n)[α1 − α2 − ε∗J(n)].

so,

lim
n→∞

N∗(ωn)

n
= α1 − α2.

In the same way we can prove that

lim
n→∞

Ni(ωn)

n
= αi − 2αi+1 + αi+2 (1 ≤ i ≤ k − 2).

Thus we have proved that Θ ⊂ E(α1, · · · , αk).

The set Θ is a homogeneous Moran set, i.e. Θ ∈M([0, 1], {nj}, {cj}). The same calculation

in the proof of Theorem 4 gives dimH E(α1, · · · , αk) ≥ Λ− δ

2
, (∀δ > 0). 2
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7. Applications of Theorem 3

In this section, we first present an algorithm for computing the pressure of an energy function
which depends only on a finite number of coordinates. Then we apply Theorem 3 to some special
cases.

7.1 The calculation of pressure function

For a function g : Σ −→ R+, let

p(g) = lim
n→∞

1

n
log 2n

∫
Σ

n−1∏
j=0

g(T jx)dx.

Then PΦ(β) = p(exp〈β, ,Φ〉). We are going to compute p(g) for g(x) depending only on finite
number of coordinates of x.

Case I. g(x) = g(x1). Since

2n
∫

Σ

n−1∏
j=0

g(T jx)dx = 2n
∑

x1···xn∈{0,1}n
g(x1)g(x2) · · · g(xn) · 1

2n

= (g(0) + g(1))n,

it follows that p(g) = log(g(0) + g(1)).

Case II. g(x) = g(x1, x2). We have

2n
∫

Σ

n−1∏
j=0

g(T jx)dx =
1

2

∑
x1···xn+1∈{0,1}n+1

g(x1, x2)g(x2, x3) · · · g(xn, xn+1).

Let now
Gn(0) =

∑
x1···xn∈{0,1}n

g(x1, x2)g(x2, x3) · · · g(xn−1, xn)g(xn, 0)

Gn(1) =
∑

x1···xn∈{0,1}n
g(x1, x2)g(x2, x3) · · · g(xn−1, xn)g(xn, 1).

Then, Gn(0) and Gn(1) satisfy the following recursive relation:

Gn+1(0) = Gn(0)g(0, 0) +Gn(1)g(1, 0)

Gn+1(1) = Gn(0)g(0, 1) +Gn(1)g(1, 1).

Therefore (
Gn(0)
Gn(1)

)
= An

(
1
1

)
, where A =

(
g(0, 0) g(1, 0)
g(1, 0) g(1, 1)

)
.

So,

2n
∫

Σ

n−1∏
j=0

g(T jx)dx =
1

2
||An||1
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where ||A||1 denotes the norm of A defined by the sum of all absolute values of its entries. Thus
we get p(g) = log Spec(A) where Spec(A) denotes the spectral radius of A.

Case III. g(x) = g(x1, x2, x3). We have

2n
∫

Σ

n−1∏
j=0

g(T jx)dx =
1

22

∑
x1···xn+2∈{0,1}n+2

g(x1, x2, x3) · · · g(xn, xn+1, xn+2).

For any ε1, ε2 ∈ {0, 1}, set

Gn(ε1, ε2) =
∑

x1···xn+2∈{0,1}n+2

xn+1=ε1,xn+2=ε2

g(x1, x2, x3) · · · g(xn, xn+1, xn+2).

Then Gn(ε1, ε2) satisfy the following recursive relation:

Gn+1(0, 0) = Gn(0, 0)g(0, 0, 0) +Gn(1, 0)g(1, 0, 0)

Gn+1(0, 1) = Gn(0, 0)g(0, 0, 1) +Gn(1, 0)g(0, 1, 0)

Gn+1(1, 0) = Gn(0, 1)g(0, 1, 0) +Gn(1, 1)g(1, 1, 0)

Gn+1(1, 1) = Gn(0, 1)g(0, 1, 1) +Gn(1, 1)g(1, 1, 1).

Thus

2n
∫

Σ

n−1∏
j=0

g(T jx)dx =
1

22
||An||1

and
p(g) = log Spec(A)

where

A =


g(0, 0, 0) 0 g(1, 0, 0) 0
g(0, 0, 1) 0 g(1, 0, 1) 0

0 g(0, 1, 0) 0 g(1, 1, 0)
0 g(0, 1, 1) 0 g(1, 1, 1)

 .

Case IV. g(x) = g(x1, · · · , xk). In this general case, we can get

p(g) = log Spec(A)

where A = (ai,j)2k−1×2k−1 is defined as follows. Write

i = 1 +
k−1∑
`=1

ε`2
k−1−`, j = 1 +

k−1∑
`=1

υ`2
k−1−`, (ε`, υ` = 0 or 1).

Define

ai,j =


g(0, ε1, · · · , εk−1), if υ1 = 0, υj = εj−1 for 2 ≤ j ≤ k − 1
g(1, ε1, · · · , εk−1), if υ1 = 1, υj = εj−1 for 2 ≤ j ≤ k − 1

0, otherwise.

26



7.2 Computation of dimEΦ(α) by Theorem 3

In this section, we give two examples to show how the method provided by Theorem 3
allows us to compute the dimension of EΦ(α).

Example 1. Φ(x) = (x1, x1x2). By the algorithm we have just discussed above, we get

PΦ(β1, β2) = log[1 + exp(β1 + β2) +
√

(1− exp(β1 + β2))2 + 4 exp(β1)]− log 2

Write down

∂PΦ

∂β1
=

1

1 + eβ1+β2 +
√

(1− eβ1+β2)2 + 4eβ1

(eβ1+β2 +
e2β1+2β2 − eβ1+β2 + 2eβ1√

(1− eβ1+β2)2 + 4eβ1

)

∂PΦ

∂β2
=

1

1 + eβ1+β2 +
√

(1− eβ1+β2)2 + 4eβ1

(eβ1+β2 +
e2β1+2β2 − eβ1+β2√
(1− eβ1+β2)2 + 4eβ1

).

Now taking β = (0, 0) gives us

∇PΦ(0, 0) = (
1

2
,
1

4
), PΦ(0, 0) = log 2

dimH E(
1

2
,
1

4
) = − 1

log 2
[< β,∇PΦ(β) > −PΦ(β)] = 1.

It is a trivial result. Taking β = (1,−1) gives us

∇PΦ(β) = (
1

2
,

1

2(1 +
√
e)

), PΦ(β) = log(1 +
√
e)

dimH E(
1

2
,

1

2(1 +
√
e)

) =
1

log 2

[
log(1 +

√
e)− 1

2
(1− 1

1 +
√
e

)

]
.

These results can be verified by the formula provided by Theorem 1.

Example 2. Φ(x) = (x1, x2(1 − x1)). Note that α = (α1, α2) ∈ LΦ means α1 (resp. α2) is
the proportion of word ’1’ (resp. ’01’) in dyadic development of points in EΦ(α). In this case,
we have

PΦ(β1, β2) = log[1 + exp(β1) +
√

(1− exp(β1))2 + 4 exp(β1 + β2)]− log 2

∂PΦ

∂β1
=

1

1 + eβ1 +
√

(1− eβ1)2 + 4eβ1+β2

(eβ1 +
e2β1 − eβ1 + 2eβ1+β2√
(1− eβ1)2 + 4eβ1+β2

)

∂PΦ

∂β2
=

1

1 + eβ1 +
√

(1− eβ1)2 + 4eβ1+β2

(
2eβ1+β2√

(1− eβ1)2 + 4eβ1+β2

).

Taking β = (0, 0) gives

∇PΦ(0, 0) = (
1

2
,

1

4
), PΦ(0, 0) = log 2

dimH E(
1

2
,
1

4
) = 1.
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Taking β = (0, 1) gives

∇PΦ(β) = (
1

2
,

√
e

2(1 +
√
e)

), PΦ(β) = log(1 +
√
e)

dimH E(
1

2
,

√
e

2(1 +
√
e)

) =
1

log 2
[log(1 +

√
e)−

√
e

2(1 +
√
e)

].

These results are not directly covered by Theorem 1, but by Theorem 2.

8. Applications of Theorems 1 and 2

8.1. Φ(x) = Φ(x1)

We have LΦ = Φ(0)Φ(1) (the segment joining Φ(0) and Φ(1). For α ∈ LΦ, we have

dimH EΦ(α) = dimP EΦ(α) = −γ log2 γ − (1− γ) log2(1− γ)

where

γ =
|α− Φ(1)|
|Φ(1)− Φ(0)|

, 1− γ =
|α− Φ(0)|
|Φ(1)− Φ(0)|

.

The limit set is clear because ∆1 = {p = (p0, p1) : p0, p1 ≥ 0, p0 +p1 = 1}. So, α = (α1, α2) =
ϕ(p) iff α1 = γ and α2 = 1−γ. Now it suffices to write down the formula according to Theorem
2.

8.2. Φ(x) = Φ(x1, x2)

For convenience, take the lexicographical order on ∆2. That means the elements in ∆2

are denoted and ordered by (x0,0, x0,1, x1,0, x1,1). It is easy to see that

∆2 = {(a, b, b, c) : a, b, c ≥ 0; a+ 2b+ c = 1}.

It follows that
LΦ = {aξ1 + 2bξ2 + cξ3 : (a, b, b, c) ∈ ∆2)}

where

ξ1 = Φ(0, 0), ξ2 =
1

2
[Φ(0, 1) + Φ(1, 0)], ξ3 = Φ(1, 1).

In other words, LΦ is the convex set generated by the three vectors ξ1, ξ2 and ξ3. If (ξ1, ξ2, ξ3) are
not collinear, which implies d ≥ 2, then LΦ is the triangle of vertexes ξ1, ξ2 and ξ3, and there is
a one-to-one correspondence between α ∈ LΦ and (a, b, b, c) ∈ ∆2. In this case, the dimension is
equal to H(pα) where pα is the unique vector corresponding to α, the bary-centric coordinates of
α. If (ξ1, ξ2, ξ3) are collinear, LΦ is a segment and the maximum in Theorem 2 may be computed
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through the Lagrange multiplier method. We point out that H(p) is strictly concave function
on the simplex consisting of all probability vectors p, because its Hessian matrix is

− p(0,1)
p(0,0)+p(0,1)

1
p(0,0)+p(0,1)

1
p(0,0)+p(0,1) − p(0,0)

p(0,0)+p(0,1)

− p(1,0)
p(1,0)+p(1,1)

1
p(1,0)+p(1,1)

1
p(1,0)+p(1,1) − p(1,0)

p(1,0)+p(1,1)


which is negative definite.

Example 3. If Φ(x) = ((1−x1)(1−x2), (1−x1)x2, x1(1−x2), x1x2), then LΦ is the triangle
in R4 of vertexes (1, 0, 0, 0), (0, 1

2 ,
1
2 , 0) and (0, 0, 0, 1), and for any α = (αi)1≤i≤4 ∈ LΦ we have

dimH EΦ(α) = dimP EΦ(α) = log2

(α1 + α2)α1+α2(α3 + α4)α3+α4

αα1
1 αα2

2 αα3
3 αα4

4

.

Let p = (a, b, b, c) ∈ ∆2. It suffices to observe that α = ϕ(p) iff α1 = a, α2 = α3 = b and
α4 = c. This formula was obtained by Billingsley in [2]. But, in [2], it was not mentioned what
happens when α ∈ ∆2 \∆+

2 .

Example 4. If Φ(x) = (x1, x1x2), then LΦ is the triangle in R2 of vertexes (0, 0), (1/2, 0)
and (1, 1) and for α ∈ α = (α1, α2) ∈ LΦ we have

dimH EΦ(α) = dimH EΦ(α)

= α1 log2 α1 + (1− α1) log2(1− α1)

− α2 log2 α2 − 2(α1 − α2) log2(α1 − α2)− (1− 2α1 + α2) log2(1− 2α1 + α2).

The set LΦ is clear. Note that α = ϕ(p) means α1 = b + c and c = α2. Recall that
a+ 2b+ c = 1. From these three equation we get a = 1− 2α1 + α2, b = α1 − α2, c = α2. Now
it suffices to write down the formula in Theorem 2. This confirms Theorem 1 for k = 2.

Example 5. If Φ(x) = (x1, (1 − x1)x2), then LΦ is the triangle in R2 of vertexes (0, 0),
(1/2, 1/2) and (1, 0) and for α ∈ α = (α1, α2) ∈ LΦ we have

dimH EΦ(α) = dimH EΦ(α)

= α1 log2 α1 + (1− α1) log2(1− α1)

− 2α2 log2 α2 − (α1 − α2) log2(α1 − α2)− (1− α1 − α2) log2(1− α1 − α2).

Example 6. If Φ(x) = x1x2, we have LΦ = [0, 1] and for α ∈ [0, 1]

dimH EΦ(α) = dimP EΦ(α) = H(pα)

where pα = (2xα − 1 + α, 1− α− xα, 1− α− xα, α) ∈ ∆2 where xα ∈ [0, 1] is the solution of

x(1− α− x)2 = (1− x)(2x− 1 + α)2.
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Note that Φ(0, 0) = Φ(0, 1) = Φ(1, 0) = 0 and Φ(1, 1) = 1. Let p = (a, b, b, c) ∈ ∆2. Then
α = ϕ(p) iff α = c. It follows, from a+ 2b+ c = 1, that LΦ = [0, 1]. Note that

H(p) = log2

(
a+ b

a

)a (a+ b

b

)b (b+ c

b

)b (b+ c

c

)c
= log2

(a+ b)a+b(b+ c)b+c

aab2bcc

Introduce the variable x = a + b. Since a + 2b + c = 1 and c = α, we have b + c = 1 − x,
b = 1−α− x and a = 2x− 1 +α. Consider H as a function of x, which is concave. xα must be
the solution of dH

dx = 0. However

dH

dx
= log2

x(1− α− x)2

(1− x)(2x− 1 + α)2
.

A. Bisbas [3] studied the above situation and obtained a different formula. More general situation
in the next subsection was also studied by A. Bisbas ([4]). We shall obtain a result for it as a
consequence of Theorem 1.

8.3. Φk(x) = x1x2 · · ·xk

Our aim is to study the set EΦk(β) where Φk(x) = x1x2 · · ·xk is the product (not the
concatenation) of the first k coordinates. EΦk(β) is thus the set of points x which have βn
1-blocks of length k in their first n coordinates.

Introduce the vector valued function Φ : Σ → Rk defined by Φ = (Φ1,Φ2, · · · ,Φk) where
Φj(x) = x1x2 · · ·xj (1 ≤ j ≤ k). By Theorem 1, we know that

LΦ =
{

(α1, α2, · · · , αk) : 1 = α0 ≥ α1 ≥ · · ·αk ≥ 0, {αj}kj=0 is convex
}
.

For 0 ≤ β ≤ 1, denote by Dβ,k the section of LΦ defined by

Dβ,k =
{

(α1, α2, · · · , αk−1) : 1 = α0 ≥ α1 ≥ · · · ≥ αk = β, {αj}kj=0 is convex
}
.

It is clear that D1,k is a singleton and dimEΦk(1) = dimEΦ(1, 1, · · · , 1) = 0. If 0 ≤ β < 1, Dβ,k

is a convex set of dimension k − 1.

Theorem 5. For 0 ≤ β ≤ 1, we have

dimH EΦk(β) = dimP EΦk(β) = sup
Dβ,k

Λ(α1, · · · , αk−1, β)

where Λ is the function defined in Theorem 1. If 0 ≤ β < 1, the supremum is attained at the
unique solution (α̂1, · · · , α̂k−1) of the system of equations

∂

∂αj
Λ(α1, · · · , αk−1, β) = 0 (1 ≤ j ≤ k − 1).
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Proof Since EΦ(α1, · · · , αk−1, β) ⊂ EΦk(β), the supremum is bounded by dimH EΦk(β). Ac-
cording to Theorem 2, there is a vector probability p ∈ ∆k such that∑

x1,···,xk
p(x1, · · · , xk)Φk(x1, · · · , xk) = β.

dimH EΦk(β) = H(p).

Denote
α̂j =

∑
x1,···,xk

p(x1, · · · , xk)Φj(x1, · · · , xk) (1 ≤ j ≤ k − 1).

Again by Theorem 2, we have

dimH EΦ(α̂1, · · · , α̂k−1, β) ≥ H(p).

It is sure that (α̂1, · · · , α̂k−1) ∈ Dβ,k because (α̂1, · · · , α̂k−1, β) ∈ LΦ. Combining the last two
expressions involving H(p) gives the desired formula. We have seen that (α̂1, · · · , α̂k−1) is the
maximal point of Λ(·, β). Since Λ(·, β) is a differentiable strictly concave function in Dβ,k, if
we can prove that Λ(·, β) doesn’t attains its maximum on the boundary of Dβ,k, (α̂1, · · · , α̂k−1)
must be the unique solution of the system. According to the definition of Λ, it can be checked
that for any boundary point α ∈ Dβ,k, the directional derivative

dΛ(α, β)

d`
= +∞

where ` is a direction pointing to the interior of Dβ,k. This implies that Λ(·, β) doesn’t attains
its maximum on the boundary of Dβ,k. 2

8.4. Φ(x) = (Φn1(x1, x2, · · · , xk), · · · ,Φns(x1, x2, · · · , xk))

In the same way as above, we can deal with

Φ(x) = (Φn1(x1, x2, · · · , xk), · · · ,Φns(x1, x2, · · · , xk))

where 1 ≤ n1 < · · · < ns ≤ k and Φj(x) = x1x2 · · ·xj (1 ≤ j ≤ k). For example, when
Φ(x) = (x1x2, x1x2x3x4), for any (α, β) ∈ LΦ we have dimEα,β = Λ(x̂, α, ŷ, β) where (x̂, ŷ) is
the solution of the system

∂

∂x
Λ(x, α, y, β) = 0,

∂

∂y
Λ(x, α, y, β) = 0.

More generally, Theorem 2 may be used to deal with any function Φ which depends only
upon a finite number of coordinates. Consider just an example.

Example 7. Φ(x) = x2 − 2x1x3 + 3x1x2x3.

Note that ∆3 is a 4-dimensional convex. For p ∈ ∆3, let

x = p(0, 0, 0) + p(0, 0, 1), y = p(0, 1, 0) + p(0, 1, 1), z = p(0, 0, 1), w = p(0, 1, 1).
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It may be checked that
ϕ(p) = 2− 2x+ 2y + 2z − w.

Suppose α ∈ LΦ with α = ϕ(p). We get w = 2−2x+ 2y+ 2z−α. Thus H(p) = f(x, y, z) where

f(x, y, z) = F (x− z, z) + F (y − w,w) + F (z, y − z) + F (w, 1− x− 2y − w)

with F (a, b) = h(a) + h(b)− h(a+ b). It can be proved that for α ∈ LΦ, we have

dimEΦ(α) = sup
p∈∆3,ϕ(p)=α

H(p) = f(x̂, ŷ, ẑ)

where (x̂, ŷ, ẑ) is the unique solution of the system

∂

∂x
f(x, y, z) = 0,

∂

∂y
f(x, y, z) = 0,

∂

∂z
f(x, y, z) = 0.

We point out that F (a, b) admits +∞ as its directional derivative at a boundary point with a
direction pointing to the interior of its domain of definition.

9. Generalizations

Theorems 2, 3 and 4 hold for a symbolic space with more than two symbols, say m
symbols. It suffices to replace log2 by logm in the statements of the theorems. More generally,

these theorems can be generalized to transitive subshifts of finite type. Let Σ = {1, 2, · · · ,m}N
(m ≥ 2) and T be the shift on Σ. Let A = (ai,j) be a m×m matrix with ai,j ∈ {0, 1}. Define

ΣA = {(xn) ∈ Σ : axn,xn+1 = 1 ∀n ≥ 1}.

Note that TΣA ⊂ ΣA. The system (ΣA, T ) is called a subshift of finite type. Suppose further
that all the entries of AM are strictly positive for some M ≥ 1. Then the subshift is said to be
(topologically) transitive.

The statement of Theorem 4 doesn’t change for transitive subshifts. But in the definition of
f(α, n, ε), by a n-cylinder I(x1, · · · , xn) we means

I(x1, · · · , xn) = {(yn) ∈ ΣA : y1 = x1, · · · , yn = xn}.

So, I(x1, · · · , xn) is empty if axj ,xj+1 = 0 for some 1 ≤ j < n.

Let ΣA,k be the set of all sequences (x1, · · · , xn) such that axj ,xj+1 = 1 for all 1 ≤ j < n. Let
∆k = ∆A,k (associated to ΣA) be the set of probability vectors p defined on ΣA,k such that∑

i

p(x1, · · · , xk−1, i) =
∑
j

p(j, x1, · · · , xk−1)

where the first sum is taken over i’s such that axk−1,i = 1 and the second sum is taken over j’s

such that aj,x1 = 1. For a function Φ : ΣA → Rd depending only upon the first k coordinates,

define ϕ : ∆k → Rd

ϕ(p) =
∑

p∈ΣA,k

p(x)Φ(x).
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Formally, Theorem 2 also holds in the case of transitive subshift. But the function H is

H(p) =
∑

x1,···,xk
p(x1, · · · , xk) logm

∑
i p(x1, · · · , xk−1, i)

p(x1, · · · , xk)
.

It is understood that p(x) = 0 if x 6∈ ΣA,k.

Since ΣA,k is transitive, for any ω = (xj)
n
j=1 ∈ ΣA,n and any 1 ≤ x0 ≤ m, there are

1 ≤ y1, · · · , yM−1 ≤ m such that

(x1, · · · , xn, y1, · · · , yM−1, x0) ∈ ΣA,n+M .

We call ω = (x1, · · · , xn, y1, · · · , yM−1) an extension of ω joining x0. The essential change in the
proofs of Theorems 2 and 4 is to replace finite sequences which appear in different constructions
of infinite sequences by their extensions. For example, in Step 2 of the proof of Theorem 4, we
define

ω = ω1 · · ·ω1ω
′
1︸ ︷︷ ︸

m1

ω2 · · ·ω2ω
′
2︸ ︷︷ ︸

m2

ω3 · · ·ω3ω
′
3︸ ︷︷ ︸

m3

· · ·

where ω1 is an extension of x(1)|n1 joining x(1)|1 but ω′1 is an extension of x(1)|n1 joining x(2)|1;
ω2 is an extension of x(2)|n2 joining x(2)|1 but ω′2 is an extension of x(2)|n2 joining x3|1; and so
on.
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