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Abstract

In this paper, we give a systematical study of the local structures and fractal indices of the
limited Rademacher functions and Bernoulli convolutions associated with Pisot numbers. For a
given Pisot number in the interval(1,2), we construct a finite family of non-negative matrices
(maybe non-square), such that the corresponding fractal indices can be re-expressed as some
limits in terms of products of these non-negative matrices. We are especially interested in the
case that the associated Pisot number is a simple Pisot number, i.e., the unique positive root of
the polynomialxk−xk−1− . . .−x−1 (k=2,3, . . .). In this case, the corresponding products of
matrices can be decomposed into the products of scalars, based on which the precise formulas
of fractal indices, as well as the multifractal formalism, are obtained.
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1. Introduction

In this paper, we provide a systematical study of the local structures and different
fractal indices of the limited Rademacher functions and Bernoulli convolutions associ-
ated with Pisot numbers. We also verify the validity of the multifractal formalism for
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the corresponding Bernoulli convolutions associated with a special class of Pisot num-
bers. Recall that a real algebraic integer is called aPisot numberif all its conjugates
are less than 1 in modulus. There are infinitely many Pisot numbers in the interval
(1,2): for example, for eachk = 2,3, . . ., the unique positive root of the polynomial

pk(x) = xk − xk−1− xk−2− · · · − x − 1

is a Pisot number. We shall call these thesimplePisot numbers. The readers may see
the books[3,55] for the detailed properties of Pisot numbers.
Recall that for 12 < � < 1, the limited Rademacher function fwith parameter� is

defined by

f (x) = (1− �)
∞∑
n=0

�nR(2nx), x ∈ [0,1], (1.1)

whereR denotes the classic Rademacher function:R(x) is defined on the lineR with
period 1, taking values 0 and 1 on the intervals[0, 12) and [12,1), respectively. The
distribution of f induces a probability measure� on [0,1]. That is,

�(E) = L{x ∈ [0,1] : f (x) ∈ E}, ∀ Borel setE ⊂ [0,1],

where L denotes the one-dimensional Lebesgue measure. The measure� is called
the Bernoulli convolutionwith parameter�, since it is the infinite convolution of
1
2(�0+�(1−�)�n). An important property of� is its self-similarity (see, e.g.,[31, Theorem
4.3]):

� = 1
2 � ◦ S−10 + 1

2 � ◦ S−11 , (1.2)

whereS0(x) = �x and S1(x) = �x + 1− �.
The limited Rademacher functions and Bernoulli convolutions have been studied for

a long time, revealing many connections with harmonic analysis, number theory, fractal
geometry and dynamical systems, see[1,30,48,53,57]. It is well known [28] that for
each parameter� ∈ (1/2,1), � is either absolutely continuous or totally singular. Erdös
[6] proved that� is totally singular if � is the reciprocal of a Pisot number. In the
opposite direction, Solomyak [56] proved that� is absolutely continuous withd�

dx
∈ L2

for almost all� ∈ (1/2,1), extending an early result of Erdös [7]. Please see [49] for
a simpler proof. Mauldin and Simon [39] showed that� is in fact equivalent to the
Lebesgue measure for almost all� ∈ (1/2,1). Later Peres and Schlag [47] strengthed
Solomyak’s result by showing the Hausdorff dimension of the exceptional�’s in [a,1]
is strictly smaller than 1 for eacha > 1

2. Recently, Feng and Wang [20] found a
sequence of�’s such that�−1 is not Pisot number and� lies in the exceptional set
(i.e. the corresponding�, if it is absolutely continuous, has noL2 density).
In this paper, we always assume that the parameter� ∈ (12,1) is a Pisot reciprocal.

That is, �−1 is a Pisot number. Under this assumption, we would like to analyse
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the complexity and the degree of singularity of the corresponding limited Rademacher
function and Bernoulli convolution. More precisely, we study the following fractal
indices for a fixed Pisot reciprocal�:

• the Hausdorff dimension of the graph of the limited Rademacher function;
• the Hausdorff dimension of the level sets of the limited Rademacher function;
• the Lq -spectrum, Hausdorff dimension and the range of local dimensions of the
Bernoulli convolution.

Furthermore, we will give a complete multifractal analysis of� when � is a simple
Pisot number.
Our basic approach is the following: using an algebraic property of Pisot numbers

found by Garcia[22], for each given Pisot reciprocal� in (1/2,1) we construct a
finite family of non-negative matrices (maybe non-square) and re-express a major part
of the above fractal indices as limits in terms of products of these matrices. Particularly
interesting is the case where� is the reciprocal of a simple Pisot number. In this case
we find that the corresponding product of matrices is degenerate and can be decomposed
as the product of a sequence of scalars (this fact implies that� is locally a self-similar
measure with countably many generators which satisfy the separation condition). Using
this key property, we obtain the precise formulas of all the above fractal indices, and
verify the validity of the multifractal formalism of�.
At first we give some necessary definitions and notations. We use dimH, dimB to

denote the Hausdorff dimension and the box-counting dimension, respectively (see
[8,38] for the definitions). For a real functiong defined on[0,1], the graph of the
function g, denoted as�(g) or simply �, is defined by

� = {(x, g(x)) ∈ R2 : x ∈ [0,1]}.

For t ∈ R, the t-level setof g, denoted asLt(g) or simply Lt , is defined by

Lt = {x ∈ [0,1] : g(x) = t}.

For a given finite Borel measure� on the line, theupper local dimension of� at
x ∈ supp(�) is defined by

d(�, x) = lim sup
r→0+

log�([x − r, x + r])
logr

,

and the lower local dimensiond(�, x) at x is defined similarly by taking the lower
limit. When d(�, x) = d(�, x), the common value is called thelocal dimensionof � at
x and is denoted byd(�, x). The range of local dimensions of�, denoted byR(�), is
defined by

R(�) = {y ∈ R : d(�, x) = y for somex ∈ supp(�)}.
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Recall theHausdorff dimensionof � is defined by

dimH(�) = inf {dimH(E) : E ⊂ R is a Borel set and�(E) = 1} ,

and theLq -spectrum(q ∈ R) of � is defined by

�(q) = �(�, q) = lim inf
�→0+

log
(
sup

∑
i �([xi − �, xi + �])q)

log�
,

where the supremum is taken over all the families{[xi−�, xi+�]}i of disjoint intervals
with xi ∈ supp(�). The readers may see the books[8,38,50,60] for more information
about the above definitions.
We will state our matrix product results for general Pisot reciprocals in Section 3.

In the following we only present our results for the cases� = �k (k = 2,3, . . .), where
�k is the largest real root ofxk+xk−1+· · ·+x−1. Define two 2×2 matricesM0,M1
by

M0 =
[
1 1
0 1

]
, M1 =

[
1 0
1 1

]
. (1.3)

For n�1, denote byAn the set of all indicesj1 . . . jn over {0,1}. Denote
MJ = Mj1Mj2 . . .Mjn

for J = j1 . . . jn. For our convenience, we write∅ for the empty word and define

M∅ =
[
1 0
0 1

]
.

Set A0 = {∅}. For any 2× 2 non-negative matrixB, denote its norm by‖B‖ =
(1,1)B(1,1)T .
Our main results for the cases� = �k (k�2) are the following theorems:

Theorem 1.1. For k = 2,3, . . ., let � be the graph of the limited Rademacher function
f with parameter� = �k. Then

dimH � = logxk
log�

,

wherexk is the unique root in(0, �k−1) (defining�1 = 1) of the equation

1− 2xk−1+ xk
1− 2x + xk ·

∞∑
n=0

 ∑
J∈An

‖MJ ‖�k
 xkn+k+1 = 1

with �k = − log�
log 2.
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Theorem 1.2. For k = 2,3, . . ., the Hausdorff dimension and box-counting dimen-
sion of t-level set of the limit Rademacher function f with parameter� = �k are
equal to

dk := �k
(
1− 2�k

)2(
2− (k + 1)�k

)
log 2

∞∑
n=0

�kn
∑
J∈An

log‖MJ ‖


for L almost all t ∈ [0,1].

Theorem 1.3. (i) For any q ∈ R, the Lq -spectrum�(q) of the Bernoulli convolution
with parameter� = �2 is equal to

−q log 2
log�

− logx(2, q)

log�
,

wherex(2, q) is defined by

x(2, q) = sup

x�0 :
∞∑
n=0

 ∑
J∈An

‖MJ ‖q
 x2n+3�1

 .
There exists a unique real numberq0 < −2 satisfying

∞∑
n=0

 ∑
J∈An

‖MJ ‖q0
 = 1.

For q > q0, x(2, q) is the unique positive root of

∞∑
n=0

 ∑
J∈An

‖MJ ‖q
 x2n+3 = 1,

and it is an infinitely differentiable function of q on(q0,+∞). For q�q0, x(2, q) = 1.
Moreoverx(2, q) is not differentiable atq = q0.
(ii) For any integer k�3 and any real number q, the Lq -spectrum�(q) of the

Bernoulli convolution� with parameter� = �k is equal to

−q log 2
log�

− logx(k, q)

log�
,
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Table 1
Numerical estimations

k dimH �(f�k ) d�k dimH ��k

2 1.304± 0.001 0.302±0.001 0.9957±10−4
3 1.11875217± 10−8 0.1025001503±10−10 0.98040931953±10−11
4 1.052565407±10−9 0.041560454940769±10−14 0.9869264743338±10−12
5 1.024596045±10−9 0.01842625239655±10−14 0.9925853002741±10−12
6 1.011844824±10−9 0.00859023108854±10−14 0.9960325915849±10−12
7 1.005796386±10−9 0.00412363866083±10−14 0.9979374455070±10−12
8 1.002862729±10−9 0.00201383805752±10−14 0.9989449154498±10−12
9 1.001421378±10−9 0.00099344117302±10−14 0.9994653680555±10−12
10 1.000707890±10−9 0.00049294459129±10−14 0.9997306068783±10−12

wherex(k, q) ∈ (0, �k−1) satisfies

1− 2xk−1+ xk
1− 2x + xk ·

∞∑
n=0

 ∑
J∈An

‖MJ ‖q
 xkn+k+1 = 1.

Moreoverx(k, q) is an infinitely differentiable function of q on the whole line.

Theorem 1.4. For k = 2,3, . . ., the Hausdorff dimension of the Bernoulli convolution
� with parameter� = �k satisfies

dimH � = − log 2

log�
+
(
2k − 3

2k − 1

)2

·

∞∑
n=0

2−kn−k−1
∑
J∈An

‖MJ ‖ log‖MJ ‖

log�
.

Theorem 1.5. For k = 2,3, . . ., let R(�) be the range of local dimensions of the
Bernoulli convolution� with parameter� = �k. Then

R(�) =


[
− log 2

log� − 1
2,− log 2

log�

]
if k = 2,

[
− k log 2
(k+1) log� , − log 2

log�

]
if k�3.

In Table 1, we give some numerical estimations of dimH �, dk and dimH � in the
above theorems for 2�k�10.

Theorem 1.6. For k = 2,3, . . ., let � be the Bernoulli convolution� with parameter
� = �k. For each��0, define

K(�) =
{
x ∈ [0,1] : lim

�→0

log�([x − �, x + �])
log�

= �
}
.
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Then
(i) If k = 2, then for anyq ∈ R\{q0},

dimH K(�(q)) = �(q)q − �(q), (1.4)

whereq0 is the real number defined as in(i) of Theorem1.3, and �(q) = �′(q).
(ii) If k�3, then (1.4) holds for anyq ∈ R.

Besides the above results, in Section 4.10 we give some results on biased Bernoulli
convolutions with parameter� = �2 (including an explicit formula of the Hausdorff
dimension).
Let us give some backgrounds and remarks about our results. The limited Rademacher

function f looks very closed to the Weierstrass functionW, which is defined by

W(x) =
∞∑
n=1

�n sin(2nx)

with parameter� ∈ (12,1). A famous question, which still remains open, is whether or
not the Hausdorff dimension and box-counting dimension of the graph ofW coincide
(it is known that both the box-counting dimension of the graph ofW and that of f
equal 2+ log�

log 2. See e.g.[8]). We refer the reader to Mauldin and Williams [41] and
the references therein for more details. It is natural to consider the same question for
the graph off. Przytycki and Urba´nski [53] proved that if� is a Pisot reciprocal,
the Hausdorff dimension of the graph off is strictly smaller than the box dimension.
Przytycki and Urba´nski obtained results for dimH � in this case, but their results are
not explicit, and cannot be used to estimate the Hausdorff dimension of� delicately.
To our best knowledge, Theorem 1.1 is the first explicit result about the Hausdorff
dimension of dimH � in the Pisot reciprocal case.
For the level sets off with parameter�, Hu and Lau [26] proved that if the corre-

sponding� is absolutely continuous, then the Hausdorff dimension of thet-level set of
f is equal to 1+ log�

log 2 for L almost all t ∈ [0,1]. Recall that� is absolutely continuous

for almost all� ∈ (12,1) and it is totally singular if� is a Pisot reciprocal. One may see
that Theorem 1.2 describes the different behavior of level sets in the Pisot reciprocal
cases.
Theorem 1.3 concerns theLq -spectra of the Bernoulli convolutions and their dif-

ferentiability. We need to point out that theLq -spectrum of a measure is one of the
basic ingredients in the study of multifractal phenomena. It is well known that if�
is the self-similar measure associated with an iterated function system (IFS){	j }mj=1
satisfying the so-calledopen set condition[27], then �(q) can be calculated by an
explicit formula and it is analytic onR [5,44]. However if the IFS does not satisfy
the open set condition, it is much harder to obtain a formula for�(q). In their fun-
damental work [32], Lau and Ngai considered the IFS satisfying the weak separation
condition, and proved that each associated self-similar measure partially satisfies the



D.-J. Feng /Advances in Mathematics 195 (2005) 24–101 31

multifractal formalism. Their result strongly relies on the differentiability property of
�(q). The weak separation condition is strictly weaker than the open set condition, and
it is satisfied by many interesting cases, such as the Bernoulli convolutions associated
with Pisot numbers. In a later paper[33], Lau and Ngai considered the Bernoulli con-
volution with parameter� = �2. They gave an explicit formula of�(q) for q > 0
and proved that it is infinitely differentiable on(0,∞). They also raised a question
how to determine the formula of�(q) for q < 0 when � = �2, and more generally
how to determine�(q) and check its differentiability for some other Pisot reciprocal
parameters. Theorem 1.3 answers their question considerably. It is very surprising for
the case� = �2, �(q) is not differentiable at one pointq0 < 0. This leads to the phase
transition of the corresponding Bernoulli convolution [18]. Some similar phenomena
(non-differentiability of�(q)) were found in the study of another self-similar measure
(i.e., the3-fold convolution of the standard Cantor measure) [16,35].
Theorem 1.4 gives the formulas of dimH � of � with parameters� = �k, k�2.

The formula for � = �2 is already known, which was obtained by several authors
[2,36,43,58] through different approaches. In all cases their methods depend on the
specific algebraic properties of�2 and cannot be used with other parameters. We men-
tion that Lalley [29] has expressed dimH � as the top Lyapunov exponent of a sequence
of random matrices for any Pisot reciprocal parameter. Nevertheless, the involved Lya-
punov exponent is hard to calculate, and Lalley only gave the numerical estimation
in the case� = �2. Our result for� = �k (k�3) verifies a claim of Alexander and
Zagier [2] that “it seems likely that” one can give a formula for dimH � when� = �k
(k�3).
For a given measure�, the rangeR(�) of local dimensions of� is important in

considering the local structure and multifractal property of�. However, it is very hard
to determineR(�) when � is a self-similar measure with overlaps. Hu first determined
R(�) in the case� = �2 by using a combinatorial method [24]. He also claimed (see
Theorems A, B of [24]) without proof that for� = �k (k�3),

R(�) =
[
− log�2
k log�

, − log 2

log�

]
.

However, the above formula is not true. In Theorem1.5 we present the correct one.
Theorem 1.6 verifies the validity of the multifractal formalism of� parameters� =

�k, k�2. We say the multifractal formalism of� holds at� ∈ R(�) if

dimH K(�) = inf
t∈R
{�t − �(t)}.

Before our result some partial multifractal results for� with � = �2 were obtained.
In [32] Lau and Ngai showed that (1.4) is true forq > 0, and Porzio [52], based on
the previous work [37] joint with Ledrappier, extended the valid range toq > −1

2. We
remark that Theorem 1.6 has not yet set up the validity of the multifractal formalism
of � with � = �2 for those� ∈ (�′(q0+), �′(q0−). However this has been done recently
by Feng and Olivier [18] by viewing� as a weak Gibbs measure associated to some
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dynamical system. For all the Pisot reciprocals besides simple Pisot reciprocals, by
extending an idea in this paper and using a result on the product of non-negative
matrices in[15], Feng [14] recently proved that�(q) is always differentiable forq > 0
and (1.4) holds forq > 0.
An essential property of simple Pisot reciprocals is the following: For a given simple

Pisot reciprocal�, let 
 be the class of characteristic vectors and� : 
 → 
∗ the
transition map. There is a� ∈ 
 with v(�) = 1 such that for any
 ∈ 
, there exists
n ∈ N (depending on
) so that� is a letter in the word�n(
) (see Section 2 for all
involved definitions and notations). This property guarantees that the products of the
corresponding transition matrices can be decomposed as the products of scalars. We
did find another number (the positive root of 1− x + 2x2− x3) that also satisfies this
property. However this property is not generic, for example it is not satisfied by the
positive root ofx3+ x2− 1.
This paper is organized as follows. In Section 2, we introduce some basic notations

such as net intervals, characteristic vectors and multiplicity vectors; and we give a
symbolic expression for each net interval; furthermore we construct a finite family of
non-negative matrices (maybe non-square) such that the distribution of� on each net
interval can be expressed as the products of these matrices. In Section 3, we re-express
some fractal indices (local dimension andLq -spectrum of�, the Hausdorff dimension
of �(f ), the box dimension of the level sets off) as the limits in terms of product of

these matrices. In Section 4, we focus on the golden ratio case� =
√
5−1
2 and give a

series of explicit formulas of fractal indices. We prove in this case� has locally infinite
similarity and satisfies the multifractal formalism. In Section 5, we consider the simple

Pisot reciprocals other than
√
5−1
2 .

2. Net intervals, characteristic vectors, multiplicity vectors

In this section we study the properties of so-callednet interval, characteristic vector
andmultiplicity vector. In Section 2.1, we give the definitions of all these notations.
In Section 2.2, by using an algebraic property of Pisot numbers, we show that the
collection of all possible characteristic vectors, denoted as
, is finite. Using the self-
similar structure of net intervals, we set up a one-to-one correspondence betweennth
net intervals andadmissible wordsof length n+ 1 over
. We call the corresponding
admissible word of annth net interval thesymbolic expressionof this net interval.
Furthermore, we construct sometransition matricesover 
, such that the multiplicity
vector of anth net interval can be expressed as a product of these matrices. In Section
2.3, we obtain the distribution of� on each net interval.

2.1. The definitions

Let � be a Pisot reciprocal in the interval(1/2,1). Define S0x = �x and S1x =
�x+(1−�). For our convenience, we writeA = {0,1} and letAn denote the collection
of all indicesj1 · · · jn of lengthn overA. For � = j1 · · · jn ∈ An, write for simplicity
S� = Sj1 ◦ · · · ◦ Sjn . We define two families of setsP 0

n , P
1
n (n�0) in the following
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way: P 0
0 = {0}, P 1

0 = {1}, and P 0
n = {S�(0) : � ∈ An}, P 1

n = {S�(1) : � ∈ An}
for n�1. DefinePn = P 0

n

⋃
P 1
n for n�0. Let h1, . . . , hsn be all the elements ofPn

ranked in the increasing order. Define

Fn =
{[hj , hj+1] : 1�j < sn

}
.

Each element inFn is called anth net interval.
The following facts about net intervals can be checked easily: (i)

⋃
�∈Fn � = [0,1]

for any n�0; (ii) For any�1,�2 ∈ Fn with �1 �= �2, int(�1) ∩ int(�2) = ∅; (iii) For
any � ∈ Fn (n�1), there is a unique element̂� ∈ Fn−1 such that�̂ ⊃ �.
For each net interval� = [a, b] ∈ Fn, we define a positive number&n(�), a vector

Vn(�) and a positive integerrn(�) as follows: If� = [0,1] ∈ F0, we define&0(�) = 1,
V0(�) = 0 andr0(�) = 1; Otherwise forn�1, we define&n(�) andVn(�) directly by

&n(�) = �−n(b − a)

and
Vn(�) = (a1, . . . , ak), (2.1)

wherea1, . . . , ak (ranked in the increasing order) are the elements of the following set{
�−n (a − S�(0)) : � ∈ An, a − �n < S�(0)�a

}
.

Let vn(�) denote the dimension ofVn(�), i.e., vn(�) = k. We definern(�) in the
following way: let �̂ be the unique one interval inFn−1 containing�, and�1, . . . ,�m
(ranked in the increasing order) be all the elements inFn satisfying�j ⊂ �̂, &n(�j ) =
&n(�), Vn(�j ) = Vn(�) for 1�j�m. Definern(�) to be the integerr so that�r = �.
For convenience, we call the triple

Cn(�) := (&n(�);Vn(�); rn(�))

the nth characteristic vectorof �, or simply characteristic vectorof �. The vector
Cn(�) contains the information about the length and neighborhood relation of�.
DefineWn(�) = (b1, . . . , bk), where

bj = #{� ∈ An, �−n(a − S�(0)) = aj }, j = 1, . . . , k.

Here a1, . . . , ak are defined as in (2.1). We callWn(�) the nth multiplicity vector of
�. DenoteNn(�) = ‖Wn(�)‖ := ∑k

i=1 bi . We call Nn(�) the nth multiplicity of �.
One may check directly that

Nn(�) = # {� ∈ An : S� ((0,1)) ∩ � �= ∅}
= # {� ∈ An : S� ([0,1]) ⊃ �} . (2.2)
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2.2. Symbolic expressions of net intervals, and products of matrices for multiplicity
vectors

We first consider the symbolic expressions of net intervals. Denote by
 the collection
of all possible distinct characteristic vectors, i.e.,


 = {Cn(�) : n�0, � ∈ Fn}. (2.3)

For � ∈ 
, we write for simplicity

&(�) = &n(�), V (�) = Vn(�), v(�) = vn(�), r(�) = rn(�) (2.4)

if � = Cn(�) for some� ∈ Fn.
The following lemma is our starting point.

Lemma 2.1. The set
 is finite.

To prove the above result, we need the following result, which is based on an
algebraic property of Pisot numbers.

Lemma 2.2. There is a finite set B such that for any integern > 0 and any�,�′ ∈ An,

either �−n|S�(0)− S�′(0)| > 1 or �−n|S�(0)− S�′(0)| ∈ B. (2.5)

Proof. Set �1 = �−1 and let �2, . . . , �d denote the algebraic conjugates of�1. Since
�1 is a Pisot number, we have|�i | < 1 for 2� i�d. It is proved in [22, Lemma
1.51] that forP(x) a polynomial with integer coefficients and heightL = max{|ai | :
ai is a coefficient ofP(x)}, if P(�1) �= 0, then

|P(�1)|�L−d+1
d∏
i=2
||�i | − 1| . (2.6)

Denote byB the set

{
�−n|S�(0)− S�′(0)|�1 : n ∈ N, �,�′ ∈ An

}
.

We claim thatB is a finite set of cardinality less than

1− �
�

· 2d−1∏d
i=2 ||�i | − 1| + 1.
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Assume the claim is not true, then by the Pigeon Hole principle there existt1, t2 ∈ B
with

0< |t1− t2| < �
1− �

·
∏d
i=2 ||�i | − 1|

2d−1
.

However one may check thatt1 − t2 = �
1−�P(�1) for some polynomialP(x) with

height not more than 2, which leads to a contradiction with (2.6). �

Proof of Lemma 2.1. It suffices to prove the finiteness of{&n(�) : n�0, � ∈ Fn},
{Vn(�) : n�0, � ∈ Fn} and {rn(�) : n�0, � ∈ Fn}, respectively. For simplicity, we
only prove that of{Vn(�) : n�0, � ∈ Fn}. To prove this, take any� = [a, b] ∈ Fn
and e ∈ Vn(�). Then by the definition of�n, there exists� ∈ An such thatS�(0) ∈
(a − �n, a] and e = �−n(a − S�(0)). It follows that e ∈ B whenevera ∈ P 0

n , and
1− e ∈ B whenevera ∈ Pn(1), whereB is defined as in Lemma 2.2. By the finiteness
of B, the set{Vn(�) : n�0, � ∈ Fn} is finite. �
Now we present an elementary but important fact about characteristic vectors.

Lemma 2.3. For a given � ∈ Fn(n�0), let �1, . . . ,�k (ranked in the increasing
order) be all the elements inFn+1 which are subintervals of�. Then the number k,
the characteristic vectorsCn+1(�i ) (1� i�k) are determined by&n(�) andVn(�) (thus
they are determined byCn(�)).

Proof. Let � = [a, b] ∈ Fn. Write Vn(�) = (a1, . . . , avn(�)).
To determine the subintervals of� which belong toFn+1, we first determine the

points in[a, b]∩Pn+1. Assume� = j1 . . . jn+1 ∈ An+1 such thatS�(0) or S�(1) belongs
to the interval(a, b). ThenS� ((0,1))∩(a, b) �= ∅, and consequentlyS�̂(0,1)∩(a, b) �=
∅, where �̂ = j1 . . . jn ∈ An. HenceS�̂(0) ∈ {a − �nai : 1� i�vn(�)} and therefore

S�(0) ∈
{
a − �nai + �n� : 1� i�vn(�), � = 0 or 1

}
and

S�(1) ∈
{
a − �nai + �n�+ �n+1 : 1� i�vn(�), � = 0 or 1

}
.

This implies that

(a, b) ∩ Pn+1 = (a, a + �n&n(�))

∩
{
a − �nai + �n�+ �n+1� : 1� i�vn(�), �, � ∈ {0,1}

}
.
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Denote bya+�ncj (1�j�u) all the elements of[a, b]∩Pn+1 ranked in the increasing
order. The above equality shows that the pointscj (1�j�u) are determined completely
by &n(�) andVn(�) (independent ofa and n).
Let �1, . . . ,�k (ranked in the increasing order) be all the elements inFn+1 which are

subintervals of�. Then�i (1� i�k) are exact the intervals in the following collection:

{[a + �ncj , a + �ncj+1] : 1�j�u− 1
}
,

which is determined by&n(�) andVn(�).
Recall that

{S�(0) : � ∈ An+1, S� ((0,1)) ∩ (a, b) �= ∅}
⊂ {a − �nai + �n� : 1� i�vn(�), � = 0 or 1}.

By the definition of characteristic vector and the analysis in the preceding para-
graph, we know that the vectorsCn+1(�i ) (1� i�k) are determined by&n(�) and
Vn(�). �

Remark 2.4. In fact, the proof of Lemma2.3 provides an algorithm to determine the
elements of
. To see this, forn�0 let 
n denote the collection of all possiblekth
characteristic vectors fork�n. It is clear that
0 = {(0;1;0)}. Using the method in
the proof of Lemma 2.3, one can determine
1,
2, . . . recursively. Furthermore,

equals
n if 
n+1 = 
n.

In the following, we would like to use a finite sequence of characteristic vectors to
identify a net interval. For each� ∈ Fn (n�0), we list the intervals

�0,�1, . . . ,�n

such that�n = �, and�j (j = 0, . . . , n − 1) is the unique element inFj such that
�j ⊃ �j+1. The sequence

C0(�0), C1(�1), . . . , Cn(�n)

is called thesymbolic expression of�.
For a given� ∈ Fn(n�0), let �1, . . . ,�k (ranked in the increasing order) be all the

elements inFn+1 which are subintervals of�. The introduction of the third term in a
characteristic vector guarantees thatCn+1(�j ) (1�j�k) are distinct with each other.
By induction, we have

Lemma 2.5. For any�1,�2 ∈ Fn(n�1) with �1 �= �2, the symbolic expression of�1
is different from that of�2.
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Now we are going to define a natural map� from 
 to 
∗, where
∗ denotes the
collection of all finite words over
. For any � ∈ 
, pick n and � ∈ Fn such that
� = Cn(�). Let �1, . . . ,�k (ranked in the increasing order) be all the elements inFn+1
which are subintervals of�. Write �j = Cn+1(�j ) for 1�j�k. By Lemma2.3, the
word �1 . . . �k depend only on� (independent of the choice ofn and�). We define� by

�(�) = �1 . . . �k. (2.7)

The above� is called thetransition map.
Define a 0–1 matrixA on 
× 
 in the following way:

A�,
 =
{
1 if 
 is a letter of�(�),
0 otherwise.

(2.8)

A word 
1 . . .
n ∈ 
∗ is called anadmissible wordif A
j ,
j+1 = 1 for 1�j < n.

Remark 2.6. The proof of Lemma2.3 also provides an algorithm to obtain� andA.

For our convenience, denote by�0 = C0([0,1]). Combining Lemma 2.5 and the
above definitions, we have

Lemma 2.7. Any � ∈ Fn(n�0) can be identified(via its symbolic expression) as an
admissible word in
∗ of lengthn+ 1 starting from the letter�0.

In the remaining part of this subsection, we show that the multiplicity vector of any
net interval can be expressed as a product of some transition matrices, according to
the symbolic expression of this net interval.

Lemma 2.8. For any� ∈ Fn (n�1), denote bŷ� the unique element inFn−1 so that
�̂ ⊃ �. There is avn−1(�̂)× vn(�) matrix T (Cn−1(�̂), Cn(�)) which depends only on
Cn−1(�̂) and Cn(�) such that

Wn(�) = Wn−1(�̂)T (Cn−1(�̂), Cn(�)).

Proof. Assume � = [a, b] and �̂ = [c, d]. Write Vn(�) = (a1, . . . , avn(�)) and
Vn−1(�̂) = (c1, . . . , cvn−1(�̂)). Also write Wn(�) = (q1, . . . , qvn(�)) and Wn−1(�̂) =
(u1, . . . , uvn−1(�̂)). By the definition ofWn(�) andWn−1(�̂), we have

qi = #
{
� ∈ An : �−n(a − S�(0)) = ai

}
, i = 1, . . . , vn(�)

and

uj = #
{
�′ ∈ An−1 : �−n(c − S�′(0)) = cj

}
, j = 1, . . . , vn−1(�̂).
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Observe that if� = j1 . . . jn ∈ An satisfies�−n(a−S�(0)) ∈ Vn(�), i.e., 0�a−S�(0) <
�−n, then 0�c − S�∗(0)��n−1 for �∗ = j1 . . . jn−1, and thus�−n+1(c − S�∗(0)) ∈
Vn−1(�̂). Now define avn−1(�̂)× vn(�) matrix T = (tj,i ) by

tj,i =
{
1, ∃ � ∈ {0,1} so thatc − �n−1cj + �n−1� = a − �nai,
0 otherwise.

That is, tj,i = 1 if and only if there is� = i1 . . . in ∈ An such thatS�(0) = a − �nai
and Si1...in−1(0) = c − �n−1cj . By the last observation, we have

#
{
� ∈ An : �−n(a − S�(0)) = ai

}
=

vn−1(�̂)∑
j=1

tj,i · #
{
�′ ∈ An−1 : �−n(c − S�′(0)) = cj

}
.

That is,qi =∑vn−1(�̂)
j=1 tj,iuj . Therefore we haveWn(�) = Wn−1(�̂)T . This completes

the proof. �
The above result, together with the factW0([0,1]) = 1, yields immediately

Theorem 2.9. There exists a family of non-negative matrices{T (�,
) : �,
 ∈ 
, A�,

= 1}, such that for any� ∈ Fn,

Wn(�) = T (�0, �1) . . . T (�n−1, �n),

where�0 . . . �n is the symbolic expression of�.

For convenience we call the aboveT (�,
)’s the transition matrices.

2.3. Distributions of� on net intervals

In this subsection we analyze the distributions of� on net intervals. We start from
the following lemma.

Lemma 2.10. Let � be an nth net interval. Write&n(�) = &, Vn(�) = (a1, . . . , av)
andWn(�) = (b1, . . . , bv). Then
(i) there exists a constantC > 0 such thatC�n� |�|��n, where |�| denotes the
length of�;

(ii) �(�) = 2−n
v∑
i=1

bi�([ai, ai + &]);
(iii) there exists a constantD > 0 such that

D2−nNn(�)��(�)�2−nNn(�).
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Proof. Let � = [a, b]. By the definition of the characteristic vector, we have|�| =
�n&. Since
 is finite, we have&�C for some constantC > 0. Note that� is always
contained inS�([0,1]) for some� ∈ An, it follows that |�|��n. This completes the
proof of (i).
To see (ii), we iterate (1.2) n times and have

�(�) = 2−n
∑

�∈An

�
(
S−1� (�)

)
.

Since� is a non-atomic measure supported on[0,1], we have

�(�) = 2−n
∑

�∈An: S�(0,1)∩� �=∅
�
(
S−1� (�)

)

= 2−n
v∑
i=1

∑
�∈An: �−n(a−S�(0))=ai

�
(
S−1� (�)

)

= 2−n
v∑
i=1

bi�([ai, ai + &]).

Part (iii) follows from (ii) and the finiteness of
. �
The following lemma is used to compare the distributions of� on two adjacentnth

net intervals.

Lemma 2.11. Suppose that�1 and�2 are two adjacent nth net intervals(n�1). Then

1

n+ 1
Nn(�1)�Nn(�2)�(n+ 1)Nn(�1). (2.9)

Proof. We prove the statement by induction.
One may verify (2.9) directly for the casen = 1, since there are exact three first net

intervals with multiplicities 1, 2, and 1, respectively. Now assume that (2.9) holds for
n�k. In the following we will show that (2.9) holds forn = k + 1.
Suppose that�1,�2 are two adjacent(k + 1)th net intervals, where�1 lies on the

left hand side of�2. We will consider the following two possible cases separately:

(a) �1,�2 are contained in the samekth net intervalU.
(b) �1,�2 are contained in two adjacentkth net intervalsU1, U2, respectively.

In case (a), by (2.2) we have

Nk(U)�Nk+1(�j )�2Nk(U), j = 1,2
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and thus
1
2 Nk+1(�1)�Nk+1(�2)�2Nk+1(�1).

Therefore (2.9) holds for�1,�2 whenevern = k + 1.
In case (b), let us define

D1 = {� ∈ Ak : S�([0,1]) ⊃ U1, and they share the same right end-point},
D2 = {� ∈ Ak\D1 : S�([0,1]) ⊃ U1},
D3 = {� ∈ Ak : S�([0,1]) ⊃ U2, and they share the same left end-point},
D4 = {� ∈ Ak\D3 : S�([0,1]) ⊃ U2}.

From (2.2) and the definition of net interval, we have

D2 = D4,

Nk(U1) = #D1+ #D2, Nk(U2) = #D3+ #D4,

#D1+ #D2�Nk+1(�1)�#D1+ 2#D2,

#D3+ #A4�Nk+1(�2)�#D3+ 2#D4.

According to the above relations and the assumption

1

k + 1
Nk(U1)�Nk(U2)�(k + 1)Nk(U1),

we have
1

k + 2
Nk+1(�1)�Nk+1(�2)�(k + 2)Nk+1(�1).

This completes the proof.�
As a corollary of the above two lemmas, we have

Corollary 2.12. There exists a positive constant C such that

1
nC

�(�1)��(�2)�nC�(�1), (2.10)

for any n�1 and any two adjacent nth net intervals�1, �2. Furthermore for a fixed
point x ∈ [0,1],

lim
n→∞

log�([x − �n, x + �n])
log�(In(x))

= 1,

whereIn(x) is an nth net interval containing x.
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3. Fractal indices in terms of products of matrices

In this chapter we study some fractal indices about the Bernoulli convolution� and
the limited Rademacher functionf associated with a given Pisot reciprocal�. We will
re-express those indices as the limits in terms of products of transition matrices.

3.1. Local dimensions of�

In this subsection we are concerned with the local dimensions of�. Recall that for
any x ∈ [0,1], the local upper and lower dimensions of� at x, denoted asd(�, x) and
d(�, x), respectively, are defined by

d(�, x) = lim sup
r→0

log�([x − r, x + r])
logr

, d(�, x) = lim inf
r→0

log�([x − r, x + r])
logr

.

A simple argument shows that

d(�, x) = lim sup
n→∞

log�([x − �n, x + �n])
n log�

,

d(�, x) = lim inf
n→∞

log�([x − �n, x + �n])
n log�

.

This combining Corollary2.12 yields

Lemma 3.1. For any x ∈ [0,1], we have

d(�, x) = lim sup
n→∞

log�(In(x))
n log�

, d(�, x) = lim inf
n→∞

log�(In(x))
n log�

,

whereIn(x) denotes an nth net interval containing x.

Let 
 and A be constructed as in Section 2. Denote by
N
A the collection of all

admissible words of infinite length, i.e.,


N
A =

{
y = (yi)∞i=1 : yi ∈ 
, Ayi ,yi+1 = 1

}
.

We use [�0] to denote the sub-collection of all admissible words of infinite length
starting from�0, the characteristic vector of the 0th net interval[0,1]. This is

[�0] = {y = (yi) ∈ 
N
A : y1 = �0}.
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There is a natural projection� from [�0] to the interval[0,1] defined by

�(y) =
∞⋂
n=1

�(y1 · · · yn+1), y = (yi), (3.1)

where�(y1 · · · yn+1) denote thenth net interval with the symbolic expressiony1 · · ·
yn+1.
Let {T (�,
), �,
 ∈ 
, A�,
 = 1} be the class of transition matrices given as in

Theorem2.9. Write for shortlyT�1�2···�n+1 := T (�1, �2) · · · T (�n, �n+1). Then we have

Theorem 3.2. For any y = (yi) ∈ [�0], we have

d(�,�(y)) = − log 2

log�
+ lim sup

n→∞
log‖Ty1···yn+1‖

n log�
,

the lower dimensiond(�,�(y)) can be obtained by taking the lower limit.

Proof. Let x = �(y). Then �(y1 · · · yn+1) is an nth net interval containingx. By
Theorem2.9,

Nn(�(y1 · · · yn+1)) = ‖Wn(�(y1 · · · yn+1))‖ = ‖Ty1···yn+1‖.

Hence by Lemma2.10(iii), �(�(y1 · · · yn+1)) ≈ 2−n‖Ty1···yn+1‖. Using Lemma 3.1, we
obtain the desired result.�

3.2. Lq -spectrum of�

In this subsection, we express theLq -spectrum of� as a limit in terms of products
of transition matrices.
Recall for anyq ∈ R, theLq -spectrum�(q) of � is defined as

�(q) = lim inf
�→0

log sup
∑
i �([xi − �, xi + �])q

log�
,

where the superium is taken over all the families of disjoint intervals[xi − �, xi + �]
with xi ∈ [0,1]. We will show that

Theorem 3.3. For any q ∈ R, we have

�(q) = −q log 2
log�

+ lim inf
n→∞

log
∑ ‖T�1···�n+1‖q
n log�

, (3.2)
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where the summation is taken over all admissible words�1 · · · �n+1 of length n + 1
with �1 = �0.

Proof. Suppose� is annth net interval with the symbolic expression�1 · · · �n+1. Then
by Theorem2.9 and Lemma 2.10,�(�) ≈ 2−n‖T�1···�n+1‖. It follows that the right
hand side of (3.2) equals

R(q) := lim inf
n→∞

log
∑

�∈Fn �(�)q

n log�
.

In the following we show�(q) = R(q).
Let C be the constant in Lemma2.10. ThenC�n� |�|��n for any � ∈ Fn. Now

fix n and take� = 1
2C�n. For each� ∈ Fn, construct an interval�′ with �′ ⊂ � such

that |�′| = 2� and �(�′)� 1
4 C�(�). The intervals�′’s are disjoint and satisfy

∑
�∈Fn

�(�)q�
{
(14 c)

−q ∑
�∈Fn �(�′)q if q�0,∑

�∈Fn �(�′)q otherwise,

which implies�(q)�R(q).
Now let us show the reverse inequality. For any small� > 0, let n be the integer

satisfying�n < ���n−1. Suppose that[xi − �, xi + �]i is a family of disjoint intervals
with xi ∈ [0,1]. Then for eachi, [xi − �, xi + �] intersects at most2

C� + 1 manynth
net intervals. It follows that whenq�0,

∑
i

�([xi − �, xi + �])q �
∑
i

 ∑
�∈Fn, �∩[xi−�,xi+�]�=∅

�(�)

q

� (2C−1�−1+ 1)q
∑
i

∑
�∈Fn, �∩[xi−�,xi+�]�=∅

�(�)q

� 2(2C−1�−1+ 1)q
∑

�∈Fn
�(�)q, (3.3)

where the last inequality uses the fact that eachnth net interval intersects at most two
distinct intervals[xi − �, xi + �]. Note that for eachi, the interval [xi − �, xi + �]
contains at least onemth net intervals. This implies

∑
i

�([xi − �, xi + �])q�
∑

�∈Fn
�(�)q, ∀ q < 0. (3.4)

The inequality�(q)�R(q) follows from (3.3) and (3.4). �
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3.3. The Hausdorff dimension of the graph of f

Let �(f ) denote the graph of the limited Rademacher functionf. In [53, p. 184],
Przytycki and Urba´nski gave a formula of the Hausdorff dimension of�(f ), which is
based on the McMullen’s formula on the Hausdorff dimension of a class of self-affine
sets [42,51]. Forn ∈ N, let an,1, . . . , an,sn (ranked in the increasing order) be all the
distinct points in{S�(0) : � ∈ An}. For j = 1, . . . , sn, denote by

dn,j = #{� ∈ An : S�(0) = an,j }.

The formula given by Przytycki and Urba´nski is just

dimH �(f ) = lim
n→∞

log
∑sn
j=1(dn,j )− log�/ log 2

−n log�
. (3.5)

Based on the above formula, we have

Theorem 3.4. The Hausdorff dimension of the graph of f satisfies

dimH �(f ) = lim
n→∞

log
∑ ‖T�1···�n+1‖− log�/ log 2

−n log�
, (3.6)

where the summation is taken over all admissible words�1 · · · �n+1 of length n + 1
with �1 = �0.

Proof. Denoteu = − log�/ log 2. Then 0< u < 1. Set

m = sup{vn(�) : � ∈ Fn, n ∈ N},

where vn(�) is the dimension of the multiplicity vectorWn(�). By the finiteness of

, we have 0< m <∞.
Now fix n. Take� = [c, d] ∈ Fn. Write Wn(�) = (b1, . . . , bvn(�). Then we have

1

m

vn(�)∑
i=1

bui �‖Wn(�)‖u�
vn(�)∑
i=1

bui . (3.7)

By the definition of multiplicity vector, the set{bi : 1� i�vn(�)} is equal to

⋃
j : an,j∈(c−�n,c]

{dn,j }.
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Therefore we have

1

m

∑
j : an,j∈(c−�n,c]

dun,j�‖Wn(�)‖u�
∑

j : an,j∈(c−�n,c]
dun,j . (3.8)

Observe that for each 1�j < sn, there is at least one and at mostC−1 many distinct
� = [c, d] ∈ Fn satisfying 0�c− an,j < �n, whereC is the constant in Lemma2.10.
Taking the summation over� ∈ Fn in (3.8), we have

1

m

sn∑
j=1

dun,j�
∑

�∈Fn
‖Wn(�)‖u�C−1

sn∑
j=1

dun,j .

This combining (3.5) and Theorem 2.9 yields the desired result.�

3.4. The box dimension of the level sets of f

Recall that the level set off at t, denoted asLt , is defined by

Lt = {x ∈ [0,1] : f (x) = t}. (3.9)

Let the projection� : [�0] → [0,1] be defined as in (3.1). In this subsection we prove

Theorem 3.5. For any y = (yi)∞i=1 ∈ [�0], we have

dimB L�(y) = lim sup
n→∞

log‖Ty1...yn+1‖
n log 2

,

dimB L�(y) = lim inf
n→∞

log‖Ty1...yn+1‖
n log 2

.

wheredimB,dimB denote the upper and lower box dimension.

As a corollary of Theorems3.5 and 3.2, we have

Corollary 3.6. For any t ∈ [0,1], we have

dimB Lt = 1+ log�
log 2

· d(�, t), dimB Lt = 1+ log�
log 2

· d(�, t).

To prove Theorem3.5, we first give a lemma.
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Lemma 3.7. For � = a1 · · · an∈An, let I� denote the nth2-adic interval
[∑n

i=1 ai2−i ,∑n
i=1 ai2−i + 2−n

)
. Then the image ofI� under f is the interval

J� :=
[
(1− �)

n∑
i=1

ai�i−1, (1− �)
n∑
i=1

ai�i−1+ �n
)
.

Proof. Recall that the Rademacher functionR is defined onR with period 1, taking
values 0 and 1 on[0,1/2) and [1/2,1), respectively. Ifx ∈ I�, it can be checked
directly that

R(2i−1x) = ai, i = 1, . . . , n.

Therefore

f (x) = (1− �)
∞∑
i=1

R(2i−1x)�i−1

= (1− �)
n∑
i=1

ai�i−1+ (1− �)
∞∑

j=n+1
R(2j−1x)�j−1.

Hencef (x) ∈ J�.
In the following we show that for anyt ∈ J�, there existsx ∈ I� such thatf (x) =

t . To prove this, setz = t
1−� −

∑n
i=1 ai�i−1. It is clear z ∈

[
0, �n

1−�

)
and t =

(1− �)
(∑n

i=1 ai�i−1+ z
)
. Let us consider the following�−1-expansion

z =
∞∑

i=n+1
ai�i−1, (3.10)

where the 0–1 coefficientsai (i�n+ 1) are defined by induction as follows:

an+1 =
{
1 if z��n,
0 otherwise,

and if an+1, . . . , an+k are defined well, then

an+k+1 =
{
1 if z�(∑n+k

i=n+1 ai�i−1)+ �n+k,
0 otherwise.

The sequence{ai}i�n+1 constructed as above satisfies the following property: for any
m ∈ N, there isk > m such thatak = 0. Assume this is not true, i.e., there isk0 such
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that ak = 1 for all k > k0. Sincez < �n/(1− �), ai �= 1 for somei�n + 1. Hence
we can assumeak0 = 0. That means

z <

k0−1∑
i=n+1

�i−1+ �k0−1.

However,

z =
k0−1∑
i=n+1

�i−1+
∞∑

j=k0+1
�j−1

=
k0−1∑
i=n+1

�i−1+ �k0

1− �

>

k0−1∑
i=n+1

�i−1+ �k0−1,

which leads to a contradiction. Now definex =∑∞
i=1 ai2−i . Since{ai}i�n+1 satisfies

the above property, we have

R(2i−1x) = ai, i = 1,2, . . . .

Thereforet = f (x). �

Proof of Theorem 3.5.For y = (yi)∞i=1, let t = �(y). Set

N(n, t) = #
{
� = a1 . . . an ∈ An : ∃x ∈ Ia1...an such thatf (x) = t} ,

whereIa1...an =
[∑n

i=1 ai2−i ,
∑n
i=1 ai2−i + 2−n

)
. By the definition of box dimension,

we have

dimB Lt = lim sup
n→∞

logN(n, t)

−n log 2 , dimB Lt = lim inf
n→∞

logN(n, t)

−n log 2 .

By Lemma3.7, we have

N(n, t) = # {� ∈ An : t ∈ S�([0,1))} .

In the following we show that if� is an n-net interval containingt, then

1

n+ 1
N(n, t)�‖Wn(�)‖�(n+ 1)N(n, t). (3.11)
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Table 2
Elements in


� ∈ 
 Labelled as

(1;0;1) 1
(�;0;1) 2
(1− �; (0,�);1) 3
(�;1− �;1) 4
(�; (0,1− �);1) 5
(2�− 1;1− �;1) 6
(1− �; (0,�);2) 7

In fact if t = 1, we may check directly thatN(n, t) = ‖Wn(�)‖ = 1 and thus (3.11)
holds. Now we assumet ∈ [0,1). In this case, there is a uniquenth net interval
�1 = [c, d] such thatt ∈ [c, d); furthermore for� ∈ An,

t ∈ S�([0,1))⇐⇒ 0�c − S�(0) < �n.

This implies that

‖Wn(�1)‖ = N(n, t).

However if �2 is anothernth interval containingt, then�2 and �1 are adjacent and
thus by Lemma2.11,

1

n+ 1
‖Wn(�1)‖�‖Wn(�2)‖�(n+ 1)‖Wn(�1)‖.

Hence (3.11) holds fort ∈ [0,1). By Theorem 2.9, we obtain the desired result.�

4. The golden ratio case

In this section we consider the concrete case� =
√
5−1
2 , the reciprocal of the golden

ratio.

4.1. The symbolic expressions and transition matrices

Let 
 be the collection of all possible characteristic vectors. By a direct check (see
Remark 2.4) there are exact 7 elements in
. We list them out Table 2.
For our convenience, each element in
 is labelled by a digit from 1 to 7 as in the

above table. Especially, the characteristic vector(1;0;1) of the 0th net interval[0,1],
is labelled as 1. Without confusion, we write directly


 = {1,2, . . . ,7}. (4.1)
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The transition map�, defined as in (2.7), is given by

�(1) = 234,

�(2) = 23,

�(3) = 5,

�(4) = 34,

�(5) = 367,

�(6) = 3,

�(7) = 5

and the 0–1 matrixA, which is induced by�, is the following:

A =



0 1 1 1 0 0 0
0 1 1 0 0 0 0
0 0 0 0 1 0 0
0 0 1 1 0 0 0
0 0 1 0 0 1 1
0 0 1 0 0 0 0
0 0 0 0 1 0 0


. (4.2)

The transition matricesT (i, j) constructed as in the proof of Lemma2.8, are listed
as follows:

T (1,2) = 1, T (1,3) = [1,1], T (1,4) = 1,
T (2,2) = 1, T (2,3) = [1,1],
T (3,5) =

[
1 0
0 1

]
,

T (4,3) = [1,1], T (4,4) = 1,

T (5,3) =
[
1 1
0 1

]
, T (5,6) =

[
1
1

]
, T (5,7) =

[
1 0
1 1

]
,

T (6,3) = [1,1],
T (7,5) =

[
1 0
0 1

]
.

(4.3)

For anyn�1, denote by
A,n the collection of all admissible words of lengthn, i.e.,


A,n =
{
i1 . . . in ∈ 
∗ : Aij ,ij+1 = 1, 1�j < n

}
,

where
∗ denotes the collection of all finite words over
. By Lemma2.7 and Theorem
2.9, eachnth net interval� corresponds to a unique wordi1 . . . in+1 in 
A,n+1 with
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i1 = 1; and the multiplicity vectorWn(�) satisfies

Wn(�) = Ti1...in+1 := T (i1, i2)T (i2, i3) . . . T (in, in+1).

To analyze the structure of
A,n, as well as the above products of matrices, we
present the following simple but important fact:

Lemma 4.1. (i) 
̂ := {3,5,6,7} is an essential subclass of
. That is, {
 ∈ 
 :
A�,
 = 1} ⊂ 
̂ for any � ∈ 
̂; and for any�,
 ∈ 
̂, there exist�1, . . . , �n ∈ 
̂ such
that �1 = �, �n = 
 and A�i ,�i+1 = 1 for 1� i�n− 1.
(ii) The characteristic vector� = (2�− 1;1− �;1), represented by the symbol6 in


̂, satisfiesv(�) = 1.

For our convenience, denote byFn the collection of all admissible words of length
n starting from 3, i.e.,

Fn = {i1 . . . in ∈ 
A,n : i1 = 3}.

By Lemma4.1, Fn ⊂ 
̂A,n.
In the following we give the structure of the words in
A,n, as well as the corre-

sponding products of matrices.

Lemma 4.2. For n�1, supposew = i1 . . . in+1 ∈ 
A,n+1 with i1 = 1. Then all the
possible forms of�, as well as‖T�‖, are the following:
(1) � = 12. . .2︸ ︷︷ ︸

n

, and ‖T�‖ = 1.

(2) � = 14. . .4︸ ︷︷ ︸
n

, and ‖T�‖ = 1.

(3) � = 12. . .2︸ ︷︷ ︸
k

�, 0�k < n, � ∈ Fn−k, and ‖T�‖ = ‖T1�‖.
(4) � = 14. . .4︸ ︷︷ ︸

k

�, 0�k < n, � ∈ Fn−k, and ‖T�‖ = ‖T1�‖.

Now set�0 = 3, �1 = 7 and

M0 =
[
1 1
0 1

]
, M1 =

[
1 0
1 1

]
, M∅ =

[
1 0
0 1

]
. (4.4)

Write for simplicity Mi1...in = Mi1 . . .Min . Then we have

Lemma 4.3. Let � ∈ Fn for somen�1. Then all the possible forms of�, as well as
the value of‖T1�‖, are the following:
(1) n = 1, � = 3. ‖T1�‖ = 2.
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(2) n = 2, � = 35. ‖T1�‖ = 2.
(3) n = 2k, k�2, � = 35 �i15 . . . �ik−15 with i1 . . . ik−1 ∈ Ak−1.

‖T1�‖ = ‖Mi1...ik−1‖.
(4) n = 2k, k�2, � = 35 �i15 . . . �i&5 6�, where0�&�k − 2, i1 . . . i& ∈ A&,

� ∈ Fn−3−2&. ‖T1�‖ = ‖Mi1...i&‖ × ‖T1�‖.
(5) n = 2k + 1, k�1, � = 35 �i15 . . . �ik−15 �ik , where i1 . . . ik ∈ Ak.

‖T1�‖ = ‖Mi1...ik‖.
(6) n = 2k + 1, k�1, � = 35 �i15 . . . �ik−15 6, where i1 . . . ik−1 ∈ Ak−1.

‖T1�‖ = ‖Mi1...ik−1‖.
(7) n = 2k + 1, k�2, � = 35 �i15 . . . �i&5 6�, where0�&�k − 2, i1 . . . i& ∈ A&,

� ∈ Fn−3−2&. ‖T1�‖ = ‖Mi1...i&‖ × ‖T1�‖.

4.2. The exponential sum of the products of transition matrices

In this subsection we determine the exact value of

E(q) := lim
n→∞

(∑
‖Ti1...in+1‖q

)1/n
for any q ∈ R, where the summation is taken over all admissible wordsi1 . . . in+1 of
length n + 1 with i1 = 1. By Theorems3.3 and 3.4, this can be applied to calculate
the Lq -spectrum of� and the Hausdorff dimension of the graph off. We also check
the differentiability ofE(q), which is necessary in the multifractal analysis of�.
Let M0,M1 be defined as in (4.4). Forq ∈ R, defineu0(q) = 2q and

un(q) =
∑
J∈An

‖MJ ‖q, n = 1,2, . . . . (4.5)

The main result of this section is the following

Theorem 4.4. (i) For any q ∈ R, we haveE(q) = 1/x(q), where

x(q) = sup{x�0 :
∞∑
n=0

un(q)x
2n+3�1}. (4.6)

(ii) There exists a uniqueq0 < −2 such that
∞∑
n=0

un(q0) = 1.Wheneverq > q0, x(q)

is the positive root of
∞∑
n=0

un(q)x
2n+3 = 1, and it is an infinitely differentiable function

of q on (q0,+∞). Wheneverq�q0, x(q) = 1. Moreoverx(q) is not differentiable at
q = q0.

We first consider part (i) of Theorem4.4. Forq ∈ R, define

Rn(q) =
∑
�∈Fn

‖T1�‖q, n�1,
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where Fn denotes the collection all admissible words of lengthn starting from the
symbol 3. Set

R(q) = lim
n→∞ (Rn(q))

1/n .

By Lemma4.3, we have directly

Lemma 4.5. R1(q) = 2q = u0(q), R2(q) = 2q = u0(q), R3(q) = u0(q) + u1(q), and
for k�2,

R2k(q) =
(
k−2∑
i=0

ui(q)R2k−2i−3(q)
)
+ uk−1(q),

R2k+1(q) =
(
k−2∑
i=0

ui(q)R2k+1−2i−3(q)
)
+ uk−1(q)+ uk(q).

Now we prove

Lemma 4.6. R(q) = 1/x(q) for any q ∈ R.

Proof. We divide the proof into two steps.

Step1: lim supn→∞ (Rn(q))1/n �1/x(q). Since
∞∑
i=0

ui(q)x(q)
3+2i�1, it follows that

for any k�1,

x(q)−2k �
k∑
i=0

ui(q)x(q)
3+2i−2k

�
k−2∑
i=0

ui(q)x(q)
3+2i−2k + uk−1(q)x(q) (4.7)

and similarly

x(q)−2k−1�
k−2∑
i=0

ui(q)x(q)
3+2i−2k−1+ uk−1(q)+ uk(q)x(q)2. (4.8)

Choose a positive numberC > max{1, x(q)−2, x(q)−1} such that

Ri(q) < Cx(q)
−i , i = 1,2,3.

We claim that

Ri(q) < Cx(q)
−i (4.9)



D.-J. Feng /Advances in Mathematics 195 (2005) 24–101 53

for all i ∈ N. We show this claim by induction. Suppose (4.9) holds for anyi < 2k.
By Lemma 4.5, (4.7) and (4.8), we have

R2k(q) =
(
k−2∑
i=0

ui(q)R2k−2i−3(q)
)
+ uk−1(q)

� C

(
k−2∑
i=0

ui(q)x(q)
2i+3−2k

)
+ uk−1(q)

� C

(
k−2∑
i=0

ui(q)x(q)
2i+3−2k

)
+ Cuk−1(q)x(q)

� Cx(q)−2k

and

R2k+1(q) =
(
k−2∑
i=0

ui(q)R2k+1−2i−3(q)
)
+ uk−1(q)+ uk(q)

� C

(
k−2∑
i=0

ui(q)x(q)
2i+3−2k−1

)
+ uk−1(q)+ uk(q)

� C

(
k−2∑
i=0

ui(q)x(q)
2i+3−2k−1

)
+ Cuk−1(q)+ Cuk(q)x(q)2

� Cx(q)−2k−1.

Therefore (4.9) holds fori = 2k and i = 2k + 1. This finishes the proof of the claim.
Hence the main statement in this step follows.
Step2: lim supn→∞ (Rn(q))1/n �1/x(q). To see this, take anyy ∈ (0, x(q)−1).

Sincey−1 > x(q), there exists a positive integerN such that

1<
N−2∑
i=0

ui,qy
−3−2i .

Thus for k�N , we have

y2k�
k−2∑
i=0

ui(q)y
2k−3−2i , y2k+1�

k−2∑
i=0

ui(q)y
2k+1−3−2i . (4.10)

Choose a positive numberD < min{1, x(q)−1, x(q)−2} such that

Ri(q) > Dy
i, i = 1, . . . ,2N − 1.
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Then by an argument similar to that in Step 1, we have

Ri(q) > Dy
i, ∀i ∈ N,

which implies lim
m→∞

(
Rn,q

)1/n �y. Since y ∈ (0,1/x(q)) is arbitrary, we obtain the

desired inequality in this step.�

Proof of (i) of Theorem 4.4.By Lemma4.6, it suffices to proveE(q) = R(q). Set
En(q) =

∑
‖Ti1...in+1‖q,

where the summation is taken over all admissible wordsi1 . . . in+1 of lengthn+1 with
i1 = 1. ThenE(q) = limn→∞ (En(q))1/n. By Lemma4.2, we have

En(q) = Rn(q)+ 2
n−1∑
i=1

Rn−1(q)+ 2. (4.11)

On the other hand, observe thatun(q) > ‖Mn
0‖q = (n+2)q . It follows that the series∑∞

n=0 un(q)x2n+3 diverges forx > 1. Therefore 0�x(q)�1. This combining Lemma
4.6 and (4.11) yields the desired result.�
In the following, we prove part (ii) of Theorem 4.4. We first present two propositions,

for which the proofs will be given later.

Proposition 4.7. There is a non-empty open intervalU ⊂ (−∞,0) such that

1<
∞∑
n=0

un(q) <∞,
∞∑
n=0

nun(q) <∞ (4.12)

for eachq ∈ U .

Proposition 4.8. Suppose that q is a real number satisfying
∑
n�0 un(q) = +∞. Then

for any integer L there exists0< y < 1 such that

L <

∞∑
n=0

un(q)y
n < +∞.

Proof of part (ii) of Theorem 4.4. We divide the proof into four steps.
Step1: There exists a real numberq0 < 0 such that

∑∞
n=0 un(q0) = 1. To see this,

we denote

F(q) =
∞∑
n=0

un(q).
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By Proposition4.7, there existst < 0 such that 1< F(t) < ∞. Since un(q) is
an increasing positive function ofq for each n, the series

∑∞
n=1 un(q) converges

uniformly on (−∞, t). ThusF(q) is a continuous function on(−∞, t). The existence
of q0 follows from the Intermediate Value Theorem and the fact limq→−∞ F(q) = 0,
which we will prove below.
For anyn ∈ N and q < q ′ < t , we have

un(q)

un(q ′)
� max
J∈An

‖MJ ‖q−q ′�2q−q ′ ,

which impliesF(q)/F (q ′)�2q−q ′ and thus limq→−∞ F(q) = 0.
Step2: Wheneverq�q0, x(q) = 1; and wheneverq > q0, x(q) is the positive root

of
∑∞
n=0 un(q)x2n+3 = 1. First assumeq�q0. In this case

∑∞
n=0 un,q�1, and thus

x(q)�1. Sinceun(q) > ‖Mn
0‖q = (n + 1)q , we have

∑
n�0 un(q)x

2n+3 = ∞ for
x > 1, which impliesx(q)�1. Thereforex(q) = 1.
Now assumeq > q0. Under this assumption we have either

1<
∞∑
n=0

un(q) <∞

or
∞∑
n=0

un(q) = ∞.

In the first case,
∑
n�0 un(q)x

2n+3 is a continuous function ofx on (0,1) and thus
there existsy ∈ (0,1) satisfying∑∞

n=0 un(q)y2n+3 = 1, hencex(q) = y. In the second
case, by Proposition4.8, there exists 0< t1 < t2 < 1 such that

1<
∑
n�0

un(q)t
2n
1 < +∞, t−31 <

∑
n�0

un(q)t
2n
2 <∞.

Thus 1<
∑∞
n=0 un(q)t

2n+3
2 < ∞. Therefore

∑∞
n=0 un(q)x2n+3 is a continuous func-

tion of x on (0, t2). Combining it with (4.6), we see thatx(q) satisfies
∑∞
n=0 un(q)

x(q)2n+3 = 1.
Step3: x(q) is infinitely differentiable on(q0,+∞). Moreover

x′(q) = −
∑∞
n=0

(∑
J∈An

‖MJ ‖q log‖MJ ‖
)
x(q)2n+3∑∞

n=0 un(q)(2n+ 3)x(q)2n+2
, ∀ q > q0. (4.13)

To see it, define

F(q, x) =
∞∑
n=0

un(q)x
2n+3.
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Fix q1 ∈ (q0,+∞). As we have shown in step 2, there exists a real numbery > x(q1)

such that 1< F(q1, y) < +∞. Take a real numberz so thatx(q1) < z < y, and take
q2 such that

q2 > q1, 4q2−q1 < y

z
.

Note that for any integern�0,

un(q2)

un(q1)
� max
J∈An

‖MJ ‖q2−q1�4n(q2−q1).

Therefore for anyq < q2 and 0< x < z, we have

F(q, x) �
∞∑
n=0

un(q2)z
2n+3

�
∞∑
n=0

un(q1)y
2n+34n(q2−q1)

(
z

y

)2n+3
< +∞,

∞∑
n=0

dun(q)

dq
x2n+3 =

∑
n�0

( ∑
J∈An

‖MJ ‖q log‖MJ ‖
)
x2n+3�

∞∑
n=0

un(q)(log 4
n)x2n+3

�
∞∑
n=0

un(q1)y
2n+3(log 4n)4n(q2−q1)

(
z

y

)2n+3
< +∞

and

∞∑
n=0

un(q)(3+ 2n)x2n+2 <
∞∑
n=0

un(q2)(3+ 2n)z2n+2

� 1

z

∞∑
n=0

un(q1)y
2n+3(3+ 2n)4n(q2−q1)

(
z

y

)2n+3
< +∞.

The above three inequalities imply thatF(q, x) is well defined and differentiable on
(−∞, q2)× (0, z). Furthermore using similar discussions we can show thatF(q, x) is
infinitely differentiable on(−∞, q2)× (0, z). Thus by the Implicit Function Theorem,
x(q) is infinitely differentiable on a neighborhood ofq1. Sinceq1 is taken arbitrarily
on (q0,+∞), x(q) is infinitely differentiable on(q0,+∞). Formula (4.13) follows by
a direct calculation.
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Step4: x(q) is not differentiable atq = q0. Note thatx′(q0−) = 0, we need to
prove x′(q0+) < 0. To see it, notice that forq > q0,

∞∑
n=0

un(q)x(q)
2n+3−

∞∑
n=0

un(q0)x(q0)
2n+3 = 0.

Thus we have

x(q)− x(q0)
q − q0 = −

∞∑
n=0

un(q)− un(q0)
q − q0 · x(q0)2n+3∑

n�0 un(q)
(
x(q)2n+2+ x(q)2n+1x(q0)+ · · · + x(q0)2n+2

)

= −

∞∑
n=0

un(q)− un(q0)
q − q0∑∞

n=0 un(q)
(
x(q)2n+2+ x(q)2n+1+ · · · + x(q)+ 1

) .
Since

∑∞
n=0 un(q)(2n+ 3) < +∞ on a neighborhood ofq0 (by Proposition4.7), we

obtain the following formula by takingq ↓ q0:

x′(q0+) = −
∑
n�0(

∑
J∈An

‖MJ ‖q0 log‖MJ ‖)∑∞
n=0 un(q0) · (2n+ 3)

< 0. �

In what follows, we give the proofs of Propositions4.7 and 4.8. First we give
some simple lemmas. For any positive integerk and positiven1, . . . , nk, we define for
simplicity

a(n1, . . . , nk) = (1,0)
k∏
i=0

(
M�i

)ni (1,0)T
and

b(n1, . . . , nk) =
∥∥∥∥∥
k∏
i=0

(
M�i

)ni∥∥∥∥∥ ,
where �i = 0 if i is odd, and�i = 1 if i is even.

Lemma 4.9. Let b(n1, . . . , nk) be defined as above, then

(i) b(n1, . . . , nk)�(1+ n1) . . . (1+ nk−1)(2+ nk).
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(ii) b(n1, . . . , n2k)�(1+ n1n2) . . . (1+ n2k−1n2k) and
b(n1, . . . , n2k+1)�(1+ n1n2) . . . (1+ n2k−1n2k)(1+ n2k+1).

Proof. Part (i) follows directly from the inequality

(1,1)Mn
� �(n+ 1, n+ 1), � = 0 or 1.

To see part (ii), it suffices to notice that

(M
n1
0 M

n2
1 ) . . . (M

n2k−1
0 M

n2k
1 ) =

(
1+ n1n2 n1
n2 1

)
. . .

(
1+ n2k−1n2k n2k−1
n2k 1

)
�

(
(1+ n1n2) . . . (1+ n2k−1n2k) ∗

∗ ∗
)

and

M
n1
0 M

n2
1 . . .M

n2k
1 M

n2k+1
0 �

(
(1+ n1n2) . . . (1+ n2k−1n2k) ∗

∗ ∗
)(

1 n2k+1
0 1

)
. �

Since any element in{0,1}n can be uniquely written as�n11 . . . �
nk
k , or (1−�1)n1 . . . (1−

�k)nk with n1+ · · · + nk = n, we obtain the following lemma immediately.

Lemma 4.10. For eachq ∈ R, we have

∞∑
n=0

un(q) = 2q + 2
∑
n�1

b(n)q + 2
∑
l�2

∑
n1,...,nl�1

b(n1, . . . , nl)
q

= 2q + 2
∑
n�1

b(n)q + 2
∑
l�1

∑
n1,...,n2l�1

b(n1, . . . , n2l )
q

+2
∑
l�1

∑
n1,...,n2l+1�1

b(n1, . . . , n2l+1)q

and

∞∑
n=0

nun(q) = 2
∑
n�1

nb(n)q + 2
∑
l�1

∑
n1,...,n2l�1

(n1+ · · · + n2l )b(n1, . . . , n2l )q

+2
∑
l�1

(n1+ · · · + n2l+1)
∑

n1,...,n2l+1�1

b(n1, . . . , n2l+1)q .
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Proof of Proposition 4.7.By Lemmas4.9 and 4.10, we have for anyq < 0,

∞∑
n=0

un(q)

�2q + 2
∑
n�1

(2+ n)q + 2
∑
l�2

∑
n1,...,nl�1

(1+ n1)q . . . (1+ nl−1)q(2+ nl)q

= 2q + 2

∑
n�1

(2+ n)q

1+∑

l�1

∑
n�1

(1+ n)q
l

 (4.14)

and

∞∑
n=0

nun(q)

�2
∑
n�1

n(2+ n)q + 2
∑
k�1

∑
n1,...,n2k �1

(n1 + · · · + n2k)(1+ n1n2)q . . . (1+ n2k−1n2k)q

+ 2
∑
k�1

∑
n1,...,n2k+1�1

(n1 + · · · + n2k+1)(1+ n1n2)q . . . (1+ n2k−1n2k)qnq2k+1

= 2
∑
n�1

n(2+ n)q + 2
∑
k�1

∑
n1,...,n2k �1

2kn1(1+ n1n2)q . . . (1+ n2k−1n2k)q

+2
∑
k�1

∑
n1,...,n2k+1�1

2kn1(1+ n1n2)q . . . (1+ n2k−1n2k)qnq2k+1

+2
∑
k�1

∑
n1,...,n2k+1�1

n2k+1(1+ n1n2)q . . . (1+ n2k−1n2k)qnq2k+1

= 2
∑
n�1

n(2+ n)q +
( ∑
n1,n2�1

n1(1+ n1n2)q
)( ∑

k�1

4k

( ∑
m1,m2�1

(1+m1m2)q
)k−1)

+
( ∑
n1,n2�1

n1(1+ n1n2)q
)( ∑

n�1

nq
)( ∑

k�1

4k

( ∑
m1,m2�1

(1+m1m2)q
)k−1)

+2

( ∑
n�1

nq+1
)( ∑

k�1

( ∑
m1,m2�1

(1+m1m2)q
)k)

.

(4.15)

By (4.14) and (4.15), to prove the proposition, it suffices to construct an intervalU
such that for eachq ∈ U , one has∑
n�1

nq+1 <∞,
∑

n1,n2�1

n1(1+ n1n2)q <∞,
∑

m1,m2�1

(1+m1m2)
q < 1 (4.16)



60 D.-J. Feng /Advances in Mathematics 195 (2005) 24–101

and

2q + 2
∑
n�1

(2+ n)q + 2 ·
(
1+

∑
n�1

nq
)
·
(∑
l�1

( ∑
n1,n2�1

(1+ n1n2)q
)l)

> 1. (4.17)

To do this, denote by� the Riemann–Zeta function, that is

�(x) =
∑
n�1

n−x, x > 1.

Let �0 be the positive root ofx2+ 2x − 9
8 = 0, i.e., �0 ≈ 0.45774. We set

U =
(
− �−1(1611),−�−1(1+ �0)

)
≈ (−2.2599,−2.2543).

Now supposeq ∈ U . Sinceq < −2, we can see
∑
n�1 n

q+1 < ∞ and
∑
n1,n2�1

n1(1+ n1n2)q <∞. Moreover,∑
n1,n2�1

(1+ n1n2)q = 2
∑
n�1

(1+ n)q − 2q +
∑

n1,n2�2

(1+ n1n2)q

< 2
∑
n�1

(1+ n)q − 2q +
∑
n�2

nq

2

= 2
(
�(−q)− 1

)− 2q + (
�(−q)− 1

)2
< 2�0 − 1

8
+ �20 = 1

and

2q + 2

∑
n�1

(2+ n)q

1+∑

l�1

∑
n�1

(1+ n)q
l


= 2q + 2 · �(−q)− 1− 2q

2− �(−q) = 1+ (3− 2q)�(−q)− 4

2− �(−q)

> 1+ (3− 2−2)�(−q)− 4

2− �(−q) > 1+ (3− 2−2) · 1611 − 4

2− �(−q) = 1.

Thus (4.16) and (4.17) hold whenq ∈ U , which completes the proof of the
proposition. �
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Proof of Proposition 4.8. First we assumeq > 0. In this case,un(q) > 1 for n�0,
and therefore

∑
n�0 un,q = +∞. Moreover, the sequence{un,q}n is sub-multiplicative,

this is um+n(q)�um(q)un(q). Thus

lim
n→+∞ un(q)

1/n = inf
n�1

un(q)
1/n.

Denote byrq the value of above limit, then 1�rq < ∞ and un(q)�rnq for n�1.

Hence lim
x→r−1q

∞∑
n=0

un(q)x
n = +∞, which implies the desired result since the series∑∞

n=0 un(q)yn converges on(0, r−1q ).
In the remaining part we assumeq < 0 and

∑∞
n=0 un(q) = ∞. Note that for any

integersn1, n2, . . . , nl andm1,m2, . . . , ms , we have

a(n1, n2, . . . , nl)�b(n1, n2, . . . , nl)

and

a(n1, n2, . . . , nl)a(m1,m2, . . . , ms)�a(n1, n2, . . . , nl, m1,m2, . . . , ms), (4.18)

wherem1,m2, . . . , ms are positive integers. It is not hard to show that

a(n1, n2, . . . , nl)� 1
4 b(n1, n2, . . . , nl), if l is even. (4.19)

(To see this, denote (
x1 x2
x3 x4

)
= (Mn1

0 M
n2
1 ) . . . (M

nl−1
0 M

nl
1 )

for even integerl. Then by induction onl, one can verify that among thexi ’s, x1 is
the greatest andx4 the smallest.)
For any integerL�1, take an integery(L)�L ·4−q and definep = 2y(L). Now for

any 0< x < 1,

∞∑
n=0

un(q)x
n

= 2q + 2 ·
2p−1∑
j=1

∑
n1,...,nj �1

b(n1, n2, . . . , nj )
q · xn1+···+nj

+2 ·
2p−1∑
j=0

+∞∑
k=1

∑
n1,...,n2kp+j �1

b(n1, . . . , n2kp+j )q · xn1+···+n2kp+j



62 D.-J. Feng /Advances in Mathematics 195 (2005) 24–101

�2q + 2 ·
2p−1∑
j=1

∑
n1,...,nj �1

b(n1, n2, . . . , nj )
q · xn1+···+nj

+2 ·
2p−1∑
j=0

+∞∑
k=1

∑
n1,...,n2kp+j �1

a(n1, . . . , n2kp+j )q · xn1+···+n2kp+j

�2q + 2 ·
2p−1∑
j=1

∑
n1,...,nj �1

b(n1, n2, . . . , nj )
q · xn1+···+nj

+2 ·
2p−1∑
j=0

+∞∑
k=1

∑
n1,...,n2kp+j �1

a(n1, . . . , n2kp)
q

× a(n2kp+1, . . . , n2kp+j )qxn1+···+n2kp+j

�2q + 2 ·
2p−1∑
j=1

∑
n1,...,nj �1

b(n1, n2, . . . , nj )
q · xn1+···+nj

+2

2p−1∑
j=0

∑
n1,...,nj �1

a(n1, . . . , nj )
q xn1+···+nj



×
 +∞∑
k=1

 ∑
n1,...,n2p�1

a(n1, . . . , n2p)
q xn1+···+n2p

k
 . (4.20)

Sincea(n1, n2, . . . , nl), b(n1, n2, . . . , nl) are polynomials aboutn1, n2, . . . , nl and 0<
x < 1, it follows

∑
n1,...,nl�1

a(n1, . . . , nl)
q xn1+···+nl <∞,

∑
n1,...,nl�1

b(n1, . . . , nl)
q xn1+···+nl <∞

for any positive integerl. Therefore by (4.20), we have

∑
n�0

un(q)x
n <∞

if
∑
n1,...,n2p�1 a(n1, . . . , n2p)

q xn1+···+n2p < 1.
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Since
∑∞
n=0 un(q) = ∞, by (4.20) we have

∑
n1,...,n2p�1

a(n1, . . . , n2p)
q�1 or= +∞.

Hence there exists 0< z�1 such that∑
n1,...,n2p�1

a(n1, . . . , n2p)
qzn1+···+n2p = 1.

Moreover,

∞∑
n=0

un(q)x
n <∞, ∀x ∈ (0, z). (4.21)

For l = 2,22, . . . , p, by (4.18) we obtain

∑
n1,...,n2p�1

a(n1, . . . , n2p)
qzn1+···+n2p �

 ∑
n1,...,nl�1

a(n1, . . . , nl)
qzn1+···+nl

2p/l

,

which implies ∑
n1,...,nl�1

a(n1, . . . , nl)
qzn1+···+nl �1.

Thus by (4.19), we have∑
n1,...,nl�1

b(n1, . . . , nl)
qzn1+···+nl �4q, l = 2,22, . . . , p.

Therefore

limx→z−
∑∞

n=0 un(q)x
n

�2q + 2 ·
∑2p−1

j=1
∑

n1,...,nj �1
b(n1, . . . , nj )

q · zn1+···+nj

�2q + 2 · y(L) · 4q
�2q + 2L,

which finishes the proof. �
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4.3. The Hausdorff dimension of the graph of f

Combining Theorems3.4 and 4.4, we have directly

Theorem 4.11.The Hausdorff dimension of the graph of f satisfies

dimH �(f ) = logx(− log�/ log 2)
log�

,

wherex(− log�/ log 2) is the positive root of

∞∑
n=0

∑
J∈An

‖MJ ‖− log�/ log 2 x2n+3 = 1.

4.4. TheLq -spectrum of�

Combining Theorems3.3 and 4.4, we have directly

Theorem 4.12.For any q ∈ R, we have

�(q) = −q log 2
log�

− logx(q)

log�
,

wherex(q) satisfies(4.6). There exists a uniqueq0 < −2 such that
∞∑
n=0

∑
J∈An

‖MJ ‖q0 = 1.

Wheneverq > q0, x(q) is the positive root of

∞∑
n=0

∑
J∈An

‖MJ ‖qx2n+3 = 1,

and it is an infinitely differentiable function of q on(q0,+∞). Wheneverq�q0,
x(q) = 1. Moreoverx(q) is not differentiable atq = q0.

4.5. The Hausdorff dimension of�

The Hausdorff dimension of� has been considered by many authors (e.g. see
[1,2,36,43,58]). A computable theoretical formula of dimH � was first given by Ledrap-
pier and Porzio [36]. In this section, we state another theoretical formula obtained by
Ngai [43] based on the following result.
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Theorem 4.13(Ngai [43] ). Suppose that� is a Borel probability measure onR with
bounded support, and furthermore itsLq -spectrum�(�, q) is differentiable atq = 1.
Then the local dimensiond(�, x) is equal to�′(�,1) for � almost all x ∈ R, and the
Hausdorff dimension of� is also equal to�′(�,1).

The above result has also been obtained (in a generalized form) by Heurteaux[23]
and Olsen [45]. As we have showed in Theorem 4.12, theLq -spectrum�(q) of � is
differentiable atq = 1. A direct calculation of�′(1) through the formula of�(q) given
in Theorem 4.12 yields

Theorem 4.14(Ngai [43] ). The Hausdorff dimension of� satisfies

dimH � = �′(1) = − log 2

log�
+

∞∑
n=0

2−2n−3
∑
J∈An

‖MJ ‖ log‖MJ ‖

9 log�
.

In Remark4.26, we will provide another approach to the above formula.

4.6. Local dimensions of�

In this section we present results on the range and almost all value of the local
dimensions of�. Recall thatd(�, x), d(�, x) and d(�, x) are used to denote the upper
local dimension, the lower local dimension and local dimension, respectively, andR(�)
the range ofd(�, x), i.e.,

R(�) := {y ∈ R : d(�, x) = y for somex ∈ [0,1]}.

The main results of this section are the following:

Theorem 4.15.R(�) =
[
− log 2

log�
− 1

2
, − log 2

log�

]
.

Theorem 4.16.For � almost all x ∈ [0,1],

d(�, x) = �′(1) = − log 2

log�
+

∞∑
n=0

2−2n−3
∑
J∈An

‖MJ ‖ log‖MJ ‖

9 log�
.

Theorem 4.17.For L almost all x ∈ [0,1],

d(�, x) = − log 2

log�
+ 7

√
5− 15

10 log�
·
∞∑
n=0

(
3−√5

2

)n+1 ∑
J∈An

log‖MJ ‖.
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Theorem4.15 was first stated and proved by Hu [24]. In his proof, Hu used a
complicated combinatoric method. In this section we will give a new proof, which is
also valid to deal with the parameter�k (k = 3,4, . . .).
Theorem 4.16 is just a combination of Ngai’s two results—Theorems 4.13 and 4.14.

Theorem 4.17 is new, and it can be used to determine the almost all value of the box
dimensions of level sets off. In what follows, we will prove Theorems 4.15 and 4.17,
respectively.

Proof of Theorem 4.15.Denote


N
A =

{
(in)

∞
n=1 : in ∈ 
, Ain,in+1 = 1 for n�1

}
,

where
, A are defined as in (4.1) and (4.2). By Theorem 3.2, to determineR(�) it
suffices to determine the range, denoted asRT , of the limits

lim
n→∞

log‖Ti1...in+1‖
n

,

where (in)∞n=1 ∈ 
N
A with i1 = 1. Denote�0 = 3 and �1 = 7. Define a sequence of

sets(Bi )∞i=0 of admissible words by

B0 = {356},

Bn =
{
35�i15 . . . �in56 : i1 . . . in ∈ An

}
, n = 1,2, . . .

and define

B =
∞⋃
n=0

Bn. (4.22)

It can be checked directly that 1�1 . . .�n is an admissible word starting from 1 for
any �1, . . . ,�n ∈ B. Moreover, by Lemma4.3,

‖T1�1...�n‖ =
n∏
i=1
‖T1�i‖.

Therefore we have

RT ⊃ [x0, y0]

with

x0 = inf
�∈B

log‖T1�‖
|�| , y0 = sup

�∈B
log‖T1�‖
|�| ,
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where |�| denotes the length of�. At the end of the proof, we will show that

x0 = 0, y0 = − log�
2
. (4.23)

Now we use (4.23) to prove

RT =
[
0, − log�

2

]
. (4.24)

Observe that for eachn�1 and � = i1 . . . in+1 ∈ 
A,n+1 with i1 = 1, there exists a
word �′ of length at most 3 such that��′ can be written as

1u&w1 . . .�m

with &,m�0, u = 2 or 4,�1, . . . ,�m ∈ B, and thus

T��′ =
m∏
i=1
‖T1�i‖.

Hence we have

0� log‖Ti1...in+1‖
n+ 3

�
∑m
i=1 log‖T1�i‖∑m

i=1 |�i |
� − log�

2
.

Letting n→∞, we obtainRT ⊂
[
0,− log�

2

]
. Thus (4.24) holds and

R(�) =
[
− log 2

log�
− 1

2
, − log 2

log�

]
.

Now we turn to prove (4.23). Note that for eachn�1,

(35)n6 ∈ B, ‖T1(35)n6‖ = ‖Mn
0‖ = n+ 2.

It follows that

inf
n

log‖T1(35)n6‖
2n+ 1

= 0,

and thusx0 = 0.
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On the other hand, for� = 35�i15 . . . �in56∈ Bn, we have

‖T1�‖ = ‖Mi1 . . .Min‖. (4.25)

Observe that

‖Mi1...in‖ < ‖M1−i1 . . .M1−ij−1M1−ijMij+1Mij+2 . . .Min‖

if ij = ij+1 for some 1�j < n. It follows that the maximum value of the right hand
side of (4.25) is attained wheni1, . . . , in take 0,1 alternatively. By a direct calculation,
this maximum value is equal to

2+ �+ (−1)n�2n+4
1+ �2

�−n.

Therefore

y0 = sup
n�0

log
(
2+�+(−1)n�2n+4

1+�2 �−n
)

2n+ 3

= sup
n�0

log
(
2+�+(−1)n�2n+4

1+�2

)
+ log�−n

3+ 2n
.

Since

1

3
log

(
2+ �+ (−1)n�2n+4

1+ �2

)
� 1

3
log

(
2+ �+ �4

1+ �2

)
= 1

3
log 2

and

1

2n
log�−n = − log�

2
,

we have

y0 = max

{
log 2

3
, − log�

2

}
= − log�

2
,

which finishes the proof. �

Proof of Theorem 4.17.For anyi ∈ 
 = {1,2, . . . ,7}, denote by&i the relative length
(i.e., the first term) of the characteristic vector labelled byi. By Table 4.1, we have

&1 = 1, &2 = &4 = &5 = �, &3 = &7 = 1− �, &6 = 2�− 1.
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Denote
̂ = {3,5,6,7}. As we presented in Lemma4.1, 
̂ is an essential subclass of


. Let
(

̂

N
A ,�

)
be a subshift space of finite type defined by


̂
N
A =

{
(in)

∞
n=1 : in ∈ 
̂, Ain,in+1 = 1 for n�1

}
,

and �
(
(in)

∞
n=1

) = (in+1)∞i=1. Especially define

[3] =
{
(in)

∞
n=1 ∈ 
̂

N
A : i1 = 3

}
.

For any� ∈ [3], it is clear 1� ∈ 
N
A . Let � be the projection defined as in (3.1). We

define a map̂� : [3] → �(13) by

�̂(�) = �(1�), ∀� ∈ [3],

where�(13) denotes the 1st net interval with the symbolic expression 13. By a direct
check,�(13) = [1− �,�].
Now we would like to define a Markov measure� on 
̂

N
A , such that the measure

� ◦ �̂−1 on �(13) only differs from the Lebesgue measureL on �(13) by a constant
factor. Construct a matrixP = (Pi,j )i,j∈
̂ by

Pi,j =
{

�&j
&i

if Ai,j = 1,
0 otherwise.

One can check directly thatP is a primitive probability matrix. Letp = (pi)i∈
̂ be the
probability vector satisfyingpP = p. A direct calculation shows that

p3 = �
2�+1 = 5−√5

10 , p5 = 1
2�+1 =

√
5
5 ,

p6 = 2�−1
2�+1 = 5−2√5

5 , p7 = 1−�
2�+1 = 3

√
5−5
10 .

Define� to be the(p, P ) Markov measure on̂

N
A , i.e.,� is the unique Borel probability

measure on̂

N
A satisfying

�([i1i2 . . . in]) = pi1Pi1,i2 . . . Pin−1,in

for any n�2 and any cylinder set

[i1i2 . . . in] :=
{
(xj )

∞
j=1 ∈ 
̂

N
A : xj = ij for 1�j�n

}
.
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The measure� is �-invariant and ergodic. The reader is referred to[59] for more
information about Markov measures. Now we claim that

� ◦ �̂−1(A) = p3

�&3
L(A), ∀ Borel setA ⊂ �(13). (4.26)

To prove the claim, note that for anyi1 . . . in ∈ 
̂A,n with i1 = 3, the net interval
�(1i1 . . . in) has the length�n&in , while

�([i1 . . . in]) = pi1Pi1,i2 . . . Pin−1,in = pi1
n−1∏
j=1

�&ij+1
&ij

= pi1�
n−1 &in

&i1
= p3

�&3
�n&in . (4.27)

It follows that (4.26) holds forA = �(1i1 . . . in). A standard argument using the
monotone class theorem yields (4.26). Now we prove

lim
n→∞

log‖T1x1...xn‖
n

=
∑
�∈B

�([6�]) log‖T1�‖ (4.28)

= 7
√
5− 15

10

∞∑
n=0

(
3−√5

2

)n+1 ∑
J∈An

log‖MJ ‖ (4.29)

for � almost all (xj )∞j=1 ∈ [3], whereB is defined as in (4.22). To show this, define

E :=
{
(xi)

∞
i=1 ∈ 
̂

N
A : ∃ mj ↑ ∞, such that lim

j→∞
mj

mj+1
= 1, xmj = 6

}
.

Since� is ergodic and�([6]) > 0, by the Birkhoff ergodic theorem we have�(E) = 1.
Now for each� = (xi)

∞
i=1 ∈ E ∩ [3], let mj = mj(�) (j ∈ N) be the increasing

sequence of all integersk satisfyingxk = 6. Write � as

� = �1 ◦ �2 ◦ . . . ◦ �n ◦ . . . ,

where�1 = (xi)
m1
i=1, �2 = (xi)

m2
i=m1+1, . . . ,�n = (xi)

mn
i=mn−1+1, . . . . It is clear that

�i ∈ B for i�1. Furthermore,

‖T1�1...�n‖ =
n∏
i=1
‖T1�i‖

= ‖T1�1‖ ×
 ∏

�∈B, |�|�mn
‖T1�‖

∑mn−|�|
j=0 �[6�](�j�)

 , (4.30)
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where�[6�] denotes the characteristic function on[6�]. Hence

log‖T1�1...�n‖
mn

= log‖T1�1‖
mn

+
∑

�∈B,|�|�mn

1

mn

mn−|�|∑
j=0

�[6�](�j�) log‖T1�‖. (4.31)

Since� is ergodic, by the Birkhoff ergodic theorem, for each� ∈ B,

lim
n→∞

1

mn

mn−|�|∑
j=0

�[6�](�j�) = �([6�]) (4.32)

for � almost all� ∈ E ∩ [3]. Combining (4.31) and (4.32) we obtain that

lim inf
n→∞

log‖T1�1...�n‖
mn

�
∑
�∈B

�([6�]) log‖T1�‖ (4.33)

for � almost all� ∈ E ∩ [3]. Observe that‖T1�1...�n‖�4mn , thus the right hand side
of (4.33) converges with an upper bound log 4. To state the inequality for upper limits,
we fix l ∈ N. For anyk > l and � = 35�i15 . . . �ik56∈ B, we have

‖T1�‖�‖T5�i15...�il 5‖ · ‖T5�i25...�il+15‖ . . . ‖T5�ik−l+15...�ik5‖.

Denote

Cl =
{
5�i1 . . . �il5 : i1 . . . il ∈ Al

}
By (4.30), we have

log‖T1�1...�n‖
mn

� log‖T1�1‖
mn

+
∑

�∈B,|�|�2l+3

1

mn

mn−|�|∑
j=0

�[6�](�j�) log‖T1�‖

+
∑
�′∈Cl

1

mn

mn−2l∑
j=0

�[�′](�j�) log‖T�′ ‖

whenevermn > 2l + 3. Thus by the Birkhoff ergodic theorem,

lim sup
n→∞

log‖T1�1...�n‖
mn

�
∑

�∈B, |�|�2l+3
�([6�]) log‖T1�‖

+
∑
�′∈Cl

�([�′]) log‖T�′ ‖ (4.34)
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for � almost all� ∈ E ∩ [3]. To estimate the second sum in (4.34), we observe that
for each�′ = 5�i15 . . . �il5,

�([�′]) = p5P5,�i1
P�i1,5

. . . P�il ,5

= p5

p3P3,5P�il ,5
P5,6

· p3P3,5P5,�i1P�i1,5
. . . P5,�il

P�il ,5
P5,6

= p5

p3P3,5P�il ,5
P5,6

�([35�i15 . . . �il56])

� max

{
p5

p3P3,5P3,5P5,6
,

p5

p3P3,5P7,5P5,6

}
× �([35�i15 . . . �il56])

and

log‖T�′ ‖� log‖T135�i15...�il 56‖.

Hence

∑
�′∈Cl

�([�′]) log‖T�′ ‖ � max

{
p5

p3P3,5P3,5P5,6
,

p5

p3p3,5P7,5P5,6

}

×
∑

�∈B,|�|=2l+3
�([�]) log‖T1�‖. (4.35)

Since
∑

�∈B �([6�]) log‖T1�‖ converges and

�([6�]) = p6P6,3

p3
�([�]), ∀ � ∈ B,

the right hand side of (4.35) tends to 0 asl →∞. Thus combining (4.33) and (4.34)
we obtain

lim
n→∞

log‖T1�1...�n‖
mn

=
∑
�∈B

�([6�]) log‖T1�‖

for � almost all� ∈ E ∩ [3]. Thus (4.28) holds from the facts limn→∞ mn+1
mn

= 1 for
� ∈ E ∩ [3] and �(E) = 1. Since for any� = 35�i15 . . . �in56∈ B,

�([6�]) = p6P6,3

p3
�([�])
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= p6P6,3

p3

p3

�&3
�2n+3&6 (by (4.27))

= (2�− 1)�2n+3

2�+ 1

and ‖T1�‖ = ‖Mi1...in‖, we get (4.29).
Combining (4.26) and (4.29), we have forL almost ally ∈ �(13),

lim
n→∞

log‖T1x1...xn‖
n

= 7
√
5− 15

10

∞∑
n=0

(
3−√5

2

)n+1 ∑
J∈An

log‖MJ ‖, (4.36)

where 1x1 . . . xn is the symbolic expression of annth net interval containingy. A
similar argument shows that (4.36) holds forL almost ally ∈ �(1ul3), whereu = 2
or 4, andl ∈ N. One may check that the intervals�(13), �(1ul3) are disjoint and

L(�(13))+
∞∑
l=1

∑
u∈{2,4}

L(�(1ul3)) = 1.

Hence (4.36) holds forL almost all y ∈ [0,1] with 1x1 . . . xn . . . ∈ �−1(y). This
together with Theorem 3.2 proves Theorem 4.17.�

4.7. The box dimension and Hausdorff dimension of the level sets of f

In this section we prove the following theorems:

Theorem 4.18.For L almost all t ∈ [0,1], we have

dimB Lt = 7
√
5− 15

10 log 2

∞∑
n=0

(
3−√5

2

)n+1 ∑
J∈An

log‖MJ ‖,

where the level setLt is defined as in(3.9).

Theorem 4.19.For L almost all t ∈ [0,1], we have

dimH Lt = 7
√
5− 15

10 log 2

∞∑
n=0

(
3−√5

2

)n+1 ∑
J∈An

log‖MJ ‖. (4.37)

Theorem4.18 follows directly from Theorem 4.17 and Corollary 3.6. To prove The-
orem 4.19, we need a dimensional result abouthomogeneous Moran sets.
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Let {nk}k�1 be a sequence of positive integers and{ck}k�1 be a sequence of positive
numbers satisfyingnk�2, 0< ck < 1, n1c1�� and nkck�1 (k�2), where� is some
positive number. Let

D =
⋃
k�0

Dk with D0 = {∅}, Dk = {(i1, . . . , ik); 1� ij�nj , 1�j�k}.

If � = (�1, . . . , �k) ∈ Dk, � = (�1, . . . , �m) ∈ Dm, we define

� ∗ � = (�1, . . . , �k, �1, . . . , �m).

Suppose thatJ is an interval of length�. A collection F = {J� : � ∈ D} of subintervals
of J is said to have ahomogeneous Moran structureif it satisfies
(1) J∅ = J ;
(2) For any k�0 and � ∈ Dk, J�∗1, J�∗2, . . . , J�∗nk+1 are subintervals ofJ� and

J�∗i
⋂
J�∗j = ∅ (i �= j);

(3) For anyk�1 and any � ∈ Dk−1, 1�j�nk, we have

|J�∗j |
|J�| = ck,

where |A| denotes the length ofA.
If F is such a collection,F := ⋂

k�1

⋃
�∈Dk

J� is called ahomogeneous Moran set

determined byF . We refer the readers to[19,21] for more information about homoge-
neous Moran sets. For some applications of homogeneous Moran sets in the dimension
theory of dynamical systems, see [10,11,17,50]. For the purpose of the present paper,
we only need the following simplified version of a result contained in [21], whose
simpler proof was given in [10, Proposition 3].

Proposition 4.20. For the homogeneous Moran set F defined above, we have

dimH F� lim inf
n→∞

logn1n2 . . . nk
− logc1c2 . . . ck+1nk+1

.

Proof of Theorem 4.19.We only prove (4.37) for L almost all t ∈ �(13). A similar
argument can extend it forL almost all t ∈ �(1ul3) with u = 2 or 4, l�1.
The upper bound is easy to see since we have always dimH Lt� dimB Lt . Now let

us consider the lower bound. We use some notations (the map�̂, the measure�, the
cylinder set[3], the setE and the sequencemj = mj(�), etc.) introduced in the proof
of Theorem 4.17. For any� ∈ E ∩ [3], write

� = �1 ◦ �2 ◦ . . .
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with �i ∈ B. We claim that the level setL�̂(�) is a homogeneous Moran set with
respect tonk = ‖T1�k‖ and ck = 2−|�k |. Therefore by Proposition4.20,

dimH L�̂(�) � lim inf
k→∞

log(‖T1�1‖ × · · · × ‖T1�k‖)
log(2|�1|+···+|�k+1| × ‖T1�k+1‖−1)

� lim inf
k→∞

log(‖T1�1‖ × · · · × ‖T1�k‖)
log(2|�1|+···+|�k+1|)

= lim inf
k→∞

log(‖T1�1...�k‖)
mk+1 log 2

= lim inf
k→∞

log(‖T1�1...�k‖)
mk log 2

.

Combining it with (4.33), we obtain the lower bound of dimH L�̂(�) for � almost all
� ∈ E ∩ [3]. By the equivalence of� andL, we get the lower bound of dimH Lt for
L almost all t ∈ �(13).
Now we prove the claim about the homogeneous Moran structure ofL�̂(�). For

k ∈ N, write �(1�1 . . .�mk ) = [ck, dk] and define

Dk :=
{
a1 . . . amk ∈ Amk : �(1�) ∈ Ia1...amk

}
,

whereIa1...amk =
[∑mk

i=1 ai2−i ,
∑mk
i=1 ai2−i + 2mk

)
. By Lemma3.7,

Dk =
{
a1 . . . amk ∈ Amk : Sa1...amk ([0,1)) ⊃ [ck, dk)

}
=

{
a1 . . . amk ∈ Amk : 0�ck − Sa1...amk (0)��mk

}
.

Observe that the characteristic vector of�(1�1 . . .�mk ), represented by the symbol
6, is (2� − 1;1 − �;1). It follows that the pointsSa1...amk (0) are the same for all
a1 . . . amk ∈ Amk . For � = a1 . . . amk ∈ Dk, define

J� =
[
mk∑
i=1

ai2
−i ,

mk∑
i=1

ai2
−i + 2mk

]
.

Then L�(1�) = ⋂∞
k=1

⋃
�∈Dk J� is a Moran set withnk = ‖T1�k‖ and ck = 2−|�k |.

This finishes the proof. �

4.8. The infinite similarity of�

We know that� is a self-similar measure generated by the similitudesS0 and S1
(see (1.2)). However,Si (i = 1,2) have overlaps (i.e., they do not satisfy the open set
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condition). In this section, we show that� is a locally infinitely generated self-similar
measure without overlaps. More precisely, letB be defined as in (4.22), and denote

D =
{
1ul� : u = 2 or 4, l�0, � ∈ B

}
.

It is clear that�� is an admissible word starting from the letter 1 for any� ∈ D and
� ∈ B. Denote byg�,� the unique similitudecx + d with c > 0 so thatg�,�(�(�)) =
�(��), where�(�) denotes the net interval with respect to the admissible word�.
We have the following

Theorem 4.21.� is supported on
⋃

�∈D �(�). For any fixed� ∈ D,

�� =
∑
�∈B

2−|�|‖T1�‖ · �� ◦ g−1�,�, (4.38)

where�� denotes the restriction of� on �(�), that is, ��(A) = �(A∩�(�)) for any
Borel setA ⊂ R. Furthermore,

g�,�(�(�)) = �(��) ⊂ �(�), �(��) ∩ �(��′) = ∅ f or � �= �′. (4.39)

To prove the above theorem, we need the following lemma.

Lemma 4.22. (i) �[1− �,�] = 1
3.

(ii)
∑

�∈B �|�| = 1.
(iii)

∑
�∈B 2−|�|‖T1�‖ = 1.

Proof. By (1.2), we have

�(A) = 1
2 �

(
S−10 (A)

)
+ 1

2 �
(
S−11 (A)

)
for any Borel setA ⊂ R. TakingA to be [0,1− �] and [�,1], respectively, we have

�([0,1− �]) = 1
2 �([0,1− �])+ 1

2 �([1− �,�])

and

�([�,1]) = 1
2 �([1− �,�])+ 1

2 �([�,1]).

These two equalities imply�([0,1− �]) = �([1− �,�]) = �([�,1]) = 1
3. Hence (i)

follows.
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To see (ii), observe that each string inB is of length 3+ 2n (n�0), and for each
n�0 there are exact 2n different strings inB having length 3+ 2n. Therefore

∑
�∈B

�|�| =
∞∑
n=0

2n�3+2n

= �3
∞∑
n=0
(2�2)n = �3

1− 2�2
= 1.

To see (iii), we have

∑
�∈B

2−|�|‖T1�‖ = 2−3 · 2+
∞∑
n=1

∑
i1...in∈An

2−3−2n(1,1)Mi1 . . .Min(1,1)T

= 2−2+
∞∑
n=1

2−3−2n(1,1)(M0 +M1)
n(1,1)T

= 2−2+
∑
n�1

2−3−2n(1,1)
[
2 1
1 2

]n
(1,1)T

= 2−2+
∞∑
n=1

2−3−2n · 2 · 3n

= 2−2+ 2−2
∞∑
n=1

(
3

4

)n
= 1. �

Proof of Theorem 4.21.It is not hard to see that the net intervals�(�) (� ∈ D) are
disjoint. Now we show that�

(⋃
�∈D �(�)

) = 1. For each� ∈ B, by (ii) of Lemmas
2.10 and 4.22 we have

�(�(1ul�)) = 2−|�|−l · ‖T1ul�‖ · �([1− �,�])
= 2−|�|−l · ‖T1�‖ · �([1− �,�])
= 1

3 · 2−|�|−l · ‖T1�‖, ∀u = 2 or 4, l�1.

Therefore

�

(⋃
�∈D

�(�)

)
=

∑
�∈D

�(�(�))
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=
∑
�∈B

1

3
· 2−|�| · ‖T1�‖ + 2

∑
�∈B

∞∑
n=1

1

3
· 2−|�|−n · ‖T1�‖

=
∑
�∈B

2−|�| · ‖T1�‖ = 1.

This is, � is supported on
⋃

�∈D �(�). Similarly, we have

�

 ⋃
�1,...,�n∈B

�(��1 . . . �n)

 = �(�(�)), ∀ n ∈ N, � ∈ D.

For any �, �1, . . . , �n ∈ B, we claim thatg�,�(�(��1 . . . �n)) = �(���1 . . . �n). To
see this, for two given intervals[a, b] and [c, d] with [a, b] ⊃ [c, d] we call the ratio
c−a
b−a the relative placeof [c, d] in [a, b]. Sinceg�,� is a similitude with positive ratio,
the relative place ofg�,�(�(��1 . . . �n)) in g�,�(�(�)) = �(��) is the same as that
of �(��1 . . . �n) in �(�). To prove our claim, it suffices to show that the relative
place of�(���1 . . . �n) in �(��) is the same as that of�(��1 . . . �n) in �(�), and the
length of g�,�(�(��1 . . . �n)) equals which of�(���1 . . . �n). The second fact is easy
to see. Let us show the first one. By the structure of net intervals, the relative place of
�(���1 . . . �n) in �(��) is determined completely by�1 . . . �n and the end letter of�,
and the relative place of�(��1 . . . �n) in �(�) is determined completely by�1 . . . �n
and the end letter of�. Since the end letter of� is the same as that of�, the first
fact follows.
Now let us turn to prove (4.38) for a fixed� ∈ D. For n ∈ N and �1, . . . , �n ∈ B,

by the claim, we haveg�,�1(�(��2 . . . �n)) = �(��1 . . . �n). For � ∈ B and � �= �1, it
is clear thatg�,�(�(�)) ∩ �(��1 . . . �n) = ∅ sinceg�,�(�(�)) = �(��). Therefore∑

�∈B
2−|�|‖T1�‖ · �� ◦ g−1�,�(�(��1 . . . �n))

= 2−|�1|‖T1�1‖ · �� ◦ g−1�,�1(�(��1 . . . �n))

= 2−|�1|‖T1�1‖ · ��(�(��2 . . . �n))

= ��(�(��1 . . . �n)).

A standard argument using the monotone class yields (4.38).�

Remark 4.23. For each� ∈ D, �� is equivalent to a Bernoulli shift measure. To see
this, consider the one-side shift space(BN,�) over B. Endow this shift space with the
product measure�, which satisfies

�([�]) = 2−|�|‖T1�‖, ∀� ∈ B.
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Define the projection�� from BN to �(�) by

��
(
(�n)∞n=1

) = ⋂
n�1

�(��1 . . . �n).

Theorem4.21 implies that

� = 1

�(�(�))
�� ◦ ��,

or equivalently,

�� = �(�(�)) · � ◦ �−1� .

4.9. The multifractal formalism for�

For ��0, defineK(�) = {x ∈ R : d(�, x) = �}. By Theorem4.15,

K(�) �= ∅ ⇐⇒ � ∈ R(�) =
[
− log 2

log�
− 1

2
,− log 2

log�

]
.

The main purpose of multifractal analysis is to study dimH K(�), which is called
the multifractal spectrum of�. We refer the readers to the books[9,50] and papers
[4,5,12,23,44,54] for more information about the multifractal analysis of measures. In
this section, we prove

Theorem 4.24.Let q0 be defined as in Theorem4.4. Then for anyq �= q0, we have

dimH K(�(q)) = inf
t∈R
{�(q)t − �(t)} = �(q)q − �(q), (4.40)

where�(t) is theLt -spectrum of�, and �(q) = �′(q).

Remark 4.25. Riedi and Mandelbrot[54] studied the multifractal structure of self-
similar measures with infinitely many non-overlapping generators. They verified the
validity of the multifractal formalism under some additional assumptions on the decay
speed of contraction ratios and probability weights (see [54, Theorem 10]). However
our measure� in Theorem 4.24 (and measures in Theorem 5.14) does not satisfy their
assumptions. By the way, the reader may see [40] for more details about dimensions
and measures in infinite iterated function systems.

Proof of Theorem 4.24.The upper bound

K(�)� inf
t∈R
{�t − �(t)}, ∀� ∈ R(�)
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is generic, not depending on the special property of� (see e.g.,[4, Theorem 1] or [32,
Theorem 4.1]). In the following we prove the lower bound.
First assumeq < q0. By Theorem 4.12,�(q) = − log 2

log� and −�(q) + �(q)q = 0.
SinceK(�(q)) �= ∅, we have

dimH K(�(q))�0� inf
t∈R
{�(q)t − �(t)}.

From now on, we assumeq > q0. Let B be defined as in (4.22). First we define
a probability product measurê�q on the shift space (BN,�) with the weightsp̃� =
p
q
� r
−�(q)
� for each� ∈ B, where

p� = 2−|�|‖T1�‖, r� = �|�|.

Theorem4.12 implies
∑

�∈B p̃� = 1. It is well known that̂�q is a �-invariant ergodic
measure. Denote�0 = 356 and define the projection� = ��0 from BN to the net
interval V (1�0) by

�
(
(�n)∞n=1

) = ∞⋂
n=1

V (1�0�1 . . . �n).

The map� is continuous and injective (not surjective). Define

�q = �̂q ◦ �−1.

Then

�q(V (1�0�1 . . . �n)) = p̃�1 . . . p̃�n . (4.41)

Note that

�(V (1�0�1 . . . �n)) = �(V (1�0)) · p�1 . . . p�n , (4.42)

|V (1�0�1 . . . �n)| = |V (1�0)| · r�1 . . . r�n . (4.43)

Since �̂q is �-invariant and ergodic, by the Birkhoff ergodic theorem, there exists a

Borel measurable setGq ⊂ BN with �̂q(Gq) = 1 such that for each� = (�n)∞n=1 ∈ Gq ,

lim
n→∞

log�q(V (1�0�1 . . . �n))

n
= lim
n→∞

1

n

n−1∑
j=0

log p̃�j�|1
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=
∑
�∈B

p̃� log p̃�

=
∑
�∈B

p
q
� r
−�(q)
� log

(
p�r

−�(q)
�

)
, (4.44)

lim
n→∞

log��(V (1�0�1 . . . �n))

n
= lim
n→∞

1

n

n−1∑
j=0

logp�j�|1

=
∑
�∈B

p̃� logp�

=
∑
�∈B

p
q
� r
−�(q)
� logp� (4.45)

and

lim
n→+∞

log |V (1�0�1 . . . �n)|
n

= lim
n→+∞

1

n

n−1∑
j=0

logr�j�|1

=
∑
�∈B

p̃� logr�

=
∑
�∈B

p
q
� r
−�(q)
� logr�, (4.46)

where�|1 = �1 for � = (�n)∞n=1 ∈ BN. The integrality of functions� %→ p̃�|1, � %→
p�|1 and � %→ r�|1, or equivalently, the finiteness of

∑
�∈B p

q
� r
−�(q)
� log(p�r

−�(q)
� ),∑

�∈B p
q
� r
−�(q)
� logp� and

∑
�∈B p

q
� r
−�(q)
� logr� come from the following inequality:

∞∑
n=0

n
∑
J∈An

‖MJ ‖qx(q)2n+3 <∞, ∀q > q0

which was implied in Step 3 at the proof of part (ii) of Theorem4.4.
Now fix � = (�n)∞n=1 ∈ Gq . By (4.43) we have

V (1�0�1 . . . �n) ⊂
[
�(�)− |V (1�0)| · r�1 . . . r�n , �(�)+ |V (1�0)| · r�1 . . . r�n

]
(4.47)

for all n ∈ N. On the other hand, we know that the end letter of the string�n+1 is 6.
Changing from�n+1 this letter to 3 and 7, we get two wordsjn+1 and j ′n+1 respectively.
The three net intervalsV (1�0�1 . . . �njn+1), V (1�0�1 . . . �n�n+1) andV (1�0�1 . . . �nj ′n+1)
lie in V (1�0�1 . . . �n) in an increasing order with no overlaps. Furthermore, the first
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and the third intervals have length larger than the second one. Therefore

V (1�0�1 . . . �n)

⊃ [
�(�)− |V (1�0�1 . . . �n+1)|, �(�)+ |V (1�0�1 . . . �n+1)|

]
= [�(�)− |V (1�0)| · r�1 . . . r�n+1, �(�)+ |V (1�0)| · r�1 . . . r�n+1] (4.48)

for all n ∈ N. Now for any small numberr > 0, choosen so that

|V (1�0)| · r�1 . . . r�nr�n+1�r < |V (1�0)| · r�1 . . . r�n .

By (4.47) and (4.48), we have

[�(�)− r,�(�)+ r]
⊂ [

�(�)− |V (1�0)| · r�1 . . . r�n , �(�)+ |V (1�0)| · r�1 . . . r�n
]

⊂ V (1�0�1 . . . �n−1), (4.49)

and

[�(�)− r,�(�)+ r]
⊃ [

�(�)− |V (1�0)| · r�1 . . . r�n+1, �(�)+ |V (1�0)| · r�1 . . . r�n+1
]

⊃ V (1�0�1 . . . �n+1). (4.50)

By (4.49), (4.50), and (4.44)–(4.46) and Theorem 4.4, we have

lim
n→∞

log�q [�(�)− r,�(�)+ r]
logr

=
∑

�∈B p
q
� r
−�(q)
� log(pq� r

−�(q)
� )∑

�∈B p
q
� r
−�(q)
� logr�

= −�(q)+ �(q)q (4.51)

and

lim
n→+∞

log��[�(�)− r,�(�)+ r]
logr

=
∑

�∈B p
q
� r
−�(q)
� logp�∑

�∈B p
q
� r
−�(q)
� logr�

= �(q). (4.52)

Since�q(�(Gq)) = �̂q(Gq) = 1, by (4.51) we obtain

dimH �q = −�(q)+ �(q)q. (4.53)
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By (4.52) we have�(Gq) ⊂ K(�(q)). Therefore

dimH K(�(q))� dimH �(Gq)� dimH �q = −�(q)+ �(q)q.

This finishes the proof of the lower bound.�

Remark 4.26. The above proof contains another way to prove Theorems4.16 and 4.17.
To see this, let�q be the measures constructed in the above proof. First takeq = 1.
One can see that�1 is just equivalent to��0, the restriction of� on V (1�0). By (4.51),

d(�, x) =
∑

�∈B p
q
� r
−�(q)
� log(pq� r

−�(q)
� )∑

�∈B p
q
� r
−�(q)
� logr�

∣∣∣∣∣
q=1

=
∑

�∈B p� logp�∑
�∈B p� logr�

, � a.e. x ∈ V (1�0),

where we have used the easily checked fact�(1) = 0. By a similar argument this
equality holds for� almost allx ∈ V (1�) for each� ∈ B. This proves Theorem4.16
since�

(⋃
�∈B V (1�)

) = 1.
Now take q = 0. The measure�0 is equivalent to the restriction ofL on V (1�0).

Formula (4.52) implies that

d(�, x) =
∑

�∈B r� logp�∑
�∈B r� logr�

, for L a.e. x ∈ V (1�0),

where we use the fact�(0) = −1 which was derived from Supp(�) = [0,1]. A similar
argument shows this equality also holds forL almost all x ∈ V (1�) for each� ∈ B.
This proves Theorem4.17 sinceL (⋃

�∈B V (1�)
) = 1.

4.10. Biased Bernoulli convolutions

In this subsection we present some results on biased Bernoulli convolutions. For
0< t < 1, the self-similar measure�t which satisfies

�t = t�t ◦ S−10 + (1− t)�t ◦ S−11 ,

is called the biased Bernoulli convolutionassociated with� and t, whereS0x = �x
and S1x = �x + 1− �.

Theorem 4.27.Let t ∈ (0,1). There exists a family of non-negative matrices{�t (�,
) :
�,
 ∈ 
, A�,
 = 1} such that for any net interval�(i1i2 . . . in+1),

�t (�(i1i2 . . . in+1)) = ‖�t (i1, i2)�t (i2, i3) . . .�t (in, in+1)‖.



84 D.-J. Feng /Advances in Mathematics 195 (2005) 24–101

More precisely, these matrices are given by



�t (1,2) = t2

1−t+t2 , �t (1,3) =
[
t (1−t)2
1−t+t2 ,

t2(1−t)
1−t+t2

]
, �t (1,4) = (1−t)2

1−t+t2 ,
�t (2,2) = t, �t (2,3) = [(1− t)2, (1− t)t],
�t (3,5) =

[
1 0
0 1

]
,

�t (4,3) = [(1− t)t, t2], �t (4,4) = 1− t,
�t (5,3) =

[
t (1− t) t2
0 t2

]
, �t (5,6) =

[
(1− t)t
(1− t)t

]
, �t (5,7) =

[
(1− t)2 0
(1− t)2 (1− t)t

]
,

�t (6,3) = [1− t, t],
�t (7,5) =

[
1 0
0 1

]
.

Proof. The first part of the result was proved by the author under a more general setting
(see[14, Theorem 3.3]). The second part involves the construction of these matrices
�t (�,
)’s, while the general method was given in the proof of [14, Lemma 3.2].�
For any� = i1i2 . . . in ∈ B, define

pt,� = ‖�t (6, i1)�t (i1, i2)�t (i2, i3) . . .�t (in−1, in)‖.

Thenpt,� = [1− t, t]X∅[(1− t)t, (1− t)t]T for � = 356 and

pt,� = [1− t, t]Xi1 . . . Xin [(1− t)t, (1− t)t]T

for � = 35 �i15 . . . �in5 6, where�0 = 3, �1 = 7 and

X∅ =
[
1 0
0 1

]
, X0 =

[
t (1− t) t2
0 t2

]
, X1 =

[
(1− t)2 0
(1− t)2 (1− t)t

]
. (4.54)

It is easily checked that for any admissible word�� with � ∈ B,

�t (�(��)) = pt,��t (�(�)).

From the above equality we obtain an analogue of Theorem4.21:

Theorem 4.28.�t is supported on
⋃

�∈D �(�). For any fixed� ∈ D,

�t,� =
∑
�∈B

pt,� · �t,� ◦ g−1�,�, (4.55)

where�t,� denotes the restriction of�t on �(�), i.e., ��(A) = �(A ∩ �(�)) for any
Borel setA ⊆ R.
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The following theorem gives the Hausdorff dimension of�t .

Theorem 4.29.For any t ∈ (0,1),

dimH �t =
t − t2

2+ t − t2 ·
∑∞
n=0

∑
|J |=n QJ logQJ
log�

,

where

QJ = [1− t, t] Xj1 · · ·Xjn
[
t − t2
t − t2

]

and X0, X1, X∅ are defined as in(4.54).

Proof. Using Theorem 4.28 and a similar argument as in Remark 4.26, we have

d(�t , x) =
∑

�∈B pt,� logpt,�∑
�∈B pt,� log�|�|

, �t a.e. x ∈ [0,1].

Thus dimH �t equals the right hand side of the above equality. By the definition of
pt,� and (4.54), we have

∑
�∈B

pt,� logpt,� =
∞∑
n=0

∑
|J |=n

QJ logQJ .

A further careful calculation (using the fact that(1,1)T is an eigenvector ofX0+X1)
yields

∑
�∈B

pt,� log�|�| = 2+ t − t2
t − t2 log�,

which finishes the proof of the theorem.�

5. The ratio case� = �k (k�3)

In this section, we fix an integerk�3 and consider the case� = �k, where�k is
the unique positive root of the polynomialxk + xk−1+ · · · + x− 1. The transition map
for this case is different slightly from that for the golden ratio, which leads to some
different properties (see e.g. Theorems1.3 and 1.5).
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Table 3
Elements in


� ∈ 
 Labelled as

(1;0;1) a
(1− �k;0;1) b
(�k; (0,1− �k);1) c1
(�k; (0,1− �k);2) c1
(�k−i+1; (0,1− �k−i+1);1)

(i = 2,3, . . . , k)
ci
(i = 2,3, . . . , k)

(1− �k;�k;1) d
(1− �k − �k−i ;�k;1)
(i = 1,2, . . . , k − 1)

ei
(i = 1,2, . . . , k − 1)

(1− �k − �k−i ;�k−i ;1)
(i = 1,2, . . . , k − 1)

fi
(i = 1,2, . . . , k − 1)

(1− 2�k;�k;1) g

5.1. The symbolic expressions and transition matrices

By an inductive discuss, we can determine all the elements in
. In Table3 we list
them all, and for simplicity we relabel them by latin and arabic letters.
The map�, defined as in (2.7), is given by

�(a) = b c1 d,

�(b) = b c1 e1,

�(c1) = c2,

�(c1) = c2,

�(ci) = ci+1 (i = 2, . . . , k − 1)

�(ck) = c1 g c1

�(d) = f1 c1 d,

�(ei) = f1 c1 ei+1 (i = 1, . . . , k − 2)

�(ek−1) = f1,

�(fi) = fi+1 c1 ei (i = 1, . . . , k − 2)

�(fk−1) = e1,

�(g) = f1 c1 e1

and the corresponding 0–1 matrixA = (Ai,j )i,j∈
, is defined by

Ai,j =
{
1 if j is a letter of�(i),
0 otherwise.
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The transition matricesT (i, j) constructed as in the proof of Lemma2.8, are listed
as follows:

T (a, b) = 1, T (a, c1) = [1,1], T (a, d) = 1,
T (b, b) = 1, T (b, c1) = [1,1], T (b, e1) = 1,

T (cm, cm+1) =
[
1 0
0 1

]
, (m = 1,2, . . . , k − 1),

T (ck, c1) =
[
1 1
0 1

]
, T (ck, g) =

[
1
1

]
, T (ck, c1) =

[
1 0
1 1

]
,

T (c1, c2) =
[
1 0
0 1

]
,

T (d, f1) = 1, T (d, c1) = [1,1], T (d, d) = 1,
T (em, f1) = 1= T (em, em+1), T (em, c1) = [1,1] (m = 1, . . . , k − 2),
T (ek−1, f1) = 1,
T (fm, fm+1) = 1= T (fm, e1), T (fm, c1) = [1,1] (m = 1, . . . , k − 2),
T (fk−1, e1) = 1,
T (g, f1) = 1, T (g, c1) = [1,1], T (g, e1) = 1.

(5.1)

For any n�1, denote by
A,n the collection of all admissible words of lengthn,
i.e.,


A,n =
{
i1 . . . in ∈ 
∗ : Aij ,ij+1 = 1, 1�j < n

}
,

where
∗ denotes the collection of all finite word over
. By Lemma2.7 and Theorem
2.9, eachnth net interval� corresponds to a unique wordi1 . . . in+1 in 
A,n+1 with
i1 = 1; and the multiplicity vectorWn(�) satisfies

Wn(�) = Ti1...in+1 := T (i1, i2)T (i2, i3) . . . T (in, in+1).

The letterg in 
 has the following properties:

(a) For all i ∈ 
, there exists some integern such thatg is a letter in the word�n(i).
(b) The characteristic vector represented byg is (1 − 2�k;�k,1), which satisfies

v(g) = 1.

Due to (b), we have

‖T�1g�2‖ = ‖T�1g‖ × ‖T�2‖

for all �1, �2 ∈ 
∗ with �1g�2 ∈⋃∞
n=1 
A,n.

Noting that�(g) = f1c1e1, we define a collectionB of admissible words by

B = {
i1i2 . . . im ∈ 
A,m : m ∈ N, i1 ∈ {f1, c1, e1}, im = g, i& �= g
for all 1�& < m

}
. (5.2)
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To describe the structure ofB, we define:

B0 := c1c2 . . . ck,

B1 := c1c2 . . . ck,

Y
(j)
0 := e1 . . . ej (j = 1, . . . , k − 1),

Y
(j)
1 := f1 . . . fj (j = 1, . . . , k − 1).

From the form of�, we can check that

Lemma 5.1. A word � ∈ B if and only if it has one of the following forms:

(1) � = Bi1 . . . Bi&g, where& ∈ N, i1, . . . , i& ∈ {0,1} and i1 = 0.

(2) � = Y (p1)i1
. . . Y

(pm)
im

�, where � is of form (1), m ∈ N, 1�p1, . . . , pm−1�k − 1,

1�pm�k − 2, is = 1−(−1)s
2 (s = 1, . . . , m) or is = 1+(−1)s

2 (s = 1, . . . , m).

Furthermore if� has the form(1), then

‖T�‖ =
{
2 f or & = 1,
‖Mi2...i&‖ f or &�2;

and if � has the form(2), then ‖T�‖ = ‖T�‖.

In the following lemma, we list some basic facts which can be derived from the
form of � and properties (a) and (b):

Lemma 5.2. (i) 
̂ := 
\{a, b, d} is an essential subclass of
. The characteristic
vector � = (1− 2�k;�k;1), represented by the symbol g in̂
, satisfiesv(�) = 1.
(ii) For any word� in 
A,n, there exists a word� ∈⋃k+2

j=1 
A,j with the end letter
g such that�� ∈ 
A,n+|�| and ‖T��‖ = ‖T�‖ or 2‖T�‖.
(iii) Let � be any word in

⋃∞
n=1 
A,n with first letter a. Then one can find a word

� ∈⋃k+1
n=1 
A,n such that the word�� has one of the following three forms:

1. �� = a�1 . . .�&, the first letter of�1 is c1
2. �� = a b . . . b︸ ︷︷ ︸

r

�1 . . .�&, the first letter of�1 is c1 or e1

3. �� = a d . . . d︸ ︷︷ ︸
r

�1 . . .�&, the first letter of�1 is c1 or f1

where&, r ∈ N and �i ∈ B for 1� i�&.
(iv) For any �1, . . . ,�& ∈ B,

�1 · · ·�& ∈
∞⋃
n=1


A,n, and ‖T�1···�&‖ =
&∏
i=1
‖T�i‖ =

&∏
i=1
‖Tg�i‖.
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5.2. The exponential sum of the product of matrices

In this subsection we will determine the value of

E(q) := lim
n→∞

(∑
‖Ti1...in+1‖q

)1/n
for any q ∈ R, where the summation is taken over all admissible wordsi1 . . . in+1 of
length n+ 1 with i1 = a. More precisely, we prove the following:

Theorem 5.3. For any q ∈ R, E(q) = 1/x(q), wherex(q) is the unique positive root
of

1− 2xk−1+ xk
1− 2x + xk ·

∞∑
n=0

un(q)x
kn+k+1 = 1 (5.3)

which lies in the interval(0, �k−1). Here un(q) is defined as in(4.5). Furthermore,
x(q) is an infinitely differentiable function of q onR.

To prove the theorem, denote byFn the collection of all admissible words of length
n starting from a letter in{c1, e1, f1}, i.e.,

Fn =
{
i1 . . . in ∈ 
A,n : i1 ∈ {c1, e1, f1}

}
.

For q ∈ R, define

Rn(q) =
∑
�∈Fn

‖Tg�‖q, n�1.

Set

R(q) = lim
n→∞ (Rn(q))

1/n .

We first determine the value ofR(q). To achieve this, we define

wn(q) =
∑

�∈B,|�|=n
‖Tg�‖q, n ∈ N, q ∈ R. (5.4)

Lemma 5.4. For any n�2, we have

Rn(q) = on(q)+
n∑
i=1

wi(q)Rn−i (q),

whereon(q) is a number in
(
0, 2|q|

∑k+2
i=1 wn+i (q)

)
.
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Proof. Partition Fn into its two subsetsF (1)n and F (2)n , where F (1)n consists of all
the words inFn which do not contain the letterg and F (2)n = Fn\F (1)n . By Lemma
5.2(ii), each word� ∈ F (1)n can be extended to a word inB by attaching some word
� ∈⋃k+2

j=1 
A,j with ‖T�‖�‖T��‖�2‖T�‖. This implies

∑
�∈F (1)n

‖Tg�‖q�2|q|
k+2∑
i=1

wn+i (q). (5.5)

Observe that each word inF (2)n can be uniquely written as�� for some� ∈ B and
� ∈ Fn−|�|. This deduces

∑
�∈F (2)n

‖Tg�‖q =
n∑
i=1

wi(q)Rn−i (q). (5.6)

Combining (5.6) with (5.5) yields the desired result.�
According the above lemma, using an argument similar to that in the proof of Lemma

4.6, we have

Lemma 5.5. R(q) = 1/x(q) for any q ∈ R, wherex(q) is defined by

x(q) =
{
x�0 :

∞∑
n=1

wn(q)x
n�1

}
. (5.7)

To study the value ofx(q) in the above lemma, we define a sequence of integers
{tn}∞n=0 by letting t0 = 1 and 1

2 tn (n > 0) be the number of different integral solutions
of the following conditional Diophantine equation:

p1+ · · · + pm = n with m ∈ N, 1�p1, . . . , pm−1�k − 1, 1�pm�k − 2.

Lemma 5.6. (i) For any positive integer n,

tn = 2 · (1,1, . . . ,1︸ ︷︷ ︸
k−2

,0) ·


1 1 · · · 1 1
1 0 · · · 0 0
0 1 · · · 0 0
...
...
. . .
...
...

0 0 · · · 1 0


n−1

1
0
0
...

0

 .

(ii) For any x�0,

1+
∞∑
n=1

tnx
n =

 1− 2xk−1+ xk
1− 2x + xk if 0�x < �k−1,

+∞ if x��k−1.
(5.8)
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Proof. Denote by12 t
(i)
n (1� i�k−1) the number of integral solutions of the following

conditional equation:

p1+ · · · + pm = n, with m ∈ N, 1�p1, . . . , pm−1�k − 1, pm = i.

Then t (1)1 = 2 and t (i)1 = 0 for 2� i�k − 1. Furthermore for anyn�1,

{
t
(1)
n+1 =

∑k−1
i=1 t

(i)
n ,

t
(j)
n+1 = t (j−1)n (j = 2, . . . , k − 1).

(5.9)

Hence we have

(
t (1)n , t

(2)
n , . . . , t

(k−1)
n

)T = Qn−1(2,0, . . . ,0)T ,
whereQ denotes the matrix in the formula fortn. Observingtn = ∑k−2

i=1 t
(i)
n , we get

the desired formula fortn.
To prove (ii), define a sequence{sn}∞n=1 by s1 = s2 = · · · = sk−2 = 0, sk−1 = 1

and

sn = sn−1+ sn−2+ · · · + sn−k−1, ∀n�k.

Denotep(x) =∑∞
n=1 snxn. Then

p(x) =
k−1∑
i=1

six
i +

∞∑
n=k
(sn−1+ sn−2+ · · · + sn−k+1)xn

= xk−1+
k−1∑
i=1

xi

( ∞∑
n=k−i

snx
n

)

= xk−1+
(
k−1∑
i=1

xi

)
p(x).

This deduces

p(x) =
{

xk−1
1−∑k−1

i=1 xi
if 0�x < �k−1,

+∞ for x��k−1.
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By the definition ofsn we haveQn−1(1,0, . . . ,0)T = (sn+k−2, sn+k−3, . . . , sn)T . Hence
tn = 2

∑k−2
i=1 sn+i . Therefore

1+
∞∑
n=1

tnx
n = 1+ 2

k−2∑
i=1

∞∑
n=1

sn+ixn

= 1+ 2
k−2∑
i=1

x−i
∞∑

n=i+1
snx

n

= 1+ 2p(x)
k−2∑
i=1

x−i .

Combining the above result with the expression ofp(x), we obtain the formula in (ii)
directly. �
Now we give the exact expression ofx(q).

Proposition 5.7. Let x(q) be defined as in(5.7) and un(q) defined as in(4.5). Then
for any q ∈ R, x(q) is the unique positive root of

1− 2xk−1+ xk
1− 2x + xk ·

∞∑
n=0

un(q)x
kn+k+1 = 1 (5.10)

which lies in the interval(0, �k−1). Furthermore, x(q) is an infinitely differentiable
function of q onR.

Proof. By Lemma5.1 and the definition ofwn(q) (see (5.4)), we have

wn(q) =
{
0 for 1�n < k + 1,∑
i,j�0: i+kj+k+1=n tiuj (q) for n�k + 1.

Therefore

∞∑
n=1

wn(q)x
n =

∞∑
i=0

∞∑
j=0

tiuj (q)x
i+kj+k+1

=
(
1+

∞∑
i=1

tix
i

)
·
( ∞∑
n=0

un(q)x
kn+k+1

)
, (5.11)

where 1+∑∞
i=1 tixi can be simplified as in (5.8).

To prove thatx(q) satisfies (5.10) and is differentiable infinitely, as that in the proof
of Theorem 4.4(ii), essentially we only need to show that for anyq ∈ R, there exists
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0 < y < 1 such that 1<
∑∞
n=1 wn(q)yn < ∞. Assume this fact is not true. Then

there existq ′ ∈ R and 0< x′ < 1 such that
∑∞
n=1 wn(q ′)(x′)n�1 and

∞∑
n=1

wn(q
′)zn = +∞, ∀z > x′. (5.12)

By (5.11) and
∑∞
n=1 wn(q ′)(x′)n�1, we have

x′ ∈ (0, �k−1) and
∞∑
n=0

un(q
′) (x′)kn+k+1 < +∞.

Thus by (5.11) and (5.12), we have

∞∑
n=0

un(q
′)zkn+k+1 = +∞ ∀z > x′, (5.13)

which implies
∑∞
n=0 un(q ′) = +∞ since x′ < 1. Therefore by Proposition4.8, there

exists 0< y < 1 such that

∞∑
n=0

un(q
′) (x′)kn <

∞∑
n=0

un(q
′) ykn < +∞,

which leads to a contradiction with (5.13). This finishes the proof of the proposition.
�

Proof of Theorem 5.3.By Lemma 5.5 and Proposition 5.7, to prove Theorem 5.3 we
only need to showE(q) = R(q) for q ∈ R. Define

En(q) =
∑

‖Ti1...in+1‖q,

where the summation is taken over for all wordsi1 . . . in+1 in 
A,n+1 with i1 = a.
Take�0 = B0g. Then for any� ∈ Fn−k−2, a�0� ∈ 
A,n+1. Therefore for anyn�k+3,

En(q) �
∑

�∈Fn−k−2
‖Ta�0�‖q

=
∑

�∈Fn−k−2
‖Tg�‖q = Rn−k−2(q).
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On the other hand, by Lemma5.2(iii) each word in
A,n+1 with the first lettera has
one of the following forms

a� (� ∈ Fn); abm� (� ∈ Fn−m); adm� (� ∈ Fn−m).

Hence,

En(q) �
∑
�∈Fn

‖Ta�‖q +
n∑
m=1

∑
�∈Fn−m

‖Tabm�‖q +
n∑
m=1

∑
�∈Fn−m

‖Tadm�‖q

= Rn(q)+ 2
n∑
m=1

Rn−m(q).

Using the above two inequalities and the factR(q)�1, we haveE(q) = R(q). This
proves the theorem.�

5.3. The Hausdorff dimension of the graph f, theLq -spectrum and Hausdorff
dimension of�

The main result of this subsection is the following:

Theorem 5.8. Let x(q) be given as in Theorem5.3. Then

(i) The Hausdorff dimension of the graph of f satisfies

dimH �(f ) = logx(− log�/ log 2)
log�

.

(ii) For any q ∈ R, the Lq -spectrum�(q) of � satisfies

�(q) = −q log 2
log�

− logx(q)

log�
.

Furthermore�(q) is infinitely differentiable onR.
(iii) The Hausdorff dimension of� is

dimH � = − log 2

log�
+
(
2k − 3

2k − 1

)2

·

∞∑
n=0

2−kn−k−1
∑
J∈An

‖MJ ‖ log‖MJ ‖

log�
.

Proof. Combining Theorem3.4 with Theorem 5.3 yields (i) directly. Similarly, com-
bining Theorem 3.3 with Theorem 5.3 yields (ii). To show (iii), by Theorem 4.14,
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dimH � = �′(1). By a direct computation of�′(1), we obtain the formula in (iii) (for
shortness we omit the details).�

5.4. Local dimensions of�

In this subsection we present the following two theorems about the local dimensions
of �.

Theorem 5.9. The range of the local dimension of� satisfies

R(�) =
[

k log 2

−(k + 1) log�
,

log 2

− log�

]
.

Theorem 5.10.For L almost all x ∈ [0,1],

d(�, x) = − log 2

log�
+ �k(1− 2�k)2

(2− (k + 1)�k)

∞∑
n=0

�kn
∑
J∈An

log‖MJ ‖.

To prove these theorems, we first give the following lemma.

Lemma 5.11. Let B be defined as in(5.6). Then

inf
�∈B

log‖Tg�‖
|�| = 0, sup

�∈B
log‖Tg�‖
|�| = log 2

k + 1
.

Proof. By Lemma5.1(1),(B0)ng ∈ B for n ∈ N. Note that‖Tg(B0)ng‖ = ‖Mn
0‖ = 2+n

and|(B0)ng| = nk+1. We have limn→∞
log‖Tg(B0)ng‖|(B0)ng| = 0, and thus inf�∈B

log‖Tg�‖
|�| = 0.

On the other hand by Lemma 5.1, we have

sup
�∈B

log‖Tg�‖
|�| = max

{
log 2

k + 1
, sup
n�1, i1,...,in∈{0,1}

log‖Mi1...in‖
kn+ k + 1

}
.

Note that in the proof of Theorem4.15 we have obtained

max
i1,...,in∈{0,1}

‖Mi1...in‖ =
2+ �2+ (�2)2n+4

1+ (�2)2 (�2)−n.

Observing that

1

k + 1
log

[
2+ �2+ (�2)2n+4

1+ (�2)2
]

� 1

k + 1
log

[
2+ �2+ (�2)4
1+ (�2)2

]
= log 2

k + 1
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and

log(�2)−n

nk
= − log�2

k
<

log 2

k + 1
,

we have

sup
n�1, i1,...,in∈{0,1}

log‖Mi1...in‖
kn+ k + 1

� log 2

k + 1
,

where we have used the inequalitya+c
b+d � max{ a

b
, c
d
} for positive numbersa, b, c, d.

Therefore sup�∈B
log‖Tg�‖
|�| = log 2

k+1 . This finishes the proof of the lemma.�

Proof of Theorem 5.9.Using an argument similar to that in the proof of Theorem

4.15, we can prove thatR(�) =
[
− log 2

log� + 1
log� sup�∈B

log‖Tg�‖
|�| , − log 2

log� + 1
log� inf �∈B

log‖Tg�‖
|�|

]
. Combining it with Lemma 5.11 yields the theorem.�

Proof of Theorem 5.10. Let 
̂ = 
\{a, b, d}. Consider the one-sided shift space(

̂

N
A ,�

)
, where


̂
N
A =

{
(in)

∞
n=1 : in ∈ 
̂, Ain,in+1 = 1 for n�1

}
,

and �
(
(in)

∞
n=1

) = (in+1)∞i=1.
Define a probability matrixP = (

Pi,j
)
i,j∈
̂ by

Pi,j =
{

� &j
&i

if Ai,j = 1,
0 otherwise,

where &i denotes the relative length of the characteristic vector labelled byi. Let
p =(pi)i∈
̂ be the probability vector such thatp = pP . By a careful calculation, we
have

pg = �k(1− 2�k)
2− (k + 1)�k

, pc2 = · · · = pck−1 = �k

2−(k+1)�k ,

pc1 = (1−�k)�k

2−(k+1)�k , pei = pfi = �i (1−�k−�k−i )
2−(k+1)�k (i = 1, . . . , k − 1),

pc1 = �2k

2−(k+1)�k .
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Define � to be the (p, P ) Markov measure on̂

N
A . Using the Birkhoff ergodic

theorem and a proof essentially identical to that of Theorem4.17, we have

lim
n→∞

log‖Tx1...xn‖
n

=
∑
�∈B

�([g�]) log‖Tg�‖

for � almost allx = (xj )∞j=1 ∈ 
̂
N
A , where[i1 . . . in] denote then-cylinder set

{
(xj )

∞
j=1 ∈ 
̂

N
A : xj = ij for 1�j�n

}
.

Furthermore forL almost allx ∈ [0,1],

d(�, x) = − log 2

log�
+ 1

log�

∑
�∈B

�([g�]) log‖Tg�‖.

Now we are going to compute
∑

�∈B �([g�]) log‖Tg�‖. By the definition of�, we have

�([i1 . . . in]) = pi1
n−1∏
j=1

�&ij+1
&ij

= �n−1 pi1&in
&i1

.

Thus for each� ∈ B, we have�([g�]) = �|�|pg. By Lemma5.1 and (5.8), we have∑
�∈B

�([g�]) log‖Tg�‖ =
∑
�∈B

pg�|�| log‖Tg�‖

= pg

∞∑
i=0

∞∑
j=0

�i+kj+k+1ti
∑
J∈Aj

log‖MJ ‖

= pg�k+1
1− 2�k−1+ �k

1− 2�+ �k

∞∑
j=0

�kj
∑
J∈Aj

log‖MJ ‖

= �k(1− 2�k)2

(2− (k + 1)�k)

∞∑
j=0

�kj
∑
J∈Aj

log‖MJ ‖.

This finishes the proof of the theorem.�

5.5. The box dimension and Hausdorff dimension of�

In this subsection we prove
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Theorem 5.12.For L almost all t ∈ [0,1], the Hausdorff dimension and box-counting
dimension of t-level set of the limit Rademacher function f with parameter� = �k are
equal to

�k
(
1− 2�k

)2(
2− (k + 1)�k

)
log 2

∞∑
n=0

�kn
∑
J∈An

log‖MJ ‖


Proof. The result for the box-counting dimension follows directly from Corollary3.6
and Theorem 5.10. The proof for the coincidence of the Hausdorff dimension and the
box-counting dimension for almost allt is essentially identical to that of Theorem 4.19
by using the dimensional result about homogeneous Moran sets.�

5.6. The infinite similarity and multifractal formalism for�

Denote

D = {
i1i2 . . . in ∈ 
A,n : n ∈ N, i1 = a, in = g, ij �= g for 1�j < n

}
.

For any� ∈ D and � ∈ B, denote by��,� the unique similitudecx + d with c > 0
so that��,�(�(�)) = �(��), where�(�) denotes the net interval with respect to the
admissible word�. Then the following theorem can be proved in the same line as that
of Theorem4.21:

Theorem 5.13.� is supported on
⋃

�∈D �(�). For any fixed� ∈ D,

�� =
∑
�∈B

2−|�|‖Tg�‖ · �� ◦ �−1�,�, (5.14)

where �� denotes the restriction of� on �(�), i.e., ��(A) = �(A ∩ �(�)) for any
Borel setA ⊂ R. Furthermore,

��,�(�(�)) = �(��) ⊂ �(�), �(��) ∩ �(��′) = ∅ f or � �= �′. (5.15)

Using the above theorem and a proof identical to that in Theorem4.24, we have

Theorem 5.14.Then for anyq ∈ R, we have

dimH K�(q) = inf
t∈R
{�(q)t − �(t)} = �(q)q − �(q), (5.16)

whereK(�) = {x ∈ R : d(�, x) = �}, �(t) is theLt -spectrum of�, and �(q) = �′(q).
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Remark 5.15. After our work, Olivier et al.[46] also verifies the validity of the mul-
tifractal formalism for� by viewing � as a weak Gibbs measure.
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