Available online at www.sciencedirect.com

sclsnce@nlnec-r@ ADVANCES IN
Mathematics

ELSEVIER Advances in Mathematics 195 (2005) 24-101 —_—
www.elsevier.com/locate/aim

The limited Rademacher functions and Bernoulli
convolutions associated with Pisot numbers

De-Jun Feny
Department of Mathematical Sciences, Tsinghua University, Beijing 100084, PR China

Received 21 January 2004; accepted 28 June 2004

Communicated by R.D. Mauldin
Available online 11 September 2004

Abstract

In this paper, we give a systematical study of the local structures and fractal indices of the
limited Rademacher functions and Bernoulli convolutions associated with Pisot humbers. For a
given Pisot number in the intervdl, 2), we construct a finite family of non-negative matrices
(maybe non-square), such that the corresponding fractal indices can be re-expressed as some
limits in terms of products of these non-negative matrices. We are especially interested in the
case that the associated Pisot number is a simple Pisot number, i.e., the unique positive root of
the polynomialx® —x¥=1—. . —x—1 (k=2,3,...). In this case, the corresponding products of
matrices can be decomposed into the products of scalars, based on which the precise formulas
of fractal indices, as well as the multifractal formalism, are obtained.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we provide a systematical study of the local structures and different
fractal indices of the limited Rademacher functions and Bernoulli convolutions associ-
ated with Pisot numbers. We also verify the validity of the multifractal formalism for
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the corresponding Bernoulli convolutions associated with a special class of Pisot num-
bers. Recall that a real algebraic integer is calleRisot numberif all its conjugates
are less than 1 in modulus. There are infinitely many Pisot numbers in the interval
(1, 2): for example, for eaclt = 2, 3, ..., the unique positive root of the polynomial

pk(x)=xk—xk_l—xk_2—-~-—x—l

is a Pisot number. We shall call these thieple Pisot numbers. The readers may see
the books[3,55] for the detailed properties of Pisot numbers.

Recall that for% < p < 1, thelimited Rademacher functionith parameterp is
defined by

fO=WA=p) Y p"R@0).  xel01], (1.1)
n=0

where R denotes the classic Rademacher functifiir) is defined on the linéR with
period 1, taking values 0 and 1 on the interv{ams%) and [%, 1), respectively. The
distribution off induces a probability measugeon [0, 1]. That is,

WE)=L{x €[0,1]: f(x) € E}, V Borel setE C [0, 1],

where £ denotes the one-dimensional Lebesgue measure. The measisrealled
the Bernoulli convolutionwith parameterp, since it is the infinite convolution of
%(5o+5(1_p)pn). An important property of: is its self-similarity (see, e.g[31, Theorem
4.3)):

p=3uoSyt+3puosst (1.2)

where Sp(x) = px and S1(x) = px + 1 — p.

The limited Rademacher functions and Bernoulli convolutions have been studied for
a long time, revealing many connections with harmonic analysis, number theory, fractal
geometry and dynamical systems, 4&¢80,48,53,57]. It is well known [28] that for
each parametes € (1/2, 1), p is either absolutely continuous or totally singular. Erdos
[6] proved thaty is totally singular if p is the reciprocal of a Pisot number. In the
opposite direction, Solomyak [56] proved thais absolutely continuous wité% eL?
for almost allp € (1/2, 1), extending an early result of Erdos [7]. Please see [49] for
a simpler proof. Mauldin and Simon [39] showed thatis in fact equivalent to the
Lebesgue measure for almost alle (1/2,1). Later Peres and Schlag [47] strengthed
Solomyak’s result by showing the Hausdorff dimension of the exceptipsah [a, 1]
is strictly smaller than 1 for each > % Recently, Feng and Wang [20] found a
sequence of’s such thatp~! is not Pisot number ang lies in the exceptional set
(i.e. the corresponding, if it is absolutely continuous, has nb? density).

In this paper, we always assume that the param@ker(%, 1) is a Pisot reciprocal

That is, p~! is a Pisot number. Under this assumption, we would like to analyse
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the complexity and the degree of singularity of the corresponding limited Rademacher
function and Bernoulli convolution. More precisely, we study the following fractal
indices for a fixed Pisot reciprocal:

o the Hausdorff dimension of the graph of the limited Rademacher function;

o the Hausdorff dimension of the level sets of the limited Rademacher function;

e the LY9-spectrum, Hausdorff dimension and the range of local dimensions of the
Bernoulli convolution.

Furthermore, we will give a complete multifractal analysisofvhen p is a simple
Pisot number.

Our basic approach is the following: using an algebraic property of Pisot numbers
found by Garcia[22], for each given Pisot reciprocal in (1/2,1) we construct a
finite family of non-negative matrices (maybe non-square) and re-express a major part
of the above fractal indices as limits in terms of products of these matrices. Particularly
interesting is the case wheyeis the reciprocal of a simple Pisot nhumber. In this case
we find that the corresponding product of matrices is degenerate and can be decomposed
as the product of a sequence of scalars (this fact impliesith@focally a self-similar
measure with countably many generators which satisfy the separation condition). Using
this key property, we obtain the precise formulas of all the above fractal indices, and
verify the validity of the multifractal formalism of:.

At first we give some necessary definitions and notations. We usg,difimg to
denote the Hausdorff dimension and the box-counting dimension, respectively (see
[8,38] for the definitions). For a real functiog defined on[0, 1], the graph of the
function g, denoted ad’(g) or simply I', is defined by

I'={(x,gx)) e R?: x el[0,1]}.
For ¢ € R, the t-level setof g, denoted ad.;(g) or simply L;, is defined by
L, ={xe€[0,1]: gx) =1}

For a given finite Borel measure on the line, theupper local dimension of at
x € suppv) is defined by

d(v, x) = lim sup logv(lx —r,x +r)
r—0+ logr

and thelower local dimensiord (v, x) at x is defined similarly by taking the lower
limit. When d(v, x) = d(v, x), the common value is called tHecal dimensionof v at
x and is denoted by/(v, x). The range of local dimensions ofi, denoted byR(v), is
defined by

RvV)={yeR: d(v,x)=y for somex € supgv)}.
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Recall theHausdorff dimensiorof v is defined by
dimy(v) = inf {dimy(E) : E C R is a Borel set and/(E) = 1},
and theL?-spectrum(q € R) of v is defined by

log (supY_; v([xi — 0, x; + 6])7)
logd

9

w(q) = 1(v, ¢) = lim inf
0—0+

where the supremum is taken over all the families — 9, x; +d]}; of disjoint intervals
with x; € supfv). The readers may see the bodks38,50,60] for more information
about the above definitions.

We will state our matrix product results for general Pisot reciprocals in Section 3.
In the following we only present our results for the cages 4 (k =2,3,...), where
Jx is the largest real root off +x¥~14...4+x —1. Define two 2« 2 matricesMo, M1

by
M0=[éﬂ, MFHE]. (1.3)

For n>1, denote byA, the set of all indicesj; ... j, over {0, 1}. Denote

My =MyM,,...M,

for J = j1...j,. For our convenience, we writg for the empty word and define

10
M®:|:Ol:|'

Set Ag = {#}. For any 2x 2 non-negative matrix8, denote its norm by|B| =
(L, HB@E DT,
Our main results for the casgs= 4; (k>2) are the following theorems:

Theorem 1.1. For k = 2,3, ..., let I' be the graph of the limited Rademacher function
f with parameterp = 4. Then

dimy I = 09%

log p

where x; is the unique root in(0, 4;_1) (defining A1 = 1) of the equation
o

1— 2xk—1 4 xk o | knkl
gk Bl BB 1701 il Elat
1—2x+x o \ /e,

with o = —{g%g.
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Theorem 1.2. For k = 2,3,..., the Hausdorff dimension and box-counting dimen-
sion of t-level set of the limit Rademacher function f with parametes A, are
equal to

k k)2 0
p* (1-2p%) K
dy = n log||M
k (2—(k+1)pk)I092,12=(:) p J;ﬂ gllM, ||

for £ almost allr € [0, 1].

Theorem 1.3. (i) For any g € R, the L9-spectrumz(g) of the Bernoulli convolution
with parameterp = /2 is equal to

_glog2 logx(2, q)
log p logp

wherex (2, g) is defined by
o0
x(2.q) =supyx=0: Y | Y M7 ) a1
n=0 \JeA,
There exists a unique real numbegg < —2 satisfying
o
DU D My ) =1

n=0 \JeA,

For g > go, x(2, q) is the unique positive root of

o0
DU DS g | 3 =1,
n=0 \JeA,

and it is an infinitely differentiable function of q ago, +00). For ¢ <qo, x(2,q¢) = 1.
Moreoverx (2, g) is not differentiable ay = ¢o.

(i) For any integerk>3 and any real number ,qthe L?-spectrumz(q) of the
Bernoulli convolutionu with parameterp = J; is equal to

_qlog2 logx(k, q)
log p logp
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Table 1
Numerical estimations

k dimy F(f/k) d/"vk dimy lu/lk
2 1.304+ 0.001 0.302:0.001 0.9952104
3 111875217+ 108 0.102500150210 10 0.98040931953+10 11
4 1.05256540210° 0.04156045494076910 14 0.986926474333810 12
5 1.02459604%10° 0.0184262523965510~ 14 0.992585300274%410 12
6 1.01184482410~° 0.0085902310885410~ 14 0.996032591584010 12
7 1.005796386:10° 0.0041236386608810~ 14 0.997937445507010 12
8 1.00286272910° 0.0020138380575210~ 14 0.998944915449810 12
9 1.00142137810°° 0.0009934411730210~ 14 0.999465368055610 12
10 1.00070789@10° 0.0004929445912910~ 14 0.999730606878310 12

wherex(k, g) € (0, Ax—1) satisfies

o0

1—2xk=1 4 xk
. q kn+k+1 __ 1
e N DN L/ Eaaa e |
1-2c+x n=0 \JeA,

Moreoverx(k, g) is an infinitely differentiable function of g on the whole line

Theorem 1.4.For k = 2, 3, ..., the Hausdorff dimension of the Bernoulli convolution
u with parameterp = /; satisfies

o0

> 27ttt 3T My log | My |
. log2  (2¢—3\* =0
dimy u=— 9 <k ) N JeAn
logp k-1 logp
Theorem 1.5.For k = 2,3,..., let R(u) be the range of local dimensions of the
Bernoulli convolutionu with parameterp = /. Then
log 2 1 log 2 : _
[-os 5 -isgr| k=2
R(u) =
klog2 log2 |
[_(—k+1)|0gp’ —m] if k>3.

In Table 1, we give some numerical estimations of @infi, d; and dimy u in the
above theorems for k< 10.

Theorem 1.6.For k = 2,3,..., let u be the Bernoulli convolution: with parameter
p = . For eacha >0, define

K@) = {x elo.1: lim logu(lx —0.x +0]) _ a} .

log o
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Then
(i) If k =2, then for anyg € R\{qo},

dimy K (a(q)) = a(q)q — 1(q), (1.4)

where gg is the real number defined as {ii) of Theoreml.3, and a(g) = 7/(¢).
(ii) If k>3, then(1.4) holds for anyg € R.

Besides the above results, in Section 4.10 we give some results on biased Bernoulli
convolutions with parametep = A (including an explicit formula of the Hausdorff
dimension).

Let us give some backgrounds and remarks about our results. The limited Rademacher
function f looks very closed to the Weierstrass functdh which is defined by

Wi(x) = Z 2 sin(2"x)
n=1

with parameteri € (%, 1). A famous question, which still remains open, is whether or
not the Hausdorff dimension and box-counting dimension of the graplV abincide
(it is known that both the box-counting dimension of the graphwsfand that off
equal 2+ %. See e.g[8]). We refer the reader to Mauldin and Williams [41] and
the references therein for more details. It is natural to consider the same question for
the graph off. Przytycki and Urbaski [53] proved that if1 is a Pisot reciprocal,
the Hausdorff dimension of the graph bis strictly smaller than the box dimension.
Przytycki and Urbaski obtained results for dimI" in this case, but their results are
not explicit, and cannot be used to estimate the Hausdorff dimensidn d#licately.
To our best knowledge, Theorem 1.1 is the first explicit result about the Hausdorff
dimension of diny I" in the Pisot reciprocal case.

For the level sets of with parameteri, Hu and Lau [26] proved that if the corre-

spondingu is absolutely continuous, then the Hausdorff dimension ofttlesel set of

f is equal to % for £ almost allz € [0, 1]. Recall thatu is absolutely continuous

for almost all1 (%, 1) and it is totally singular if2 is a Pisot reciprocal. One may see
that Theorem 1.2 describes the different behavior of level sets in the Pisot reciprocal
cases.

Theorem 1.3 concerns the?-spectra of the Bernoulli convolutions and their dif-
ferentiability. We need to point out that the?-spectrum of a measure is one of the
basic ingredients in the study of multifractal phenomena. It is well known that if
is the self-similar measure associated with an iterated function system {(¢’i§$}21
satisfying the so-calledbpen set conditiorf27], then t(¢) can be calculated by an
explicit formula and it is analytic orR [5,44]. However if the IFS does not satisfy
the open set condition, it is much harder to obtain a formulazfgn. In their fun-
damental work [32], Lau and Ngai considered the IFS satisfying the weak separation
condition, and proved that each associated self-similar measure partially satisfies the
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multifractal formalism. Their result strongly relies on the differentiability property of
7(g). The weak separation condition is strictly weaker than the open set condition, and
it is satisfied by many interesting cases, such as the Bernoulli convolutions associated
with Pisot numbers. In a later papi3], Lau and Ngai considered the Bernoulli con-
volution with parameterp = 12. They gave an explicit formula of(q) for ¢ > 0
and proved that it is infinitely differentiable o0, cc). They also raised a question
how to determine the formula of(¢) for ¢ < 0 whenp = 2, and more generally
how to determiner(q) and check its differentiability for some other Pisot reciprocal
parameters. Theorem 1.3 answers their question considerably. It is very surprising for
the casep = 12, 1(q) is not differentiable at one poinfy < 0. This leads to the phase
transition of the corresponding Bernoulli convolution [18]. Some similar phenomena
(non-differentiability ofz(g)) were found in the study of another self-similar measure
(i.e., the3-fold convolution of the standard Cantor measure) [16,35].

Theorem 1.4 gives the formulas of dipu of p with parametersp = 7, k>2.
The formula forp = A is already known, which was obtained by several authors
[2,36,43,58] through different approaches. In all cases their methods depend on the
specific algebraic properties @b and cannot be used with other parameters. We men-
tion that Lalley [29] has expressed dimu as the top Lyapunov exponent of a sequence
of random matrices for any Pisot reciprocal parameter. Nevertheless, the involved Lya-
punov exponent is hard to calculate, and Lalley only gave the numerical estimation
in the casep = Ap. Our result forp = J; (k>3) verifies a claim of Alexander and
Zagier [2] that “it seems likely that” one can give a formula for dim whenp = J;
(k>=3).

For a given measure, the rangeR(v) of local dimensions ofv is important in
considering the local structure and multifractal propertywofowever, it is very hard
to determineR(v) whenv is a self-similar measure with overlaps. Hu first determined
R(w) in the casep = 12 by using a combinatorial method [24]. He also claimed (see
Theorems A, B of [24]) without proof that fop = 4; (k> 3),

log /2 log 2
e
klogp log p
However, the above formula is not true. In Theor&rd we present the correct one.
Theorem 1.6 verifies the validity of the multifractal formalism jofparameterp =
Ak, k=2. We say the multifractal formalism qf holds atoe € R(u) if

dimy K (2) = in[&{cxt —1(1)}.
te

Before our result some partial multifractal results forwith p = /1, were obtained.

In [32] Lau and Ngai showed that (1.4) is true fgr> 0, and Porzio [52], based on
the previous work [37] joint with Ledrappier, extended the valid range te —%. We
remark that Theorem 1.6 has not yet set up the validity of the multifractal formalism
of u with p = 1> for thosea € (7'(go+), 7' (go—). However this has been done recently
by Feng and Olivier [18] by viewing: as a weak Gibbs measure associated to some
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dynamical system. For all the Pisot reciprocals besides simple Pisot reciprocals, by
extending an idea in this paper and using a result on the product of non-negative
matrices in[15], Feng [14] recently proved thatq) is always differentiable fog > 0

and (1.4) holds for > O.

An essential property of simple Pisot reciprocals is the following: For a given simple
Pisot reciprocalp, let Q be the class of characteristic vectors ahd Q — Q* the
transition map. There is a € Q with v(y) = 1 such that for anys € Q, there exists
n € N (depending onf) so thaty is a letter in the word®"(f) (see Section 2 for all
involved definitions and notations). This property guarantees that the products of the
corresponding transition matrices can be decomposed as the products of scalars. We
did find another number (the positive root of-1x + 2x2 — x%) that also satisfies this
property. However this property is not generic, for example it is not satisfied by the
positive root ofx3 4+ x2 — 1.

This paper is organized as follows. In Section 2, we introduce some basic notations
such as net intervals, characteristic vectors and multiplicity vectors; and we give a
symbolic expression for each net interval; furthermore we construct a finite family of
non-negative matrices (maybe non-square) such that the distributipnoof each net
interval can be expressed as the products of these matrices. In Section 3, we re-express
some fractal indices (local dimension ahd-spectrum ofu, the Hausdorff dimension
of I'(f), the box dimension of the level sets H)fas the limits in terms of product of

these matrices. In Section 4, we focus on the golden ratio pase‘@T‘l and give a
series of explicit formulas of fractal indices. We prove in this cases locally infinite
similarity and satisfies the multifractal formalism. In Section 5, we consider the simple

Pisot reciprocals other tha#%hl.

2. Net intervals, characteristic vectors, multiplicity vectors

In this section we study the properties of so-calted interval characteristic vector
and multiplicity vector In Section 2.1, we give the definitions of all these notations.
In Section 2.2, by using an algebraic property of Pisot numbers, we show that the
collection of all possible characteristic vectors, denoted2ass finite. Using the self-
similar structure of net intervals, we set up a one-to-one correspondence betilieen
net intervals andadmissible wordof lengthn + 1 over Q. We call the corresponding
admissible word of amth net interval thesymbolic expressiomf this net interval.
Furthermore, we construct soniensition matricesover ©, such that the multiplicity
vector of anth net interval can be expressed as a product of these matrices. In Section
2.3, we obtain the distribution gf on each net interval.

2.1. The definitions

Let p be a Pisot reciprocal in the intervél/2, 1). Define Sox = px and Six =
px+(1—p). For our convenience, we writd = {0, 1} and let.4,, denote the collection
of all indices j1 --- j, of lengthn over A. Fore = j1--- j, € A,, write for simplicity
Se = Sj,0---08;,. We define two families of set®?, P! (»>0) in the following
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way: P = {0}, P} = {1}, and P? = {S5(0) : o € A}, Pl = {Ss(1) : 0 € Ay}
for n>1. Define P, = PO |J P! for n>0. Leths, ..., hy, be all the elements oP,
ranked in the increasing order. Define

Fu=A{lhj, hjral: 1<) < sa}.

Each element inF, is called anth net interval

The following facts about net intervals can be checked easiI)Ug)ef” A=10,1]
for any n>0; (i) For any A3, 42 € F,, with 4y # 4z, int(47) Nint(42) = @; (iii) For
any 4 € F, (n>1), there is a unique elemeunt e F,_1 such that4 > 4.

For each net intervall = [a, b] € F,,, we define a positive nhumbel, (A4), a vector
V. (4) and a positive integer, (4) as follows: If 4 = [0, 1] € Fp, we definelo(4) = 1,
Vo(4) = 0 andrg(4) = 1; Otherwise forn > 1, we definet, (4) and V,,(4) directly by

() = p"(b — a)

and
Vou(A) = (ax, ..., ar), (2.1)

whereas, ..., a; (ranked in the increasing order) are the elements of the following set
{p7"(@=S50): g€ Ay, a—p"<S;0<a}.

Let v,(4) denote the dimension oV, (4), i.e., v,(4) = k. We definer,(4) in the

following way: let 4 be the unique one interval ift, 1 containing4, and 4y, ..., 4,

(ranked in the increasing order) be all the element&jnsatisfying4; C 4, £,(4;) =

£,(A), Vo (4)) = Vu(4) for 1< j <m. Definer,(4) to be the integer so that4, = 4.
For convenience, we call the triple

the nth characteristic vectoiof 4, or simply characteristic vectorof 4. The vector
Cn(4) contains the information about the length and neighborhood relatiof of
Define W, (A4) = (b1, ..., by), where
bj=#oe A, p"a—-S:;0)=a;}, j=1... k.
Hereas, ..., a; are defined as in2(1). We call W,,(4) the nth multiplicity vector of
A. Denote N, (4) = |W, (D] = Zf:l b;. We call N, (4) the nth multiplicity of 4.
One may check directly that

Na(4) = #{o € Ay : S, ((0,1) N4 # 0}
=#{oe Ay : S,(0,1]) D 4}. (2.2)
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2.2. Symbolic expressions of net intervals, and products of matrices for multiplicity
vectors

We first consider the symbolic expressions of net intervals. Denof@ tiwe collection
of all possible distinct characteristic vectors, i.e.,

Q={Cy(4d): n=0, 4 € F,}. (2.3)
For o € Q, we write for simplicity
o) = Ln(4), V() = Vo(d), v(@) =vu(4), r(@) =ra(4) (2.4)

if «=C,(A) for somed € F,.
The following lemma is our starting point.

Lemma 2.1. The setQ is finite

To prove the above result, we need the following result, which is based on an
algebraic property of Pisot humbers.

Lemma 2.2. There is a finite set B such that for any integer 0 and anyo, ¢’ € A,,

either  p7"S;(0) — Sy (0)) >1  or  p"|Ss(0) — Sy (0)| € B. (2.5)

Proof. Setoq = p_l and letay, ..., oy denote the algebraic conjugates aaf. Since
o1 is a Pisot number, we have;| < 1 for 2<i<d. It is proved in[22, Lemma
1.51] that for P(x) a polynomial with integer coefficients and height= max{|a;| :
a; is a coefficient of P(x)}, if P(a1) # 0, then

d
|P(o)| =L~ [Tl — 1. (2.6)
i=2
Denote byB the set
{p7"185(0) — Sz (0)|<1: neN, 0,0 € A,}.
We claim thatB is a finite set of cardinality less than

1—p 2d—1

P +1
P Tl — 1]
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Assume the claim is not true, then by the Pigeon Hole principle there gxiste B
with

p Il llul =1

0<|t;|_—t2|<l_p od 1

However one may check thai — 1, = ﬁP(cxl) for some polynomialP (x) with
height not more than 2, which leads to a contradiction wiil6). [

Proof of Lemma 2.1. It suffices to prove the finiteness ¢f,(4) : n>0, 4 € F,},
{(Vu(A): n>0, 4 € F,} and{r,(4): n=0, 4 e F,}, respectively. For simplicity, we
only prove that of{V,,(4) : n>0, 4 € F,}. To prove this, take anyl = [a, b] € F,
ande € V,(4). Then by the definition of4,, there existss € A, such thatS;(0) e
(a—p",al ande = p~"(a — S;(0)). It follows thate € B whenevera € P,?, and
1—e € B whenevera € P,(1), whereB is defined as in Lemma 2.2. By the finiteness
of B, the set{V,(4): n>=0, 4 € F,} is finite. O

Now we present an elementary but important fact about characteristic vectors.
Lemma 2.3. For a given 4 € F,(n>0), let A1,..., 4; (ranked in the increasing
order) be all the elements i, 1 which are subintervals off. Then the number,k

the characteristic vectors,, +1(4;) (1<i <k) are determined by, (4) and V,,(4) (thus
they are determined by, (4)).

Proof. Let 4 = [a, b] € F,,. Write V,,(4) = (a1, ..., ay,4))-

To determine the subintervals of which belong toF, 1, we first determine the
points in[a, b]NP,11. AsSsumes = ji ... ju+1 € An+1 such thatS;(0) or S;(1) belongs
to the interval(a, ). ThenS; ((0, 1)) N(a, b) # ¥, and consequently; (0, 1) N (a, b) #
@, whereg = j1...j, € A,. HenceS;(0) € {a — p"a; : 1<i<v,(A)} and therefore

S5(0) € {a — p"a; + p"e: 1<i<vu(4), e=0or 1}
and
Se(1) e {a — i+ P+ p": 1<i<un(4), £=0 or 1} .
This implies that

(a,b) N Pyy1 = (a,a+ P”En(l‘))

n {a—pnai+p"8+pn+15: 1<i<v,(4), &6 €0, 1}}.
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Denote bya+p"c; (1< j<u) all the elements ofa, b]N P,41 ranked in the increasing
order. The above equality shows that the pointgl< j <u) are determined completely
by ¢,(4) and V,(4) (independent of and n).

Let 44, ..., 4 (ranked in the increasing order) be all the elementg;jn; which are
subintervals ofd. Then4; (1<i<k) are exact the intervals in the following collection:

{la+p"cj.a+pcjpa): 1<j<u—1},

which is determined by, (4) and V,(4).
Recall that

{86(0) : 0 € Any1, So((0, 1) N (a,b) # ¥}

Cla—pta;i +p"c: 1<i<v,(4), ¢e=0 or 1}.

By the definition of characteristic vector and the analysis in the preceding para-
graph, we know that the vectoi§, 1(4;) (1<i<k) are determined by, (4) and
V(4. O

Remark 2.4. In fact, the proof of Lemm&.3 provides an algorithm to determine the
elements ofQ. To see this, fom >0 let 2, denote the collection of all possibkth
characteristic vectors fok <n. It is clear thatQy = {(0; 1; 0)}. Using the method in
the proof of Lemma 2.3, one can determifig, Q2,, ... recursively. FurthermoreQ2
equalsQ, if Q,11 = Q,.

In the following, we would like to use a finite sequence of characteristic vectors to
identify a net interval. For eacHl € F,, (n>0), we list the intervals

A0 AL A

such thatd” = 4, and 4/ (j =0,...,n — 1) is the unique element itF; such that
Al > A7+ The sequence

Co(A%), C1(4Y), ..., Cu(A™)

is called thesymbolic expression of.

For a givend € F,(n>0), let 41, ..., 4; (ranked in the increasing order) be all the
elements inF, 1 which are subintervals ofl. The introduction of the third term in a
characteristic vector guarantees tiigt,1(4;) (1< j <k) are distinct with each other.
By induction, we have

Lemma 2.5. For any 41, 42 € F,(n>1) with 41 # A2, the symbolic expression af;
is different from that of4,.
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Now we are going to define a natural mgdrom Q to Q*, where Q* denotes the
collection of all finite words overQ. For anya € Q, pick n and 4 € F,, such that
o =C,(A). Let 44, ..., 4; (ranked in the increasing order) be all the element&;jn;
which are subintervals off. Write o; = C,41(4;) for 1< j<k. By Lemma2.3, the
word s . .. o depend only orx (independent of the choice afand 4). We defineZ by

E(o) = org ... 0. 2.7)

The abovel is called thetransition map
Define a 0—1 matriA on Q2 x Q in the following way:

1 if fis a letter of &(a),

Awp = { 0 otherwise (2.8)

A word f3;...f, € Q" is called anadmissible wordf Aﬁ,-,ﬁ,-ﬂ =1 for 1<j < n.

Remark 2.6. The proof of Lemma2.3 also provides an algorithm to obtainand A.

For our convenience, denote by = Co([0, 1]). Combining Lemma 2.5 and the
above definitions, we have

Lemma 2.7. Any 4 € F,(n>0) can be identifiedvia its symbolic expressipras an
admissible word inQ* of lengthn + 1 starting from the lettery,,.

In the remaining part of this subsection, we show that the multiplicity vector of any
net interval can be expressed as a product of some transition matrices, according to
the symbolic expression of this net interval.

Lemma 2.8. For any 4 € F,, (n>1), denote byZ the unique element i, 1 so that

4D A. There is av,—1(4) x v, (4) matrix T(C,-1(4), C,(4)) which depends only on
Cn—1(4) and C,(4) such that

W (4) = Wy _1(AD)T (Co_1(A), Cu(A)).

Proof. Assume 4 = [a,b] and A4 = [c,d]. Write V,(4) = (a1, ...,ay ) and
Va1 (4) = (Cl""’cvn_l(ﬂ))' Also write W,,(4) = (q1, ..., qu,1)) and W,_1(4) =
(u1, ""“vnfl(Z))' By the definition of W,,(4) and W,,_1(4), we have

qiz#{aeAn: p_"(a—SG(O))zai}, i=1...,v,4)
and

wj=#{d e dp1: pc—SpO) =c;},  j=1...,0-1(4).
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Observe that it = ji1 ... j, € A, satisfiesp™(a—S5(0)) € V,(4), i.e., 0<a—S;(0) <
p", then 0<c — Sp+(0)<p" 1 for ¢* = j1... ju—1, and thusp™"*1(c — 55+(0)) €
Va—1(4). Now define av,_1(4) x v,(4) matrix T = (¢; ;) by

P 1, 3Jee{0,1} so thatc — p”_lcj +p" e =a—p'a;,
)t 0 otherwise

That is,t;; = 1 if and only if there is¢ =i1...i, € A, such thatS;(0) = a — p"g;
and S, _;, ,(0) = c — p"“Lc;. By the last observation, we have

#loe Av: p7(a— S:(0) =a;}
vnfl(z‘\)

= Y tii-#{d €A1 pTe—S0(0) =¢;}.
j=1

That is,q; = Z;f”:‘ll(") tjiuj. Therefore we haveV,(4) = Wn_l(Z)T. This completes
the proof. O

The above result, together with the faéh ([0, 1]) = 1, yields immediately

Theorem 2.9. There exists a family of non-negative matri¢@so, f§) : o, f € Q, A,
=1}, such that for any4 € F,,

Wi (4) =T (79, 71 - - - T (Vy—1: V)
whereyg. ..y, is the symbolic expression of.
For convenience we call the abo?&o, f§)’s the transition matrices
2.3. Distributions ofu on net intervals

In this subsection we analyze the distributions0bn net intervals. We start from
the following lemma.

Lemma 2.10. Let 4 be an nth net interval. Writé,,(4) = £, V,(4) = (ay, ..., ay)
and W,,(4) = (b, ..., by). Then

(i) there exists a constanf > 0 such thatCp" <|4|<p", where |4]| denotes the
length of 4;

v
(i) A =27" 3% biua,a; +€1);
i=1
(i) there exists a constan® > 0 such that

D27 Ny (4) S p(A) S 27" Ny ().
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Proof. Let 4 = [a, b]. By the definition of the characteristic vector, we havd =
p"L. SinceQ is finite, we havet > C for some constan€ > 0. Note that4 is always
contained inS;([0, 1]) for someag € A,, it follows that |[4]| < p". This completes the
proof of (i).

To see (i), we iteratel(2) n times and have

uy =273 u(s7ha).
oeA,

Since u is a non-atomic measure supported [On1], we have

uy =23 p(sRa)

geA,: S;(0,1)NA#£H

v

=2y > u(s:t)

i=1 geA,: p~"(a—S;(0)=q;

=27 bip(lai, a + £1).

i=1

Part (iii) follows from (ii) and the finiteness o®. [

The following lemma is used to compare the distributionsuan two adjacentnth
net intervals.

Lemma 2.11. Suppose thatl; and 4, are two adjacent nth net intervala >1). Then

L N (D) < Nu(A2) < (1 + DN, (A2). (2.9)
n+1

Proof. We prove the statement by induction.

One may verify 2.9) directly for the case = 1, since there are exact three first net
intervals with multiplicities 1, 2, and 1, respectively. Now assume that (2.9) holds for
n<k. In the following we will show that (2.9) holds for = k + 1.

Suppose thatly, 4> are two adjacentk + 1)th net intervals, wherel; lies on the
left hand side of42. We will consider the following two possible cases separately:

(a) 41, 42 are contained in the sani¢h net intervalU.
(b) 41, 4, are contained in two adjacekth net intervalsUy, U, respectively.

In case (a), by4.2) we have

Ni(U) < Nig1(4;) <2Np(U), j=1,2
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and thus
2 Nes1(41) < Nes1(42) <2Njya (A1),

Therefore 2.9) holds for4,, 4, whenevern = k + 1.
In case (b), let us define
D1 = {we Ar : S,([0,1]) D Uy, and they share the same right end-ppint
Dy = {w € A4\D1: Su([0,1]) D Ui},
D3 = {we Ar : S,([0,1]) D Uz, and they share the same left end-phint
Da = {w e A\D3: Su([0,1]) D Ua}.

From (2.2) and the definition of net interval, we have

Dy = Da,

Ny (U1) = #D1 + #Do, Ni(Uz) = #D3 + #Da,
#D1 + #D2 < Nit1(41) <H#D1 + 2#Ds,

#D3 + #A4 < Niy1(42) <HD3 + 2#Dg.

According to the above relations and the assumption

1
——— N (U1) <N (U) <(k + )N (Up),
1 «(U1) < Ni(Uz) < (k + D) N (Ur)

we have

1
12 Nig1(41) <K Nig1(42) < (k + 2)Niy1(41).

This completes the proof.[]

As a corollary of the above two lemmas, we have

Corollary 2.12. There exists a positive constant C such that
o6 H(AD) < p(42) <nCp(Ay), (2.10)

for any n>1 and any two adjacent nth net intervalt, 4,. Furthermore for a fixed
point x € [0, 1],
| RPN/ n
lim ogu(lx — p", x + p"1)

=1
n—00 log u(1, (x))

where I,,(x) is an nth net interval containing. x
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3. Fractal indices in terms of products of matrices
In this chapter we study some fractal indices about the Bernoulli convolytiand

the limited Rademacher functiodnassociated with a given Pisot reciprogalWe will
re-express those indices as the limits in terms of products of transition matrices.

3.1. Local dimensions o
In this subsection we are concerned with the local dimensions. &ecall that for

any x € [0, 1], the local upper and lower dimensions pfat x, denoted as/(u, x) and
d(u, x), respectively, are defined by

logu([x —r,x +r])

logu([x —r,x +r])

d(u, x) = lim sup , d(u, x) = lim i(r)lf

0 logr logr
A simple argument shows that
— | _ n
(1, x) = lim sup og u([x — p", x + p"])
n— 00 n |ng
| _ n
d( x) = lim inf ogu([x — p",x+p ])'
n—00 nlogp
This combining Corollary2.12 yields
Lemma 3.1. For any x € [0, 1], we have
_ I I I I
d(,u,x) = |lim sup M7 d(’u’ x) = lim inf M’
n—00 nlogp n—00 nlogp

where I,,(x) denotes an nth net interval containing x

Let Q and A be constructed as in Section 2. Denote @) the collection of all
admissible words of infinite length, i.e.,

QL\:J ={y=00D21: yi €Q Ay, y,, =1}.

We use[yy] to denote the sub-collection of all admissible words of infinite length
starting fromy,, the characteristic vector of the Oth net interf@/1]. This is

[7ol = {y = () € @+ y1 =70}
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There is a natural projection from [y,] to the interval[O, 1] defined by
o0
) =) A61-yur1), ¥ =), (3.1)
n=1
where A(y1 - - - y,4+1) denote thenth net interval with the symbolic expression - - -

Yn+1-
Let {T'(«, ), o, f € 2, A,p = 1} be the class of transition matrices given as in

Theorem2.9. Write for shortlyT,, ..., := T (01, %2) - - - T (at, %y41). Then we have

Theorem 3.2. For any y = (y;) € [yo], we have

— log2 . 10g (| Ty y, 41 |
du, =——"" 4 |im sup ———22 1"
(u, m(y)) logp + n_)oop nlogp

the lower dimensioni(u, n(y)) can be obtained by taking the lower limit

Proof. Let x = =m(y). Then A(y1---y,+1) iS an nth net interval containingk. By
Theorem?2.9,

Ny(Ar- - yuyD) = IWa (A1 yur)|l = ”Ty1~~yn+1||'

Hence by Lemma.10(iii), u(4(y1- - - yut1)) = 27" Ty,...y, ., |. Using Lemma 3.1, we
obtain the desired result..]

3.2. L9-spectrum ofu

In this subsection, we express thé-spectrum ofu as a limit in terms of products
of transition matrices.
Recall for anyg € R, the L4-spectrumz(q) of u is defined as

logsup)_; u(lx; — 0, x; + d1)4
logd

= lim inf
T(q) 0—0

’

where the superium is taken over all the families of disjoint interyals- d, x; + J]
with x; € [0, 1]. We will show that

Theorem 3.3. For any ¢ € R, we have

2 o Ty, 4
£ lim inf 9> 1Ty, 4l
logp n—00 nlogp
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where the summation is taken over all admissible wargs. - o, 1 of lengthn + 1
with o1 = 7.

Proof. Supposed is annth net interval with the symbolic expression - - - a,+1. Then
by Theorem2.9 and Lemma 2.10u(4) ~ 27"(|Ty,...0,, . It follows that the right
hand side of (3.2) equals

lo A)4
Rq) = lim inf 29 2der, KT
n—00 nlogp

In the following we showr(g) = R(g).
Let C be the constant in Lemm2.10. ThenCp" <|4|<p" for any 4 € F,. Now
fix n and taked = %Cp”. For each4 € F,, construct an intervall’ with 4" ¢ 4 such

that |4’| = 26 and u(A’))%Cu(A). The intervals4”’s are disjoint and satisfy

> i< { (GO Y per, (AN if =0,

i q .
AT, > oaeF, WA) otherwise

which impliest(g) <R(g).
Now let us show the reverse inequality. For any smaal- O, let n be the integer
satisfying p” < 6< p" 1. Suppose thakx; — 6, x; +J]; is a family of disjoint intervals

with x; € [0, 1]. Then for each, [x; — J, x; + J] intersects at mos{?—p + 1 many nth
net intervals. It follows that wheg >0,

Dl =8, x5 +0D7 < Y > u(4)

4 i AeF,, AN[x;—0,x;+0]#£0

< rnr Y > ua)?
i AeF,, AN[xi—0,x;+0]40

<22t YT pae, (3.3)
AeFy

where the last inequality uses the fact that eatthnet interval intersects at most two

distinct intervals[x; — 6, x; + 0]. Note that for each, the interval[x; — 0, x; + 0]
contains at least oneth net intervals. This implies

Y uxi =6, x5 +0DI< Y A, ¥gq<O (3.4)
i AeF,

The inequalityt(q) > R(q) follows from (3.3) and (3.4). I
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3.3. The Hausdorff dimension of the graph of f

Let I'(f) denote the graph of the limited Rademacher funcfiom [53, p. 184],
Przytycki and Urbaski gave a formula of the Hausdorff dimension Ioff), which is
based on the McMullen’s formula on the Hausdorff dimension of a class of self-affine

sets [42,51]. Fom € N, leta, 1,...,a,, (ranked in the increasing order) be all the
distinct points in{S;(0): o€ A,}. For j =1,...,s,, denote by

dnj =#oc € Ay: Se(0) = ap j}.
The formula given by Przytycki and Urhaki is just

Iog Zjﬁ:l(dn,j)_ logp/log2

dimyg I'(f) = i 3.5
imy I'(f) = lim. —logp (3.5)
Based on the above formula, we have
Theorem 3.4. The Hausdorff dimension of the graph of f satisfies
lo T,. —logp/log2
dimy I'(f) = fim 09 2Tl , (3.6)
n—00 —nlogp

where the summation is taken over all admissible wargs- - o, 1 of lengthn + 1
with o1 = 7.

Proof. Denoteu = —logp/log2. Then O< u < 1. Set
m = Ssupv,(4) : 4e F,,ne N},

where v, (4) is the dimension of the multiplicity vectow,(4). By the finiteness of
Q, we have O< m < oc.
Now fix n. Take 4 = [c, d] € F,. Write W,(4) = (by, ..., b,,4). Then we have

1 vy (4) vy (4)
— D BISIWaI"< Y bl 3.7)
i=1 i=1

By the definition of multiplicity vector, the s€; : 1<i <v,(4)} is equal to

U k-

J: an.je(t'*ﬂ"’c']
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Therefore we have

% Yoo d< It > d (3.8)

J: an.jG(C—/)”,C] J: lln,je(C—ﬂ"yC]

Observe that for each<; < s,, there is at least one and at mast! many distinct
A = [c,d] € F, satisfying 0<c —a,,; < p", whereC is the constant in Lemma.10.
Taking the summation oved € F, in (3.8), we have

Z HIS D W< CT 12

AeF,
This combining 8.5) and Theorem 2.9 yields the desired resulil
3.4. The box dimension of the level sets of f
Recall that the level set dfatt, denoted ad.,, is defined by
={xe[0,1]: f(x)=1t). (3.9)

Let the projectionr : [yg] — [0, 1] be defined as in3(1). In this subsection we prove

Theorem 3.5. For any y = (y;)72; € [yol, we have

dim i log 17y, y.a
dimg Ly = lim sup —— &Yt @
B Ln(y) n_)oop nlog 2

l0g (1 7y,...y, 4|
dimg Lr(y) = lim inf —=——fies,
e —00 nlog?2

Wheremg,di_mB denote the upper and lower box dimension
As a corollary of Theorem8.5 and 3.2, we have

Corollary 3.6. For anyr € [0, 1], we have

oli_mBL,-Hﬂ dp. 1), di_mBLf—Hﬂ a1,

log 2 log2

To prove TheorenB.5, we first give a lemma.
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Lemma 3.7. For ¢ = a1 - - - a,€A,, let I; denote the nti2-adic interval[ "1 ;271
Y74 ai27' +27"). Then the image of, under f is the interval

Jo = [(1— P Y ap™h A—p) Y apTt+ p”) :

i=1 i=1

Proof. Recall that the Rademacher functiéhis defined onR with period 1, taking
values 0 and 1 ori0,1/2) and [1/2, 1), respectively. Ifx € I, it can be checked
directly that

R(Zi_lx)zai, i=1...,n.

Therefore

f@) =@A=p) ) R@ pt

i=1

n o0
=1A-p) Y ap ™t +A-p) Y R x)pit
i=1 j=n+1

Hence f(x) € J5.

In the following we show that for any € J,;, there existsy € I, such thatf(x) =
r. To prove this, set = & — Y/ ; aip' L. It is clearz € [o, 1”_—p) and 1 =
A-p (X aipi~t+ z). Let us consider the following —!-expansion

o0
2= Y aph (3.10)
i=n+1

where the 0-1 coefficients; (i >n + 1) are defined by induction as follows:

1 if z=p",
n+1=10 otherwise
and if ay41, ..., a,+r are defined well, then
_ [ it >0 @ +
el = { 0 otherwise

The sequencéq; }; > ,+1 constructed as above satisfies the following property: for any
m € N, there isk > m such thata; = 0. Assume this is not true, i.e., therekg such
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that ay = 1 for all k > ko. Sincez < p"/(1— p), a; # 1 for somei >n + 1. Hence
we can assumey, = 0. That means

ko—1
7 < Z pi~t 4 ko=l
i=n+1
However,

ko—1 00
7 = Z pifl_’_ Z pjfl

i=n+1 Jj=ko+1

ko—1
— Z ol p
i=n+1 1_'0

ko—1
i—1 ko—1
S T
i=n+1

ko

which leads to a contradiction. Now defime= Y 72, a;27". Since{a;}; > ,+1 satisfies
the above property, we have

R2 ) = q;, i=12,....
Thereforet = f(x). O
Proof of Theorem 3.5.For y = ()2, let t = n(y). Set
N(n,t)=#{c=a1...a, € Ay : 3x € Iay. 4, Such thatf(x) =1},

wherely,. o, = [Y7-q @27, Y }_; a;27" +27"). By the definition of box dimension,
we have

|
. dimg L, = fim inf 29N 0.0

dimg L; = lim sup log V. 1) 50 log2
—n

n—-oco —nlog2

By Lemma3.7, we have
N, t) =#{oce A, : t € S;([0, 1))}.

In the following we show that i1 is ann-net interval containing, then

LN(n,f)<||Wn(4‘)||<(n +DN®m,1). (3.11)
n+1
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Table 2
Elements inQ

ae Labelled as
(1,0, 1) 1
(p;0; 1) 2
(1-p;(0,p); 1) 3
(p;1—p; 1) 4
(p; (0, 1—p); 1) 5
2p-11-p; 1 6
1—-p:;(0,p);2) 7

In fact if + = 1, we may check directly thaW (n,7) = |W,(4)|| = 1 and thus 3.11)
holds. Now we assume < [0, 1). In this case, there is a uniqua&h net interval
A1 = [c, d] such thatr € [c, d); furthermore foro € A,,

t € S¢([0, 1)) < 0<c — S;(0) < p".
This implies that
[Wa (4Dl = N(n, 1).

However if 4, is anothernth interval containingt, then 4, and 4, are adjacent and
thus by Lemma2.11,

1
—— Wy (AD I <[ Wp (42| < (n + D)W, (42) .
n+1

Hence 8.11) holds fort € [0, 1). By Theorem 2.9, we obtain the desired resulfl

4. The golden ratio case

In this section we consider the concrete cpse @ the reciprocal of the golden
ratio.

4.1. The symbolic expressions and transition matrices

Let Q2 be the collection of all possible characteristic vectors. By a direct check (see
Remark 2.4) there are exact 7 elementd2nWe list them out Table 2.

For our convenience, each elementnis labelled by a digit from 1 to 7 as in the
above table. Especially, the characteristic vegthrO; 1) of the Oth net intervalO0, 1],
is labelled as 1. Without confusion, we write directly

Q=1(12....7. (4.1)



D.-J. Feng/Advances in Mathematics 195 (2005) 24-101 49

The transition magZ, defined as in2.7), is given by

<(1) =234
<) =23
<@ =5
<4 = 34,
£(5) = 367,
<6 =3,
<=5

and the 0-1 matrid, which is induced by, is the following:

1000]. (4.2)

The transition matrice§d (i, j) constructed as in the proof of Lemn2a8, are listed

as follows:

T(3,5) =
T(4,3) =
T(5,3) =
T(6,3) =
T(7,5) =

T(1,2) =1,
T(2.2) =1,

[1.

[1,

1
0
1
0

1
K

0]
1]
1,
1]
1]
1,
0]
1]

71,3 =I[11], 71,4 =1,

T(2.3) =[1.1],
T(4,4) =1,

L 1o (4.3)
7156):[1},7157)=[11],

For anyn > 1, denote byQ2,4 , the collection of all admissible words of lengthi.e.,

-QAn—{l

Lip € QF A,'j,,“/._;,_l:l, 1<y <}’l},

whereQ* denotes the collection of all finite words ov@r By Lemma2.7 and Theorem
2.9, eachnth net interval4 corresponds to a unique wotg. ..i,1 in 24 ,4+1 With
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i1 = 1; and the multiplicity vectoW, (A4) satisfies
Wi (A) = Ty iy = T (i1, i2)T (i2,03) ... T (in, int+1)-

To analyze the structure a4 ,, as well as the above products of matrices, we
present the following simple but important fact:

Lemma 4.1. (i) Q= {3,5,6,7} is an essential subclass @2 That is { € Q :
Ay p =1} C Q for any « € Q; and for anya, § € Q, there existyy, ..., 7, € Q such
thaty; = o, y, =f and A, ,,,, =1 for 1<i<n — 1.

__ (i) The characteristic vecton = (2p —1; 1 — p; 1), represented by the symb6lin
Q, satisfiesv(x) = 1.

For our convenience, denote Iy, the collection of all admissible words of length
n starting from 3, i.e.,

Fy={i1...in € Qan: i1 =3}

By Lemma4.l, F, C ?QA,,,.
In the following we give the structure of the words {2, ,, as well as the corre-
sponding products of matrices.

Lemma 4.2. For n>1, supposew = i1...iy+1 € Q4 n+1 With i1 = 1. Then all the
possible forms ofv, as well as| T,||, are the following

Q) w=12...2, and |T,| = 1.

n
(2) w=14...4, and || Ty, || = 1.

n

(B) w=12...2v, 0<k <n, ve Fy_y, and | To| = | Tull.
k

(4) w=14...4v, 0<k <n, v e Fy_y, and || To|| = | Tul.

k

Now setdg =3, 61 =7 and

M():I:éi}, M1:|:12i|, M@:[ég} (4.4)

Write for simplicity M;,. ;, = M, ... M;,. Then we have

Lemma 4.3. Let v € F, for somen>1. Then all the possible forms of as well as
the value of||Ty, ||, are the following

LD n=1v=3 [Tl =2
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() n=2,v=35 Tyl = 2.

(B) n=2k, k>2,v=350;5...0;,_,5with i1... i1 € Ax_1.
1Tl = (1M ix_all-

(4) n=2k, k=22,v=3509;5...9;,5 6y, where0O<L<k — 2, i1...i¢g € Ag,
ne Fy3-20 Tl = IMiy.i, I X | T1]l.

() n=2k+1,k>1,v=350,5...5, .55, wherei...ir € A.
1Tl = IMiy. i Il

6) n=2k+1,k>1,v=356,5...9;,_,56,whereiy...iy_1 € Ax—1.
”Tlv” = ”Mil...ik_l”-

(") n=2k+1,k>2,v=353,5...5,5 67 where0< <k — 2, i1...i, € Ay,
n € Fu—z—20- Tyl = lIMig._i, | x | T2yll

4.2. The exponential sum of the products of transition matrices

In this subsection we determine the exact value of
. 1/n
E@ = lim (3 1T1)

for any ¢ € R, where the summation is taken over all admissible watds.i, 1 of
lengthn + 1 with i1 = 1. By Theorems3.3 and 3.4, this can be applied to calculate
the L9-spectrum ofu and the Hausdorff dimension of the graphfoe also check
the differentiability of E(g), which is necessary in the multifractal analysisof

Let Mo, M1 be defined as in (4.4). Far € R, defineug(q) =27 and

un(q) =Y My, n=12.... (4.5)
JeA,

The main result of this section is the following
Theorem 4.4. (i) For any g € R, we haveE(g) = 1/x(g), where

x(q) =supx=0: > u,(q)x™3<1). (4.6)
n=0

[ee)
(i) There exists a uniqugy < —2 such that)_ u,(go) = 1. Whenevey > go, x(q)

n=0

o

is the positive root of) un(q)x2"+3 =1, and it is an infinitely differentiable function
n=0

of g on (go, +00). Wheneverg <qo, x(¢) = 1. Moreoverx(g) is not differentiable at

q = q0.
We first consider part (i) of Theore#.4. Forg € R, define

Ri(q)=Y_ITull,  n>1,

veF,
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where F,, denotes the collection all admissible words of lengttstarting from the
symbol 3. Set

R(g) = lim (Ry(g)"".

By Lemmad4.3, we have directly

Lemma 4.5. Ri(q) = 29 = uo(q), R2(q) = 27 = uo(q), R3(q) = uo(g) + ui(q), and
for k=2,

k=2

Roi(q) = (Z ui(Q)Rzk—zi—s(CI)> + uk-1(q).

i=0
k=2

Rokt1(g) = (Z Mi(CI)R2k+12i3(q)) + uk-1(q) + uk(q).

i=0
Now we prove

Lemma 4.6. R(q) = 1/x(¢) for any g € R.

Proof. We divide the proof into two steps.
oo .
Stepl: lim sup,_, o (Ra(@)Y" <1/x(q). SinceY" u;(q)x(q)%T% <1, it follows that

=

for any k>1,

k
(@) 2 ) uilg)x(g)¥E
i=0

k—2
> wilx(@* T+ u1(g)x(q) (4.7)
i=0
and similarly
k—2 '
(@) 2N wi@x (@ T 1) + ur(@)x (@) (4.8)
i=0

Choose a positive number > max{1, x(¢)~2, x(¢)~1} such that

Ri(g) < Cx(q)™", i=1,23

We claim that

Ri(g) < Cx(q)™" (4.9)
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for all i € N. We show this claim by induction. Suppos£.9) holds for anyi < 2k.
By Lemma 4.5, (4.7) and (4.8), we have

k—2
Rau(q) = (Z ui(q)Rzkzis(q)> + ur-1(q)

i=0

k—2
< C (Z ui(q)x(q)2i+3_2k> + ug-1(q)

i=0

k=2
<c (Z u,~<q)x(q>2"+3—2’<> + Cur—1(9)x(q)

i=0

< Cx(g)™*

and
k—2

Ray1(q) = <Z Mi(Q)R2k+1—2i—3(6])> + uk-1(q) + uk(q)

i=0

k—2
<cC (Z m(q)x(q)””‘”‘l) +uk-1(q) + ui(q)

i=0
k—2 .
<C (Z u,-(q)x(q)zl”—z"—l) + Cur-1(9) + Cur(q9)x(q)*
i=0
< Cx(g)~% L
Therefore (4.9) holds fof = 2k andi = 2k + 1. This finishes the proof of the claim.
Hence the main statement in this step follows.

Step2: lim sup,_, » (Ra(@)Y™ >1/x(q). To see this, take any € (0, x(g)~b).
Sincey~! > x(g), there exists a positive integét such that

N-2
1< Z wigy 32,
i=0

Thus fork> N, we have

k=2 k—2
VALY iy Y)Y T wig)y? (4.10)
i=0 i=0

Choose a positive humbdd < min{1, x(¢)~L, x(¢) "2} such that

Ri(q) > Dy', i=1...,2N — 1
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Then by an argument similar to that in Step 1, we have

Ri(q) > Dy',  VieN,

which implies lim (Rn,,,)l/" >vy. Sincey € (0,1/x(q)) is arbitrary, we obtain the
m-—0Q0

desired inequality in this step.C]
Proof of (i) of Theorem 4.4.By Lemma4.6, it suffices to proveE(q) = R(q). Set
En(@) =Y T ipall?,

where the summation is taken over all admissible waids. i, 1 of lengthn +1 with
i1=1. ThenE(g) = lim,_ (En(q))l/”. By Lemma4.2, we have

n—1

En(@) =Ru(q) +2 ) Ry-1(q) +2. (4.11)
i=1

On the other hand, observe that(q) > [|Myl|¢ = (n+2)4. It follows that the series
3% o un(q)x?*3 diverges forx > 1. Therefore & x(¢)<1. This combining Lemma
4.6 and (4.11) yields the desired result]

In the following, we prove part (ii) of Theorem 4.4. We first present two propositions,
for which the proofs will be given later.

Proposition 4.7. There is a non-empty open intervéll C (—oo, 0) such that

1< Z un(q) < o0, Z ni,(q) < 00 (4.12)

n=0 n=0

for eachq € U.

Proposition 4.8. Suppose that q is a real number satisfyng, - o u»(¢q) = +oo. Then
for any integer L there exist8 < y < 1 such that

00
L < ZE:IMAQ)y” < +o0.
n=0

Proof of part (ii) of Theorem 4.4. We divide the proof into four steps.
Step1: There exists a real numbej < 0 such that) >, u,(g0) = 1. To see this,
we denote

e ¢]

F(q) =Y u(q).

n=0
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By Proposition4.7, there exists < 0 such that 1< F(t) < oco. Since u,(g) is
an increasing positive function of for eachn, the series) ;> ; u,(¢) converges
uniformly on (—oo, t). Thus F(g) is a continuous function oG—oo, t). The existence
of go follows from the Intermediate Value Theorem and the fact,lim,, F(g) =0,
which we will prove below.

For anyn € N andg < g’ < t, we have

u
ﬁ < max | My ||<1*f/ < zq*f/,
un (q/) JG.A,,

which implies F(q)/F(q") <297 and thus lim_, _o, F(g) = 0.

Step2: Whenevely <qo, x(¢) = 1; and whenevey > go, x(¢) is the positive root
of 3%, un(g)x?*+3 = 1. First assumey <qo. In this case} " u,, <1, and thus
x(q)=1. Sinceu,(q) > [Mg|? = (n + 17, we have}’ -, un(q)x%’1+3 = oo for
x > 1, which impliesx(g) <1. Thereforex(q) = 1.

Now assume; > go. Under this assumption we have either

9]

1< Z uy(g) < oo
n=0
or
00
Z Mn(q) = Q.
n=0

In the first case,Zn20 un(q)x?*3 is a continuous function o on (0, 1) and thus

there existsy € (0, 1) satisfyingY % u,(q)y?'+3 = 1, hencex(¢) = y. In the second
case, by Propositiod.8, there exists & 71 < 2 < 1 such that

1< Z un(q)tlz” < 400, t1_3 < Z u,,(q)tzz" < 0.
n=0 n>0

Thus 1< 32 u,(q)13" 3 < co. Therefored"2°, u,(q)x?*+2 is a continuous func-
tion of x on (0, ). Combining it with @.6), we see thak(q) satisfies) .~ u,(q)
x(@? 3 =1

Step3: x(g) is infinitely differentiable on(gg, +00). Moreover

20 (Lsea, IMs110g 1M, 1) x() >+

Y omeo Un(q)(2n + B)x(q)?+2 . Ya>qo (4.13)

x'(q) = —

To see it, define

o0

F(g.x) =Y ua(q)x™*.
n=0
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Fix ¢1 € (go, +00). As we have shown in step 2, there exists a real numberx(g1)
such that 1< F(q1, y) < +oo. Take a real numbez so thatx(q1) < z < y, and take
g2 such that

Y
.

q2 > q1, 427 <

Note that for any integen >0,

un(q2) < max || M, |72~ <4n(q2—q1).
un(qr) ~ JeA,

Therefore for anyy < g2 and O< x < z, we have

oo

F(g.x) < Y un(g2)z®"®
n=0
> S\ 243
< Z un(ql)y2n+34n(qz—q1) <_) < 400,
n=0 y
>, du (q) 00
> S = 373 1My 0g M) ¥ < Y wa(g) (og 4)x
n=0 q 150 JeA, part
> 7 2n+3
< Z un(q1)y? 3 (log 4141 92— (_) < 400
n=0 y
and
© o
Z un(CI)(3+2n)x2”+2 < Z Mn(qz)(3+2n)zz"+2
n=0 n=0
1S 2\ 23
< 2 ) unlqy? 3@+ 24y <_> oo,
< n=0 y

The above three inequalities imply that(g, x) is well defined and differentiable on
(—00, q2) x (0, z). Furthermore using similar discussions we can show fat, x) is
infinitely differentiable on(—oo, g2) x (0, z). Thus by the Implicit Function Theorem,
x(q) is infinitely differentiable on a neighborhood ¢@f. Sincegq; is taken arbitrarily
on (go, +00), x(g) is infinitely differentiable on(gg, +00). Formula @.13) follows by
a direct calculation.
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Step4: x(g) is not differentiable aty = go. Note thatx'(go—) = 0, we need to
prove x’'(go+) < 0. To see it, notice that fog > g,

oo o0

Z n (q)x(q)?"2 — Z un(go)x(go)? 3 = 0.
n=0 n=0

Thus we have

X un(q) — un(qo) ) 2n1+3
x(g) ~x(qo) _ 5 a—w W
9= 40 Sz 0 (@) (@22 + x(@PHx(qo) + - + x(g0) )

X up(q) — un(qo)
n=0 q —4q0

Y020 un@) (x(@2H2 + x(@2H 4+ x(g) + 1)

Since Y o2 5 un(q)(2n + 3) < +oo on a neighborhood ofig (by Proposition4.7), we
obtain the following formula by taking | qo:

2 on>0eq, 1M1 log | M, )

0. O
Y o un(qo) 21 +3)

x'(go+) = —

In what follows, we give the proofs of Propositiods7 and 4.8. First we give
some simple lemmas. For any positive integeand positiveny, . .., ng, we define for
simplicity

k
a(na, ..., ng) = (1,0 ]’[ (M;)" 1,07
i=0

and

b(ni,...,np) =

’

k
[T(:)"
i=0

whereg; =0 if i is odd, andg; = 1 if i is even.

Lemma 4.9. Let b(ny, ..., n;) be defined as aboyé¢hen

) b1, ...,np)<A+n1)... A+ np_1) 2+ ny).
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(i) b(n1,....,n2%) =1+ n1n2)...(1+ ny—_1nz%) and
b(ny,....,nxs1) =2 A +nn2) ... A+ nxp—_1nz) (1 + nay1).

Proof. Part (i) follows directly from the inequality
A IMI<(n+1n+1), e=0o0rl

To see part (i), it suffices to notice that

nop_ 1+ nno ny 1+ ny—1np na—1
ni 3 N2 12k—1 g2k __
My M) ...(My~ M%) = (712 1) Uiy 1

< ((l+n1n2) oo (A nog_ngk) *)
= * *

and

MIAME | MO M > < A +nanp) ... >(kl + ngk—1nz;) : ) ((1) n2k1+1) ' 0

Since any element if0, 1}" can be uniquely written ag™* ... /", or (1—ep)™ ... (1—
&)™ with n1 + - - - 4+ nx = n, we obtain the following lemma immediately.

Lemma 4.10. For eachqg € R, we have

o
Zun(q)=2"+22b(n)q+22 Z b(ny, ..., n)?
n=0 n>1 [>2ny,...n1>1
=2042) bm?+2) Y bn....n2)
n=>1 [>1ny,..ny>1

42 Z Z b(ni, ..., nyy1)!

[Z1ng,..ngp121
and

Y onun@) =2 nbm?+2Y " Y+ +na)bn, ... na)
n=0

n>1 1>21ny,..,n>1

+2) a4 tnai) Y b, o)

=21 ni,...nz41>1
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Proof of Proposition 4.7.By Lemmas4.9 and 4.10, we have for any < 0,

o0
Z un(q)
n=0
22042 +n?+2> > A+n)?. A+n)?@2+n)
n=>1 1>22nq,...n>1
I
=2 +2( Y @+ |1+ > [ Y a+ne (4.14)
n>1 121 \n>1
and
Z nup(q)
n=0
<2 Z n2+n?+2 Z Z (n1+---+ny)A+nn)? ... (L+npy_1no)?
n=1 k>1nq,..np =1
+2) ) etz @+nng)? At gm0 ng

k>1ny,..ngq41>1

=2 Z n2+nm?+2 Z Z 2kn1(1+n1n2)? ... (1 + nop_1nx)?
n>1 k>1ny,..ny=>1

+2 Z Z 2kn1(1+ ninp)? ...(1+n2k_1n2k)qngk+1
k=1ny,..ngpy1>1

+2 Z Z nop1(L+nin)? (L4 ng_1na)ind 4
kz1ny,...npy1>1

k—1
=2 Z n(2+n)? +< Z nl(l-i-nlnz)q)( Z 4k< Z (1+m1m2)q> )
k=1

n>1 ni,np>1 my,mp =1

+< Z "1(1+”1"2)q)<2”q)<l§14k< Z (1+mlmz)q>k—1)

nynp>1 n=1 mq,mp=>1

(555 o)

n>1 k=1 “mq,mp>1

(4.15)

By (4.14) and (4.15), to prove the proposition, it suffices to construct an intéhval
such that for eacly € U, one has

Z n?t! < o, Z n1(1+nin2)? < oo, Z A+mmo)? <1 (4.16)

n>1 ni,np>1 my,mp>1
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and

242y @+mi+2- (1+ 3 00) (X (X (1+n1n2)q)l>>1. (4.17)

n=>1 n>1 [>21 ninp>1

To do this, denote by the Riemann—Zeta function, that is

{x) = Zn‘x, x> 1

n>1
Let 0p be the positive root of? + 2x — g =0, i.e., g~ 0.45774. We set
U= ( - C_l(i—(f), a4+ 90)> A (—2.2599 —2.2543.

Now supposey € U. Sinceqg < —2, we can see_, -, ni*tl < oo and 3°

ni,n2>1
n1(14+ nin2)4 < co. Moreover,

Z A+ ninx)? =2 Z(l—i—n)" - 29 + Z (1 + n1np)?

ni,np>1 n>1 ni,np =2
2
<2y (@4m =24 n
n=>1 n=2

=2(l—q) — 1) = 29 + (L(—q) — 1)°

1
<200—§+03=1

and

24 +2(Z(2+n)q) 1+)° (Z(1+n)q)

n>1 121 \n>1
{(—q)—1— 21 B—29){(—q) — 4
=29 4.2 17 = = _
R o 2 (g
B3-22{(—q) -4 (3-22.1 -4
1 =
S S T S 2 g

Thus @.16) and (4.17) hold whery € U, which completes the proof of the
proposition. [
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Proof of Proposition 4.8. First we assume > 0. In this caseu,(¢) > 1 for n>0,
and therefore)_, - o un 4 = +oo. Moreover, the sequenda, 4}, is sub-multiplicative,
this is um14(q) <um(q)un(q). Thus

; 1/n _ ; 1/n
nﬂToo un(g)™" = n”;fl un(g)="".

Denote byr, the value of above limit, then <r;, < oo and u,(q) >r; for n>1.
o0
Hence Iim1 > un(g)x™ = 400, which implies the desired result since the series
x—>rg " n=0
Yo o un(g)y" converges on0, r(;l).
In the remaining part we assumge< 0 and ) 7, u,(g) = oco. Note that for any

integersni, no, ...,n; andms, mo, ..., ms, we have
a(ni,no,...,n)<b(ny,no,...,ng
and
a(ni,no,...,na(my, mo, ..., mg)<a(ni,no,...,n;,my,mo,...,nMy), (4.18)
wherem1, mo, ..., mg are positive integers. It is not hard to show that
a(ny, no,...,n)= % b(ny,no,...,np), if [ is even (4.19)

(To see this, denote

X1 X2\ _ ny g N2 ni—1 3 7N
(XS)C4>_(M0 Ml)"’(MO Ml)

for even integed. Then by induction orl, one can verify that among the’s, x1 is
the greatest and, the smallest.)

For any integerl >1, take an integey(L) > L -4~9 and definep = 2>, Now for
any O<x < 1,

9]

Z Un (Q)xn

n=0

2p—1
=21+2. Z Z b(ni, ng,...,nj)% - x" 0t

Jj=1 ni,..n;2>1

+2- Z b(ny, ..., nzkp+j)q xRk
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2p—1
<2142 Z Z b(ny,na,...,nj)! LMy

Jj=1 n1,..nj =1

2p—1 o0

+2:3 > Yo ama . gy )T xR

Jj=0 k=1 na,...nzpy;j=1

2p—1
<2142 Z Z b(ni, ng,...,n;)% - X"t

Jj=1 n1,..nj>1

2p—1 o0

+2. Z Z Z a(nl,.--,Hka)q

J=0 k=1 ny,..nypy; =1

X a(Moup+1, .- s n2kp+j)qx”1+'"+”2kp+j

2p—1
<2942 Z Z b(ny,na,...,nj)! LA

Jj=1 ni1,..n; =1

2p—1

+2 Z Z a(ny, ..., nj)q xn1+"'+n_/

Jj=0 ni,...n;>1

400 k
X Z Z a(ny, ..., nzp)? xtetnzy . (4.20)
k=1 \ni,...,n2p>1
Sincea(ni, no, ..., n;), b(ny, na, ..., n;) are polynomials abouis, no, ..., n; and O<

x < 1, it follows

Z a(ny, ..., n)4 x"T < o0,

ni,..,np =1

Z b(ni,...,n)4 x"T T < o
ni,...,n =1

for any positive integet. Therefore by 4.20), we have

Z u,(q)x" < oo

n=0

it gy >1 a1, .o n2p) xtetnzy <
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Since ) 12 5 un(q) = oo, by (4.20) we have

Z a(ny,...,nzp)?>1 or=+oo.

Hence there exists @ z<1 such that

Z a(ny, ..., ngp)tg"mt 4w =1,
ni,...nzp =1
Moreover,
o0
> un(@)x" <o, Vxe(0.2). 4.21)
n=0

Forl=2,22 ..., p, by (4.18) we obtain

2p/l

ni,...nzp =1 ni,...n; =1

which implies

Z alny, ..., nl)qznl+~-+n1 >1.
ni,..,np =1

Thus by @.19), we have

Z b(ny, ...,n)"T =49 1=2,2% ..., p.
ny,...,n =1

Therefore

. 00
limy_, .- ano un(q)x"

2p—1
>20 2.3 b(ny, ... nj)4 -t

j=1 ni,...nj =1
>21 4 2. y(L) 4
>21 4 2L,

which finishes the proof. [
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4.3. The Hausdorff dimension of the graph of f

Combining Theorem8.4 and 4.4, we have directly
Theorem 4.11. The Hausdorff dimension of the graph of f satisfies

logx(—logp/log 2
log p

dimy I'(f) =

’

wherex(—logp/log 2) is the positive root of
[e )
Z Z ||Mj||_|0gp/|0g2)€2n+3 — 1
n=0 JeA,
4.4, TheL4-spectrum ofu
Combining Theorem8.3 and 4.4, we have directly

Theorem 4.12.For any g € R, we have

glog2 logx(q)
log p log p

©(q) = —

’

where x(q) satisfies(4.6). There exists a uniqugg < —2 such that

o0

D> My = 1.

n=0 JeA,

Whenevelg > qo, x(¢q) is the positive root of

o0

D3 T IMy R =1,

n=0 JeA,

and it is an infinitely differentiable function of q ofyg, +00). Wheneverg <qo,
x(g) = 1. Moreoverx(g) is not differentiable ay = go.

4.5. The Hausdorff dimension of

The Hausdorff dimension oft has been considered by many authors (e.g. see
[1,2,36,43,58]). A computable theoretical formula of gim was first given by Ledrap-
pier and Porzio [36]. In this section, we state another theoretical formula obtained by
Ngai [43] based on the following result.
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Theorem 4.13(Ngai [43]). Suppose that is a Borel probability measure of® with
bounded supportand furthermore itsLY-spectrumz(v, ¢) is differentiable atg = 1.
Then the local dimensiod (v, x) is equal tot'(v,1) for v almost allx € R, and the
Hausdorff dimension of is also equal tot’(v, 1).

The above result has also been obtained (in a generalized form) by HeufB3jux
and Olsen [45]. As we have showed in Theorem 4.12, Efiespectrumz(g) of u is
differentiable aty = 1. A direct calculation oft’(1) through the formula of:(g) given
in Theorem 4.12 yields

Theorem 4.14(Ngai [43]). The Hausdorff dimension qf satisfies

o
> 2778 3 |Mylllog Myl
. , log2 n=0 JeA,
dimy #zr(l)z_logp 9logp

In Remark4.26, we will provide another approach to the above formula.
4.6. Local dimensions qf

In this section we present results on the range and almost all value of the local
dimensions ofu. Recall thatd (u, x), d(i, x) andd(u, x) are used to denote the upper

local dimension, the lower local dimension and local dimension, respectivelyRanay
the range ofd (i, x), i.e.,

R :={yeR: d(u x)=y for somex € [0, 1]}.

The main results of this section are the following:

log2 1 log 2
Theorem 4.15. R(u) = [— °9 °9 ]

logp 2 logp

Theorem 4.16. For p almost all x € [0, 1],

o0
l0g2 ZO 273 ZA Myl log | M,
= J n
d(u, x) =7(1) = g5 " ! ;Iogp

Theorem 4.17.For £ almost all x € [0, 1],

d(/.l, x) =

> log M.

JeA,

log2 , 7¥5-15 i 3_ 5\
logp 10logp = 2
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Theorem4.15 was first stated and proved by Hu [24]. In his proof, Hu used a
complicated combinatoric method. In this section we will give a new proof, which is
also valid to deal with the parametér (k = 3,4,...).

Theorem 4.16 is just a combination of Ngai’s two results—Theorems 4.13 and 4.14.
Theorem 4.17 is new, and it can be used to determine the almost all value of the box
dimensions of level sets df In what follows, we will prove Theorems 4.15 and 4.17,
respectively.

Proof of Theorem 4.15.Denote

O = {21 in€Q Ay iy =1 for n>1},
where Q, A are defined as in4(1) and (4.2). By Theorem 3.2, to determif&y) it
suffices to determine the range, denotedigs of the limits

lim IOg ” Til..‘i,H_l ” ’

n— 00 n

where (i), € QL\\J with i1 = 1. Denotedg = 3 and d; = 7. Define a sequence of
sets(B;)2, of admissible words by

Bo = {356},

Bn={355,-15...5 56: i1...ineAn}, n=12,...

and define

o0
B=] B. (4.22)
n=0

It can be checked directly thatw} ..., is an admissible word starting from 1 for
any wy, ..., w, € B. Moreover, by Lemma.3,

n
17200 Il = [ ] 1720 11
i=1

Therefore we have
Rt D [xo0, yol

with

xo = inf M7 yo = Sup gl T1wll ’
weB || weB |l
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where |w| denotes the length ab. At the end of the proof, we will show that

lo
x0=0, yo= —%. (4.23)

Now we use 4.23) to prove

Ry = [o, —'0%] . (4.24)

Observe that for each>1 andy = i1...in41 € Q4 ,+1 With i3 = 1, there exists a
word 7" of length at most 3 such that’ can be written as

1ulw1 e Oy

with £,m>0,u =2 or 4, w1, ...,w, € B, and thus

m
Ty = [ ] 1Tl
i=1

Hence we have

0< 001l Y4100 1Ti | _ _ lop
n+3 pygon 2

Letting n — oo, we obtainRy C [0, —'0%]. Thus @.24) holds and

[ log2 1 log 2
R = [_logp -2 _logp]

Now we turn to prove 4.23). Note that for each>1,
(39"6e B, [Taasyel = IM§] =n+2.
It follows that

.. log || Tyzsysll
inf —— =220
n 2n+1

El

and thusxg = 0.
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On the other hand, fow = 356;,5...9;, 56 € B,, we have
1Tl = 1My ... M;,||. (4.25)
Observe that

M; M;, ||

j+2 n

”Mi]_.“i,, ” < ”Ml—il cee Ml—i_/_lMl—ijM

ij+1
if i; =ij41 for some I j < n. It follows that the maximum value of the right hand

side of @.25) is attained when, ..., i, take Q1 alternatively. By a direct calculation,
this maximum value is equal to

2+ p+ (—Drp2tt

1+ p?
Therefore
Yo = sup log (2+p+§;:;)2”p2”+4 _n)
n>0 2n+3
N log (—#2“ i 2"+4) +logp™"
-0 3+ 2n '
Since
Blog (21 CUPEY g (20 _ Lig
and
% logp™ = —IO%,

we have

which finishes the proof. [J

Proof of Theorem 4.17.For anyi € Q = {1, 2, ..., 7}, denote by¢; the relative length
(i.e., the first term) of the characteristic vector labelledibBy Table 4.1, we have

1=1 tr=lya=¥ts5=p, La=Ll7;=1—p, le=2p—1
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DenoteQ = {3,5,6, 7}. As we presented in Lemmé&.1, Q is an essential subclass of
Q. Let (?)EJ, o) be a subshift space of finite type defined by

~N . oo .

o) = {(z,l)nzl iy e Q. Ay, =1 for n>1} :
and o ((in)$24) = (in+1)2,. Especially define

. 00 <N
8= {2 ey i1=3].

For anyw € [3], it is clear In € QL}J. Let = be the projection defined as i8.0). We
define a mapt: [3] — 4(13) by

(w) = n(lw), Yo € [3],

where 4(13) denotes the 1st net interval with the symbolic expression 13. By a direct
check, 4(13) = [1 — p, p].

Now we would like to define a Markov measuneon ?QEJ, such that the measure
no 771 on 4(13) only differs from the Lebesgue measufeon 4(13) by a constant
factor. Construct a matrixP = (P,-,j)i’jeﬁ by

Pt
Pij: T/ if A,',j.=1,
’ 0 otherwise

One can check directly thd is a primitive probability matrix. Lep = (p;),_p be the
probability vector satisfyingpP = p. A direct calculation shows that

_ P _ 55 _ 1 _ 45
P3=32,71= 10 » P5= 2py1 = 5>

_ 2p-1 _ 5-25 _1-p _ 3/5-5
P6 =121~ "5 »PT=72,31~ 10 °

Definen to be the(p, P) Markov measure o@ij, i.e.,n is the unique Borel probability
measure orﬁ/’?J satisfying

n(li1iz...in1) = piy Piyin - - Piy_1.iy
for any n>2 and any cylinder set

~N
liviz..in) = {(e)30 € @4 ¢ xj =i for 1<j<n].
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The measure; is g-invariant and ergodic. The reader is referred[5®] for more
information about Markov measures. Now we claim that

no i L(A) = :73 L(A), v Borel setA C 4(13). (4.26)
3

To prove the claim, note that for any...i, € ﬁA,n with i1 = 3, the net interval
A(liy .. .i,) has the lengthp”¢;, , while

n—1 pe
. . i
’7([11 L) ln]) = Pilpil,iz e Pin—l,in = pil | | —g j+1

j=1
pup e D3 g, 4.27)
" Zil p£3 " -

It follows that @.26) holds forA = A(li1...i,). A standard argument using the
monotone class theorem yields (4.26). Now we prove

10g || T1x;
i 109 e
n— 00 n
= > n([6v]) log I T, | (4.28)
veBB
7V5-15 & (3- B\
= 1o Z( 5 ) > logliMy| (4.29)
n=0 JeA,

for n almost all(xj);‘;l € [3], where B is defined as in4.22). To show this, define

E = {(x,-)?il c QL\‘J : 3m;j 1 oo, such that lim S— Xm; = 6}.
j—o0 mij41

Sincen is ergodic andy([6]) > O, by the Birkhoff ergodic theorem we hayg€E) = 1.
Now for eachw = (x;)2; € ENJ3], let m; = mj(w) (j € N) be the increasing
sequence of all integels satisfyingx; = 6. Write w as

W=mW10W20...0W;O0...,

where w1 = (x)/4, w2 = (xi):."zzml+1,...,con = (xi)?l:”mn_ﬁl’ ... . It is clear that
w; € B for i > 1. Furthermore,
n
1 T10g...co | = [ [ 117200,
i=1
mn—l j
= Twnll x | [T I7wlzme 2@} - (4.30)

veB3, v <my



D.-J. Feng/Advances in Mathematics 195 (2005) 24-101 71

where y,; denotes the characteristic function fBv]. Hence

my—|v|

— > sen@ o) log| Tyl (4.31)

m ;
veB, v <my, " j=0

IOg ||le1...a)n || — IOg ||le1|| + Z

npy npy

Sincen is ergodic, by the Birkhoff ergodic theorem, for eaclk 5,

mp—|v|

im — > yen(e/ @) = n([6v]) (4.32)
j=0

n—o0 my
for  almost allw € E N [3]. Combining 4.31) and (4.32) we obtain that

log || T
lim inf (291 10wl S 3" n(ievh log 1 7| (4.33)

n—00 my,
velB

for n almost allw € E N [3]. Observe that|T1.,,..w, | <4™", thus the right hand side
of (4.33) converges with an upper bound log4. To state the inequality for upper limits,
we fix I € N. For anyk > [ andv = 356;,5...9;,56 € B, we have

1Tl < Ts6,,5..5,50 - T56,,5..5;,, 51l - - - 1 T55;,_, 5.5, 5l

i1+15 ik—1+1

Denote
C = {55,‘1...51'15: i1...0] € Al}

By (4.30), we have

mp—|V|

109 1 T100y...c0, | _ 10 [ 7100 | 1 .
SN o+ Y = ) wen(@w)loglTy |

m m m
" " veB,v|<2A+3 ' j=0

mp—

21
1 .
+§ — E 1y (0’ w)log | Ty |
my 0

veC;
wheneverm, > 2/ 4+ 3. Thus by the Birkhoff ergodic theorem,
. log || T
jim sup 291 en0nl ™ 6y log 72y |
n—0o Mn veB, |v| <243

+ > (0D log|| Ty (4.34)

veC
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for n almost allw € E N[3]. To estimate the second sum i4.34), we observe that
for eachv' =56;,5...0;5,

7’/(["/]) = P5P5,5,-1 P5il,5 s P(sil,5

Ps
= —0—— 5 P3P3sPs5, Ps 5. P, Ps, 5P56

p3P3s5Ps, 5Ps6

= P (35,5...5,56)

p3P35Ps, 5Ps56

< max{ P5 , s } % ([350;,5. . . 3;,56])
P3P3s5P35Ps6 p3P3sPrsPse
and
log |7y || < 109 [ T1zss, 5...5, 56ll-
Hence
P5 pP5
> nvDlog Ty < max{ : }
el p3P3s5P3s5Ps6 p3p3sPrsPse
x Y (D) logl| Tyl (4.35)
veBB,|v|=21+3

Since ),z n([6v]) log | T1,|| converges and

pe P 6,3

n(évl) = nvh. VveB,

the right hand side of4(35) tends to 0 as — oo. Thus combining (4.33) and (4.34)
we obtain

lOg ||Tla)1...w,l ”

n—00 my

= Z n([6v]) log || Ty ||
veB

for n almost allw € E N [3]. Thus @.28) holds from the facts lig, o ”% =1 for
w € EN[3] andy(E) = 1. Since for anyv = 356;,5...9;,56 € B,

p6 6,3

n((évl) = n(vh
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P
P6l63 ﬁpz’”%e
p3 pl3
_ (2p—Dp>t3
 2p+1

(by (4.27))

and | Tl = 1My, ll, we get 6.29).
Combining (4.26) and (4.29), we have féralmost ally € 4(13),

lim 5 Z log || My, (4.36)

JeA,

1
log I 71y,..e, || 7/5-15 i (3 - ﬁs)’”
n—oo n - 10
n=0
where Xi...x, is the symbolic expression of anth net interval containingy. A

similar argument shows tha#.36) holds forZ almost ally € A(1u!3), whereu = 2
or 4, andl € N. One may check that the interval13), 4(1x'3) are disjoint and

LA +Y . > LA1'3) =1

=1 uef{2,4}

Hence £.36) holds for£ almost all y € [0, 1] with 1x1...x,... € 7~ 1(y). This
together with Theorem 3.2 proves Theorem 4.1[71

4.7. The box dimension and Hausdorff dimension of the level sets of f
In this section we prove the following theorems:

Theorem 4.18.For £ almost allr € [0, 1], we have

1
_ 7515 & (3 5\
dimg Li = <5107 Z( 5 ) > logliMyll,

n=0 JeA,

where the level seL; is defined as in3.9).

Theorem 4.19. For £ almost allz € [0, 1], we have

n+1

_ 7V56-15 K (3-4/5

dimy L; = TOQZ Z( 5 ) Z log || M. (4.37)
n=0 JeA,

Theorem4.18 follows directly from Theorem 4.17 and Corollary 3.6. To prove The-
orem 4.19, we need a dimensional result abmernogeneous Moran sets
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Let {nt}r>1 be a sequence of positive integers dag>1 be a sequence of positive
numbers satisfyingiy >2, 0< ¢ < 1, n1c1 <90 andnyicr <1 (k>2), whered is some
positive number. Let

D=|J D with Do={#), Dp={G1.....ir); 1<ij<n;, 1<j<k).
k=0

If y=q, - s %) € Dk, T= (11, ..., Tw) € Dy, we define

PHET=(P1s vy Vs Tl ooy Tn)-

Suppose thal is an interval of lengtd. A collection F = {/J, : y € D} of subintervals
of J is said to have &@omogeneous Moran structuieit satisfies

1) Jg = J;

(2) For anyk>0 andy € Dy, Jya1, Jos2, ..., Jpun,,, are subintervals of/, and
Jysi m Jysj = b #Jj

(3) For anyk>1 and any y € Dy_1, 1<j<ng, we have

|Jy*j| _
|75

’

where|A| denotes the length oA.

If F is such a collectionF := () |J J, is called ahomogeneous Moran set

k>1 yeDy

determined byF. We refer the readers §d9,21] for more information about homoge-
neous Moran sets. For some applications of homogeneous Moran sets in the dimension
theory of dynamical systems, see [10,11,17,50]. For the purpose of the present paper,
we only need the following simplified version of a result contained in [21], whose
simpler proof was given in [10, Proposition 3].

Proposition 4.20. For the homogeneous Moran set F defined above have

|Ogn1n2 Lo Ny

dimy F > lim inf .
n—oo  —logcicn. .. Ck41nk1

Proof of Theorem 4.19.We only prove 4.37) for £ almost allr € 4(13). A similar
argument can extend it fof almost allr € A(1u'3) with u =2 or 4,1>1.

The upper bound is easy to see since we have alwayg dipx dimg L;. Now let
us consider the lower bound. We use some notations (the imaipe measure), the
cylinder set[3], the setE and the sequence; = m;(w), etc.) introduced in the proof
of Theorem 4.17. For anw € E N [3], write

w=wiowo0...
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with w; € B. We claim that the level seL;, is a homogeneous Moran set with
respect tony = [|T1, | and cx = 271, Therefore by Propositio#.20,

i H H Io T X+ X T
dimy L,y = lim inf 90 T2 I 7105, 1)
k—oo log(2lotlt+lorl x ||T1wk+1||_l)

... log(||T- X oo X ||T
 lim ing 19901710, (2D
k— 00 |og(2|wl|+“'+|wk+l|)

lim inf Iog(”lelwk ”)
k— 00 mi41 Iog 2

— lim inf |Og(||T1a)1...wk D
k—o00 my log 2

Combining it with (4.33), we obtain the lower bound of qind;, for n almost all
w € E N[3]. By the equivalence of and £, we get the lower bound of dimL, for
L almost allr € 4(13).

Now we prove the claim about the homogeneous Moran structuré;qf,. For
k e N, write A(lwy...wn,) = [ck, di] and define

Dy = [al...amk € At n(dw) € Iul..‘am,{}v
where I, _q,, = [0k @27, > a;271 4 2™). By Lemma3.7,
D = {ar. . am € Am t Sugan, (10, 1) D lex, do) |
= a1 am, € Ay 1 0< et = Sy, @ <p™ |

Observe that the characteristic vector #flw; . ..wy,), represented by the symbol
6, is 2p — 1,1 — p;1). It follows that the pointsSal,_,amk (0) are the same for all
ai...am, € Ap,. FOry=ai...an, € Dy, define

mp mp
e[S S on]
i=1 i=1

Then Lraw) = Niz1 Uyep, Jy is @ Moran set withng = || T1g, || and ¢x = 2 loxl,
This finishes the proof. [

4.8. The infinite similarity ofu

We know thatu is a self-similar measure generated by the similitudgesand Sp
(see (.2)). However,S; (i =1, 2) have overlaps (i.e., they do not satisfy the open set
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condition). In this section, we show thatis a locally infinitely generated self-similar
measure without overlaps. More precisely, Bthe defined as in4(22), and denote

D:Hlulv: u=2o0r41>0, VEB}.

It is clear thatwv is an admissible word starting from the letter 1 for any D and
v € B. Denote byg,, , the unique similitudecx + d with ¢ > 0 so thatg, ,(4(w)) =
A(wv), where A(w) denotes the net interval with respect to the admissible word
We have the following

Theorem 4.21. u is supported or J,,.p 4(w). For any fixedw € D,

o= 2 "NTL - py o g0h (4.38)
veB

where p,, denotes the restriction gf on 4(w), that is, u,,(A) = u(AN 4(w)) for any
Borel setA c R. Furthermore

Zwv(A(w)) = A(wv) C A(w), A(wv) N A(V) =0 for v £ V. (4.39)

To prove the above theorem, we need the following lemma.
Lemma 4.22. (i) p[l - p, p] = 3.

(i) Yyep p" = 1.

(i) Yyep 27Tl = 1.
Proof. By (1.2), we have

ua) = (S5t + u (s71)
for any Borel setA ¢ R. Taking A to be [0, 1 — p] and [p, 1], respectively, we have
(10, 1= p) = 3 u([0, 1 = p]) + 5 u([1 = p, pD)

and

u(p. 1) = 3 u((1— p. p) + 3 u(lp. 1D).

These two equalities imply([0, 1 — p]) = u([1 — p, p]) = w(p, 1) = % Hence (i)
follows.
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To see (ii), observe that each string fhis of length 3+ 2n (n>0), and for each
n >0 there are exact"2different strings inB having length 3+ 2n. Therefore

Z o = i o p3+2n

veBB n=0

00 pg
=p* ) 2" 1
n=0

To see (iii), we have

o
Z 2Tyl =273 2+ Z Z 27821y, LM;, ... M;, (1, nt
veBB n=1iy...i,eA,

o
=272+ 272 H(Mo+ M)" (L, DT
n=1

n
=224 Z 2732111, 1) [i ;] @’
n>1

o
— 2724_ Z 273727! . 2 3)’!
n=1

o0 3 n
=22+222<z> =1 O

n=1

Proof of Theorem 4.21.1t is not hard to see that the net interval$w) (v € D) are
disjoint. Now we show thaft (\,cp 4(w)) = 1. For eachv € B, by (ii) of Lemmas
2.10 and 4.22 we have

(A vy) = 27" Ty - ([ - p, p])
=27 M Ty w1 - p, p])
=32V, vu=2o0r4 i>1

Therefore

u(U A(w)) = ) ud()

weD weD
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1 o 1
=y s 27 +2) ) 3 27y |

velB veB n=1

=Y 2 my =1
veBB

This is, pu is supported onJ,.p 4(w). Similarly, we have

wl U d@vi.v) | =pdw). VYneN, oeD.

\'1,.‘.,\',,65

For anyv,v1,...,v, € B, we claim thatg, ,(4(wv1...v,)) = A(wyvi...v,). TO
see this, for two given intervalg:, b] and [c, d] with [a, b] D [c, d] we call the ratio
ﬁ the relative placeof [c, d] in [a, b]. Sinceg,. , is a similitude with positive ratio,
the relative place of, (4(wv1...vy)) IN guv(4(w)) = A(wv) is the same as that
of A(wvi...v,) in A(w). To prove our claim, it suffices to show that the relative
place of A(wvvy...v,) in A(wv) is the same as that of(wvy...v,) in 4(w), and the
length of g¢, v (4(wv1...v,)) equals which ofd(wvvy...v,). The second fact is easy
to see. Let us show the first one. By the structure of net intervals, the relative place of
A(wvvy...v,) in A(wv) is determined completely by, ...v, and the end letter of,
and the relative place off(wvi...v,) in A(w) is determined completely by; ... v,
and the end letter ofv. Since the end letter of is the same as that ab, the first
fact follows.

Now let us turn to prove4.38) for a fixedw € D. Forn e N and vy, ..., v, € B,
by the claim, we haveg, ,, (4(wvz...v,)) = A(wvi...v,). Forve B andv # vy, it
is clear thatg,, ,(4(w)) N A(wv1...v,) =@ since gy v(4(w)) = A(wv). Therefore

Z 27T - g, 0 g;’lv(A(a)vl S V)
veB
— 2=l | T1y, || - 1, © g;’];)l(A(a)vl Sov)
— 2~ Il 1 T2, || - o, (A(v2 ... vy))
= U, (A(@Vv1...Vp)).

A standard argument using the monotone class yields (4.38).

Remark 4.23. For eachw € D, u,, is equivalent to a Bernoulli shift measure. To see
this, consider the one-side shift spa(dﬁ\‘, o) over B. Endow this shift space with the
product measurg, which satisfies

n(v) =21,  VveB.
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Define the projection,, from BN to A(w) by

T (Vn)n 1 m A(wvy...vy,).

n>1
Theorem4.21 implies that

1

= wAn

O Tley,

or equivalently,
= u(A(@)) - o myt
4.9. The multifractal formalism fop

For >0, defineK () = {x € R: d(u, x) = «}. By Theorem4.15,

K(a);é(O«:}oceR(,u):[————,——].

The main purpose of multifractal analysis is to study dik (o), which is called

the multifractal spectrum ofi. We refer the readers to the bool&50] and papers
[4,5,12,23,44,54] for more information about the multifractal analysis of measures. In
this section, we prove

Theorem 4.24.Let go be defined as in Theorekh4. Then for anyqg # go, we have
dimy K (u(q)) = tig[ljR{oc(q)t — 1)} = alg)q — t(q), (4.40)

where t(¢) is the L’-spectrum ofu, and a(q) = 7/ (q).

Remark 4.25. Riedi and Mandelbrof54] studied the multifractal structure of self-
similar measures with infinitely many non-overlapping generators. They verified the
validity of the multifractal formalism under some additional assumptions on the decay
speed of contraction ratios and probability weights (see [54, Theorem 10]). However
our measure: in Theorem 4.24 (and measures in Theorem 5.14) does not satisfy their
assumptions. By the way, the reader may see [40] for more details about dimensions
and measures in infinite iterated function systems.

Proof of Theorem 4.24.The upper bound

K (o) < inf{or — 1(2)}, Vo € R(u)
teR
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is generic, not depending on the special property: ¢éee e.g.[4, Theorem 1] or [32,
Theorem 4.1]). In the following we prove the lower bound.

First assumey < go. By Theorem 4.12p(q) = —'ggi and —1(q) + «(q)g = O.
Since K (a(q)) # ¥, we have

dimy K(x(g)) =02 inﬂg{a(q)t — ()}
te

From now on, we assumg > go. Let B be defined as in4(22). First we define
a probability product measur’éq on the shift spaceRY, ¢) with the weightsp, =

pgrqf(‘” for eachv € B, where

py=2""TR), ="

Theorem4.12 impliesy_ .z pv = 1. It is well known thaty, is a g-invariant ergodic

measure. Denoteg = 356 and define the projection = =,, from BN to the net
interval V (1vg) by

m((v)peg) = () V(@vove...v).

n=1

The mapr is continuous and injective (not surjective). Define

Ny =1y © L.
Then
n,(V(Lvovi... ) = Dvy - Dv,- (4.41)
Note that
w(V(Avova ... vn)) = p(V(1vo)) - pvy - - - P,s (4.42)
[V(@Qvovi...vp)| = [V (Ivo)| - ryy ... Ty, (4.43)

Sinceﬁq is o-invariant and ergodic, by the Birkhoff ergodic theorem, there exists a
Borel measurable se&t, C BN with ﬁq(Gq) = 1 such that for each = (v,);2 ; € Gy,

n—00 n n—>o00 n

logn, (V(Ivova...va)) 1%
. = = lim =Y 10g By
j=0
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= Z Ev IOg E\f

veB

= sl log (pr 7). (4.44)
veB

= lim

n—00 n n— 00

log pt, (V (Lvgvy . .. vy)) R
. 0 Z log Poiw|1
j=0

= Z pvlog py

veBB

=2 pin " logp, (4.45)
veB

and

_ log|V(Lvovy... 1=
jim 09V@ov. vl 1 > 109750
-0

n—+00 n n—>+o0o n 4

= > pvlogr,

velB

=Y pir, " logr,, (4.46)
veBB

where w[1l = vy for o = (v,)72; € BN, The integrality of functionso - py1, ® —
pon and o > ry1, or equivalently, the finiteness of, p0r "D log(pyry T,

s Pir ™ @logpy and Y, 5 piry 7@ logr, come from the following inequality:

o
Yon Y AIMyx (@)t <00, ¥g>qo
n=0 JeA,

which was implied in Step 3 at the proof of part (ii) of Theordm.
Now fix w = (v4)72, € G4. By (4.43) we have

n’

V(Lvgvi...vy) C [m(@) = [V(Wo)| - ryy ... 1y, (@) 4+ [V(Av0)| -1y ... ry, | (4.47)

for all n € N. On the other hand, we know that the end letter of the strjpg is 6.
Changing fromw, 41 this letter to 3 and 7, we get two worgls,; andj;,, respectively.
The three net interval® (lvovy ... vujn+1), V(Lvove. .. vyvup1) andV (dvovy ... v,,j;,+1)

lie in V(1vgv1...v,) in an increasing order with no overlaps. Furthermore, the first
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and the third intervals have length larger than the second one. Therefore

V(lvovi...v,)
D [m(@) = [V(Wvov. .. vps D), (@) + [V (Lvova ... vas1)l]
= [n(@) = |V(Avo)| - vy - - . 1y (@) + [V (QAVQ)| -1y oo 1y, q] (4.48)

for all n € N. Now for any small number > 0, choosen so that
[V(Wo)| - ryy o1y, Py ST < [V(DvQ)| - 1y .. Ty,
By (4.47) and (4.48), we have

[n(w) —r, i(w) + 1]
- [n(a)) —|V(@vo)| - ryy ... 1y, T(@) 4+ [V(Avo)| -1y, . -.rv,,]
C V(Avgvy...Vvu_1), (4.49)

and

[n(w) —r, w(®) +r]
D [m(@) = V@) -y« o - Fyppgs (@) 4+ [V(WVQ)] - Py oo Py s ]
D V(Lvovy...vp41). (4.50)

By (4.49), (4.50), and (4.44)—(4.46) and Theorem 4.4, we have

im 1090 [m(@) — @) + 11 3, piry " log(plry @)

n—00 logr ZveB pgrv—‘c(q) logry
= —1(q) + a(q)q (4.51)
and
im  1098M@) —ra@) +r] 3o piry " log p,
n——+00 logr ZveB p{{rff(q) logr,

= a(q). (4.52)

Sincen, (n(G4)) =1,(G4) =1, by (4.51) we obtain

dimy n, = —t(q) + a(q)q. (4.53)
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By (4.52) we haven(G,) C K(a(g)). Therefore
dimy K (a(g)) = dimy n(G,) = dimy 1, = —t(q) + 2(q)q.
This finishes the proof of the lower bound]

Remark 4.26. The above proof contains another way to prove Theorérh6 and 4.17.
To see this, let), be the measures constructed in the above proof. Firstakel.
One can see thay, is just equivalent tqu,, the restriction ofu on V(1vg). By (4.51),

Yei Py " log(piry Y pvlogp,

—1(q) - s
ZveB pgrv 7 logry g=1 ZveB pvlogry

T(KI))
d(u, x) =

wae x € V(lv),

where we have used the easily checked fad) = 0. By a similar argument this
equality holds foru almost allx € V(1v) for eachv € B. This proves Theorerd.16

since u (U, V(1)) = 1.
Now takeg = 0. The measurey, is equivalent to the restriction of on V(1vg).
Formula (4.52) implies that

Y vep 1v10g py

, for £ ae x € V(1v),
Y ven vlogry

d(u, x) =

where we use the faat(0) = —1 which was derived from Sugp) = [0, 1]. A similar
argument shows this equality also holds fralmost allx € V(1v) for eachv € B.
This proves Theorerd.17 sincel (U,ep V(1)) = 1.

4.10. Biased Bernoulli convolutions

In this subsection we present some results on biased Bernoulli convolutions. For
0 <t < 1, the self-similar measurg, which satisfies

pe= 1t 0 Sgt+ (L= 0 S,

is calledthe biased Bernoulli convolutioassociated withp andt, where Sox = px
and S1x = px +1— p.

Theorem 4.27.Lett € (0, 1). There exists a family of non-negative matri¢és(«, f3) :
a, e, A,p =1} such that for any net intervall (i1iz . . . in+1),

e (AGiniz . ing1) = 1T (in, i2) 17 G2, 83) - . Ty (i ing ) |-
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More precisely these matrices are given by

2 | ta=n? 2a-n _ (1-0?
[, 2) = 1-1+12° r:,3) = |:l—t+t2’ 1-1+12 | I 4= 1-1+12°
2,2 =1, 2,3 =[1-02 (1—01],
[10
res=[g 9]

Ii@4.3)=[A-0012, T44=1-1,

C[t@-n £? Ta-or
Ft(5,3)—_0 tz]’rt(5’6)_|:(l—t)t:|’
I (6,3 =[1—1t,1],

(10
I's(7,5 = 0 1].

1-n20 ]

fen= [(1— n? (@- 0y

Proof. The first part of the result was proved by the author under a more general setting
(see[14, Theorem 3.3]). The second part involves the construction of these matrices
Iy (o, B)'s, while the general method was given in the proof of [14, Lemma 3.2].

For anyv = ijip...i, € BB, define
pey = T (6, i) (in, i2) T4 (G2, 83) < . e (in—1, in) |-
Then p,y = [1— ¢, t1Xy[(1 — )¢, (1L — t)¢]" for v =356 and
prv=I[1—1,11X;, ... X;, [(1—0)t, L —)e]"

for v=235¢;5 ... 9,56, wheredp =3, 61 =7 and

in

10 1—1) ¢? 1-120
XQZ[OJ’ XOZ[E)( t);z] Xl=[§1_32(1_m] (454)

It is easily checked that for any admissible wanat with v € B,

1 (A(@v)) = pryiy (A(w)).
From the above equality we obtain an analogue of Theotei:

Theorem 4.28. y, is supported or J,,.p 4(w). For any fixedw € D,

Biow= Y Piv i O Sorse (4.55)
veBB

where i, ,, denotes the restriction of, on A(w), i.e., u,(A) = u(A N A(w)) for any
Borel setA C R.
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The following theorem gives the Hausdorff dimensionof

Theorem 4.29.For anyt € (0, 1),

t—12 Xalo Xisj=n Q109 0y

dim = .
W= logp

s

where

t—1?
Qr=0R-t1] Xjp--Xj, |, _ 2

and Xo, X1, Xy are defined as ir(4.54).
Proof. Using Theorem 4.28 and a similar argument as in Remark 4.26, we have

ZVEB pt,v Ingl,v
> e Prylogphl’

dy, x) = U, a.e. x €0, 1].

Thus dimy g, equals the right hand side of the above equality. By the definition of
prv and @.54), we have

oo
Y pvlogpy=)" Y QslogQ;.

veBB n=0 |J|=n

A further careful calculation (using the fact thét, 1)7 is an eigenvector oko + X1)
yields

> prylogp = Iogp,
veBB

which finishes the proof of the theoremlJ

5. The ratio casep = 4 (k>3)

In this section, we fix an integet>3 and consider the case= A, where J; is
the unique positive root of the polynomiaf +x*~1+4 ...+ x — 1. The transition map
for this case is different slightly from that for the golden ratio, which leads to some
different properties (see e.g. Theoreh8 and 1.5).
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Table 3
Elements inQ

oe Labelled as
(1,01 a
1-pko b
(P*1 (0,1 — pky; 1) 1
(P*: (0.1 pk); 2) o
(pk—H-l; (0’ 1— pk—i+l); l) ¢
(i=23,....k (i=23,....k

1-pkiphi ) d
L-pf—pph ¢i

(i=12... k=1 (i=12..k=1
(L= pk — pk=is ph=izy) fi

(=12 ... k=1 (i=12..k=1
(1—20k; pk; 1) 9

5.1. The symbolic expressions and transition matrices

By an inductive discuss, we can determine all the elemenf3.im Table 3 we list
them all, and for simplicity we relabel them by latin and arabic letters.
The mapé, defined as in (2.7), is given by

¢(a) = bcead,
¢b) = bcre,
¢(e1) = e,
¢(e1) = ez,

i) =ci1 (=2,...,k=1)

E(ek) = c1gca

<d) = ficid,

&) = ficieiyn (i=1...,k—2)
Clek-1) = f1,

E(f) = firraae (i=1,....,k—2)
C(fi—1) = e1,

i(g) = ficren

and the corresponding 0-1 matrik= (A; ;); jeo, is defined by

A - 1 if jis a letter of £(i),
“7 710 otherwise
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The transition matrice§ (i, j) constructed as in the proof of Lemn2a8, are listed
as follows:

T(a,b) =1, T(a,c1) =[1,1], T(a,d) =1,
T(b,b)=1, T(b,c1) =[1,1], T, e1) =1,
T(cm,cm+1)=|:g')21|, m=12,...,k—1),

T(e 1) = [(1) ﬂ T(c8) = [1] T(ex, 1) = [i 2]
T (@1 c2) = [é ﬂ (5.1)
Td, f1) =1, Tdd,c1) =1[1,1], T(d,d) =1,

T(em’ fl):]-: T(em,em+l)v T(em,Cl) = [1’ 1] (m =la"'7k_2)v
T(ex-1, f1) =1,

T(fn’h fm+l):1=T(fm’€1)a T(fm,C]_):[l, 1] (m:l,,k—Z),
T(fk-1,€1) =1,

T(g, f1)=1, T(g,c1) =1[1,1], T(g,e1) =1

For anyn>1, denote byQ, , the collection of all admissible words of length
ie.,

Qpn= {il. Sy € Q% A iv1=1 1<) < n} ,

where Q* denotes the collection of all finite word ov&. By Lemma2.7 and Theorem
2.9, eachnth net interval4 corresponds to a unique wotg. ..i,1 iN 24 ,4+1 With
i1 = 1; and the multiplicity vectow, (4) satisfies

Wi(A) =Ty iyq =T (i1, i2)T (i2,03) ... T (in, ing1)-

The letterg in Q has the following properties:

(a) For alli € Q, there exists some integarsuch thatg is a letter in the word" (i).
(b) The characteristic vector represented dyis (1 — 2p~; p¥, 1), which satisfies

v(g) = 1.
Due to (b), we have

||Twlg(uz|| = ||Twlg|| X ||Twz||

for all w1, wp € Q* with wigws € U;.lo=1 Q.
Noting that&(g) = ficie1, we define a collectiorB of admissible words by

B = {iliz...imeQA,m: me N,i1 € {f1,c1,e1},im =g, it £ g

for all 1<¢ < m}. (5.2)
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To describe the structure &, we define:

Bo := cico...ck

B1 .= c¢1c2... ¢y,

Yg) =er.ej (j=1,...,k=1),

Y = ff G=1....k=1).
From the form of, we can check that

Lemma 5.1. A word w € B if and only if it has one of the following forms

(1) o =B, ...B;,g, wherel e N, i1,...,ip €{0,1} andi; =0
2) w= Y(”l) Y(””')v where v is of form (1), m € N, 1<p1, ..., pm_1<k — 1,
L pusk =2,y = EGY (=1 myoriy= EGY (=1 m)

Furthermore ifw has the form(1), then

||T ”_ 2 for K:l,
YT Myl for £22;

and if w has the form(2), then ||T,,|| = || Ty]l.

In the following lemma, we list some basic facts which can be derived from the
form of & and properties (a) and (b):

Lemma 5.2. (i) Q= = Q\{a, b,d} is an essential subclass &. The characteristic
vector o = (1 — 2pk; pk; 1), represented by the symbol g m satisfiesv(a) = 1.

(i) For any wordy in Q4 ,, there exists a word U]:l Q,,; with the end letter
g such thatyy € Qi and | Ty = 17, or 27l

(iii) Letn be any word inlJ;Z; Q4,, with first letter a. Then one can find a word
Ve Uk+1 Q4 » such that the wordjv has one of the following three forms

1. nv=aw;...wy, the first letter ofw; is c1
2.qnv=ab. ba)l . wy, the first letter ofwy is ¢ or eg

r

3.nv=uad...dw;...wy, the first letter ofw;y is ¢1 or f1

r

where?,r € N and w; € B for 1<i </t.
(iv) For any w1, ..., o € B,

‘g € U Qan, and |Typo |l = H 1T, | = H 1 T |-

n=1 i=1
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5.2. The exponential sum of the product of matrices

In this subsection we will determine the value of

E@) = m (YT 00)

for any g € R, where the summation is taken over all admissible waids. i, 1 of
lengthn + 1 with i1 = a. More precisely, we prove the following:

Theorem 5.3. For any g € R, E(g) = 1/x(q), wherex(g) is the unique positive root
of

o]

s kn-+k+1
- ra Z un(q)x =1 (53)
1—2x+x =

which lies in the interval(0, 4;—1). Here u,(q) is defined as in(4.5). Furthermore
x(g) is an infinitely differentiable function of q oR.

To prove the theorem, denote [#; the collection of all admissible words of length
n starting from a letter inc1, e1, f1}, i.€.,

F, = {i]_. cdin € Qay i1 € {c, en, fl}} .

For ¢ € R, define
Ru(@) =) Tl n>1

VeF,

Set
R(g) = lim_(Ru(g)'".

We first determine the value a®(¢). To achieve this, we define

wa(@) = Y ITll, neN, geR. (5.4)

veB,|v|=n

Lemma 5.4. For any n>2, we have

Ru(q) = 0a(q) + Y wi(@)Ru—i(q),

i=1

whereo,(¢) is a number in(O, 2lal Zk+12 Wi (q)).
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Proof. Partition F,, into its two subsetsFéD and F,ﬁz), where F,ﬁl) consists of all

the words inF, which do not contain the letteg and F\ = F,\F". By Lemma

5.2(ii), each wordy € F,fl) can be extended to a word i by attaching some word
ve S Qaj with ||| < (1Tl <2117l This implies

k+2
DT l1<2 Y " wari(q). (5.5)
\feF,El) i=1

Observe that each word iﬂ,l(z) can be uniquely written asy for somew € B and
1 € Fy_jo- This deduces

n

DTl =" wi(q)Rui(q). (5.6)

ver? i=1

Combining 6.6) with (5.5) yields the desired resultC]

According the above lemma, using an argument similar to that in the proof of Lemma
4.6, we have

Lemma 5.5. R(g) = 1/x(gq) for any ¢ € R, wherex(q) is defined by

x(q) = {x}O: Z w,,(q)x"él} . (5.7)

n=1

To study the value ofc(¢) in the above lemma, we define a sequence of integers
{ta}72 o by lettingrp =1 and%tn (n > 0) be the number of different integral solutions
of the following conditional Diophantine equation:

pr1+--+pu=nwithmeN, 1<p1,...,ppm_1<k—1, 1<p,, <k —2.

Lemma 5.6. (i) For any positive integer n

11.-.-11\"t/1
10..-00 0
t,=2-(1,1,...,1,0.]01---00 0
ST .
k—2 el
00---10 0
(i) For any x>0,
00 1—2xk 1 Xk
L+ " =1 T gk OSEEAeL (5:8)
n=1 +00 if x>Ak_1.
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Proof. Denote by2 0 (1<i<k—1) the number of integral solutions of the following
conditional equation:

p1+--+pu=n, withmeN, 1<p1,..., pp_1<k =1, p, =1i.

Then t{l) 2 andt(’) 0 for 2<i <k — 1. Furthermore for any: >1,

bt = Y21 0 5.9
T 3 (5.9)
iy = In (G=2,....k=1).

Hence we have
) *-1\" n—1 T
(tn Y SR A ) =0"20,...,0",

where Q denotes the matrix in the formula feg. Observings, = Zf.‘ 2 t,E’), we get

the desired formula for,.
To prove (i), define a sequende,}>2; by s1 =s2 = =s5_2=0, -1 =1
and

Sp = Sp—1+ Sp—2+ -+ Sp—k—1, Vn>k.

Denotep(x) = Y 24 spx". Then

px) = Z six! +Z(5n 1+ Sp—2+- +Sn—k+l)xn
n=k

k—1 o0
= xk14 Z x! ( Z s,,x”)
n

i=1 =k—i

k=1
= x4 (Z xi> p(x).

i=1
This deduces

1_Zl'k=1l xt

L if 0<x < 1,
px) =
+00 for x> /4_1.
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By the definition ofs, we haveQ”1(1,0, ..., 0)" = (sp4k—2, Snsk—3. ..., sx)’. Hence
t, =2 Zf.‘;lz sn+i- Therefore

[e'9) k—2 o0
1~|—Z Lx" =142 Z Z Sppix”
n=1 i=1 n=1
k—2 o>
=142 Z x7 Z Spx”
i=1 n=i+1
k—2 ‘
=1+2p(x) Z x '

i=1
Combining the above result with the expressionpgk), we obtain the formula in (ii)
directly. O
Now we give the exact expression ofq).

Proposition 5.7. Let x(¢) be defined as in5.7) and u, (¢) defined as in(4.5). Then
for any g € R, x(g) is the unigue positive root of

o0

Y (g =1 (5.10)
n=0

1— ¢kt 4 ik
1—2x + xk

which lies in the interval(0, x—1). Furthermore x(g) is an infinitely differentiable
function of g onR.

Proof. By Lemmabs.1 and the definition ofv, (¢) (see (5.4)), we have

@ {0 for 1<n <k +1,
w =
ntd D0 >0 itkjrkt1en lij(q) fornzk+1.
Therefore
o o o
Z wn(g)x" = Z Z tiuj (q)x L
n=1 i=0 j=0
o0 o
- <1+ Z tix’) : (Z un(q)xk"+k+1> , (5.11)
i=1 n=0

where 1+ Y%, #x' can be simplified as in5(8).
To prove thatx(q) satisfies (5.10) and is differentiable infinitely, as that in the proof
of Theorem 4.4(ii), essentially we only need to show that for any R, there exists
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0 <y < 1 such that 1< Y77 ; w,(g)y" < oo. Assume this fact is not true. Then
there existy’ € R and O< x” < 1 such that)_,” ; w,(¢")(x))"<1 and

oo

> walg)" =+o0, Vz>x. (5.12)
n=1

By (5.11) and)_ >, w,(¢")(x")* <1, we have

oo
€0, 1) and Y un(g) @) < oo,
n=0

Thus by 6.11) and (5.12), we have

e¢]

> (g = 400 Vo >y, (5.13)
n=0

which implies Y02 5 u,(¢') = +o0 sincex’ < 1. Therefore by Propositiod.8, there
exists O< y < 1 such that

o0

> un(g) O <> un(g) ¥ < +oo,

n=0 n=0

which leads to a contradiction withs(13). This finishes the proof of the proposition.
O

Proof of Theorem 5.3.By Lemma 5.5 and Proposition 5.7, to prove Theorem 5.3 we
only need to showE(g) = R(q) for g € R. Define

En(@) =Y T ipall?,

where the summation is taken over for all words . .i,+1 In Q4,11 With i1 = a.
Takewo = Bog. Then for anyv € F,_x_2, awov € 24 n,+1. Therefore for any: >k +3,

Eiq) = Y. NTawpl?
veFy k-2

= Y ITpl? = Rus—2(q).

veEF, k-2
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On the other hand, by Lemma2(jiii) each word inQ24 ,4+1 with the first lettera has
one of the following forms

av (veF,; ab™v (ve F,_p); ad™v (v e Fy,_p).

Hence,

n n
En(@) < D T+ > T+ D> Y 1 Taaml

veF, m=1 veF,_,, m=1 veF,_,,
n
= Ru(9)+2 ) Rum(q).
m=1

Using the above two inequalities and the fattg) >1, we haveE(g) = R(q). This
proves the theorem.[]

5.3. The Hausdorff dimension of the graph f, th&-spectrum and Hausdorff
dimension ofu

The main result of this subsection is the following:

Theorem 5.8. Let x(g) be given as in Theorer.3. Then

(i) The Hausdorff dimension of the graph of f satisfies

logx(—logp/log 2

dimy I'(f) = logp

(i) For anyq € R, the Li-spectrumz(q) of u satisfies

)= 4 log2 logx(q)
T = - .
1 log p log p

Furthermoret(q) is infinitely differentiable orR.
(i) The Hausdorff dimension qf is

oo
> 27kl S 1My log My |
_ log2 (2t —3\? .20 JeA,
dimy pu=— - .
logp 2x—1 logp

Proof. Combining TheorenB.4 with Theorem 5.3 yields (i) directly. Similarly, com-
bining Theorem 3.3 with Theorem 5.3 yields (ii). To show (iii), by Theorem 4.14,
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dimy © = 7/(1). By a direct computation ot’'(1), we obtain the formula in (iii) (for
shortness we omit the details)]

5.4. Local dimensions of

In this subsection we present the following two theorems about the local dimensions
of u.

Theorem 5.9. The range of the local dimension pf satisfies

R(,u):[ klog2 IogZ]

—(k+1)logp” —logp

Theorem 5.10. For £ almost all x € [0, 1],

log2 = p*1-2p2 &
d(u, x) = — + " log||My].
(nx) === (2—(k+l)pk)n§)p J; gliMy|

To prove these theorems, we first give the following lemma.

Lemma 5.11. Let B be defined as ir{5.6). Then

., log| T, log || T, log2
i 199170l _ o 100lTal _ log2
veBB [v| veB [v| k+1

Proof. By Lemma5.1(1), (Bo)"g € B for n € N. Note that||Typgygll = Mgl = 2+n

. 10g |, gy _ ,
and|(Bg)"g| = nk+1. We have lim_, o %ﬁglg” =0, and thus infep Iogln# =0.

On the other hand by Lemma 5.1, we have

log || T,y log 2 log||M;, ;
up gll g‘”:max g su gllMiy..i, |l

veB VI k+1" u>1 i ie0y kn+k+1 |

yenes

Note that in the proof of Theorem.15 we have obtained

2+ o+ (J)?**
o omax. |[[Miyi,ll = 5
i1, €{0,1} 1+ (A2)

(J2)7 ™.

Observing that

1 2+ g+ (Jp)2 4 1 | 2+ 2+ (A2)*]  log2
k+1 1+ (J)? k41 1+ (J2)? T k+1



96 D.-J. Feng/Advances in Mathematics 195 (2005) 24-101

and

log(42)™ —log2  log2
nk .k k+1

we have

sup log || M;y..i, < |0927
n>1in..inefoy kn+k+1 “k+1

where we have used the inequaliﬁ—“< max{;, 7} for positive numbersz, b, ¢, d.

|Og ”Tg\H |092

Therefore supg == = 51

This finishes the proof of the lemmall

Proof of Theorem 5.9.Using an argument similar to that in the proof of Theorem

log 2 I Tov log 2
4.15, we can prove thaR(u) = [ (e L |ogp SUR.cp ogluv'g I lfjg,, + |ng inf,ei

Togp
%] Combining it with Lemma 5.11 yields the theoreni]

Proof of Theorem 5.10.Let Q = Q\{a, b, d}. Consider the one-sided shift space
(ﬁi‘, a), where

ﬁ[}] = !(ln)}?zozl l" € ﬁ’ Ain»in+l = 1 for n>1} ’

and o ((in)?lozl) = (l‘n+1)?il-
Define a probability matrix? = (P; ;). jeb by

.
P = p# if A,’J:l,
K 0 otherwise

where ¢; denotes the relative length of the characteristic vector labelled. Hyet
p =(pi);cp be the probability vector such that=pP. By a careful calculation, we
have

_paA=2h
Pg - 2_ (k+ 1)pk7 Pcz - - ka_]_ - 27(k+l)pk’
_ _(A=pHpt _ o pa=prpth _
Per = 5 -g) 8 Pei = Pfi = 2" (r1)pk (i=1...,k=-1,
%

Pey = 2—(k+1)pk -
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Define n to be the (p, P) Markov measure orfzij. Using the Birkhoff ergodic
theorem and a proof essentially identical to that of TheodehY, we have

. log || 7,
lim gl Txy..x, I

n— 00 n

= > n(lgvD) 1og || Ty, |
veBB

for n almost allx = (xj) ‘. € QA, where[iy...i,] denote then-cylinder set
00 =N . .
{(xj)jzl €Q,: x;=ij for 1§]§n}.
Furthermore for£ almost allx € [0, 1],

lo 2
A, x) = —9°

iogy " iogp 2 Nle 10GITerl

veBB
Now we are going to comput®_,_z n([gv]) log T, |. By the definition ofy, we have

n—1
L pti; _1 Pirti,
”I([ll-~-ln]) = Pi1 l_[ AES = Pn lL-

j=1 Zi/ bin

Thus for eachy € B, we haven([gv]) = p""!p,. By Lemma5.1 and (5.8), we have

> n(evDIog Tyl = Y pep"!log I Tyl
veBB veBB

o0 o ) )
=pg Y Y p L N log My |

i=0 j=0 JeA;

1-— 2,0" 1y pk
_ k+1 kj
= pgp p log ([ M |
) 1- 2p+p X:: J;A

_ Pra—2ph? .
T @2-(k+1ph) Zp JeZA log||My.

This finishes the proof of the theoremd

5.5. The box dimension and Hausdorff dimension of

In this subsection we prove



98 D.-J. Feng/Advances in Mathematics 195 (2005) 24-101

Theorem 5.12.For £ almost allz € [0, 1], the Hausdorff dimension and box-counting
dimension of t-level set of the limit Rademacher function f with parameteri; are
equal to

k k)2 o0
P (1_2p) kn
E p E log || M|
(2— (k+1)p*)log2 = =

Proof. The result for the box-counting dimension follows directly from Coroll&g

and Theorem 5.10. The proof for the coincidence of the Hausdorff dimension and the
box-counting dimension for almost dllis essentially identical to that of Theorem 4.19

by using the dimensional result about homogeneous Moran sEéts.

5.6. The infinite similarity and multifractal formalism for

Denote
D={iti...in € Qan: neN, i1=a, iy =g, ij #g for 1<j <n}.

For anyw € D andv € B, denote by®,,, the unique similitudecx + d with ¢ > 0

so that®, ,(4(w)) = A4(wv), where A(w) denotes the net interval with respect to the
admissible wordw. Then the following theorem can be proved in the same line as that
of Theorem4.21:

Theorem 5.13. u is supported on J,,.p 4(w). For any fixedw € D,

o= 2 MTell - pyy 0 DL, (5.14)
veBB

where 1, denotes the restriction oft on 4(w), i.e, pu,(A) = p(A N A(w)) for any
Borel setA c R. Furthermore

Dy v (A(0)) = A(wv) C A(w), A(wv) N AV =0 for v # V. (5.15)

Using the above theorem and a proof identical to that in Thectétd, we have

Theorem 5.14.Then for anyg € R, we have
dimy Ko = jg[&{fx(q)t — ()} = alg)g — 1(q), (5.16)

where K (o) = {x € R: d(u, x) = o}, 7(¢) is the L’-spectrum ofu, and o(g) = 7'(g).



D.-J. Feng/Advances in Mathematics 195 (2005) 24-101 99

Remark 5.15. After our work, Olivier et al.[46] also verifies the validity of the mul-
tifractal formalism foru by viewing 4 as a weak Gibbs measure.
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