
ON THE LIMIT RADEMACHER 
FUNCTIONS AND BERNOULLI 

CONVOLUTIONS 
DE-JUN FENG. 

Department of Applied Mathematics and Center for Advance Study, Tsinghua 
University, Beijing 100084, China, E-mail: dfengCmath.tsinghua.edu.cn. 

(DEDICATED TO THE MEMORY OF PROFESSOR LIAO SHANTAO) 

1. Introduction 

For 0 < p < 1, the limit Rademacher function /p is defined as: 
00 

/p(x) = (1- p) LP"R(2"x), x E [0, 1] 

where R denotes the Rademacher function: R(x) is defined on the line~ with 
period 1, takes values 0 and 1 on the intervals [0, 1/2) and [1/2, 1) respectively. 
The distribution of /p induces a probability measure J.'p on [0, 1], which is called 
an infinitely convolved Bernoulli measure or simply a Bernoulli convolution. 
That is, 

J.'p(E) = .C{x E [0, 1]: /p(x) E E}, VE C [0, 1] measurable 

where .C denotes !-dimensional Lebesgue measure. These measures have been 
studied for more than 60 years, revealing many connections with harmonic 
analysis, algebraic number theory, dynamical systems, and Hausdorff dimension 
estimation (for a good survey, see e.g., [15] or [1]). For 0 < p < 1/2, the support 
of J.'p is a Cantor set of zero Lebesgue measure and J.'p is totally singular with 
respect to the Lebesgue measure. For p = 1/2, J.'p is just the !-dimensional 
Lebesgue measure restriction on [0, 1]. For 1/2 < p < 1, J.'p is only partially 
understood still now. Solomyak [16] proved J.'p is absolute continuous for almost 
all p E (1/2, 1). For integer k ~ 2, let >..k is the positive root of the polynomial 
1 - x - x2 - • • · - xk. Erd8s [3) proved that the Bernoulli convolution J.t>.k is 
totally singular to the Lebesgue measure for each k ~ 2. 

In this note we give the explicit formulas for the Hausdorff dimension of 
the graphs of J>.k , the Hausdorff dimension of almost all level sets (respect 
to Lebesgue measure) of J>.k, the Hausdorff dimension, information dimension 
and the Lq-spectrum ( q E ~) of J.t>.k, k ~ 2. We point out that for each k ~ 2, 
J.'>.k is a locally infinitely-generated self-similar measure and the multifractal 
formalism of which holds. For the detailed proofs, see [5], [6]. The reader may 
refer to the books [4), [11), [l3) for the relative definitions of dimensions. 

• Supported by China Postdoc Foundation. 

46 

 D
yn

am
ic

al
 S

ys
te

m
s 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

N
Y

A
N

G
 T

E
C

H
N

O
L

O
G

IC
A

L
 U

N
IV

E
R

SI
T

Y
 o

n 
10

/0
5/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



2. Main results 

Set 

Mo = ( ~ i ) , M1 = ( i ~ ) · 
For any J = jl ···in E {0, 1}n, denote MJ = Mj, o · ·· o Mjn· For any 2 X 2 
non-negative matrix B, denote by //B// = (1, l)B(1, 1)'. 

We can formulate our main results as follows: 

. log >.k 
Theorem 2.1 For each znteger k > 2, let ak = --1- 2-. Then the Hausdorff - og 
dimension of the gmph of the limit Rademacher function f>... satisfies that 

. log Xk 
d1mH Gmph(f>...) = -1 , , 

og"'k 

where 0 < Xk :S ).k_l(defining >.1 = 1} and Xk satisfies that 

Let a E ~~the a-level set of a function f is defined as {x: f(x) =a}. 

Theorem 2.2 For k 2:: 2, the Hausdorff dimension and box-counting dimen­
sion oft-level set of the limit Rademacher function f>... are equal to 

for almost all t E [0, 1] (respect to the Lebesgue measure). 

Theorem 2.3 (i) For any q E ~' the £9-spectrum T>. 2 (q) of J-l>. 2 is equal to 

where 

q log 2 + _lo..::..g _x -'--( 2-=', q'"'-) 

log >.;-1 log >.;-1 ' 

00 

x(2, q) = sup{x 2:: 0: L( L I/M1 1/9)x2n+3 :S 1}. 
n=D IJI=n 

00 

There exists a unique qo < -2 such that 2::: (l:::IJI=n //MJ//9°) = 1. When 
n=O 

00 

q > q0 , x(2,q) is the positive root of 2::: (l:::IJI=n I/MJI/9)x2n+3 = 1, and it is 
n=O 
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an infinitely differentiable function of q on (qo, +oo). When q ::; q0 , x(2, q) = 1. 
Moreover x(2, q) is not differentiable at q = qo. 

(ii) For any integer k ~ 3 and any real number q, the U -spectrum T>-.k (q) 
of the Bernoulli convolution J-L>-.k is equal to 

q log 2 log x( k, q) 
log Ak" 1 + log Ak" 1 ' 

where 0 < x(k,q) < Ak- 1 , x(k,q) satisfies that 

Moreover x(k, q) is an infinitely differentiable function on the whole line. 

Theorem 2.4 For each integer k ~ 2, the Hausdorff dimension and the in­
formation dimension of the Bernoulli convolution J-L><k coincide, the common 
value is equal to 

00 

}: 2-kn-k-l }: IIMJIIlog IIMJII 
n=O IJI=n 

log >.k 

Theorem 2.5 For each k ~ 2, the Bernoulli convolution J-L><k is a locally in­
finitely self-similar measure without overlap in the following sense: J-L><k is sup­
ported on the union of a sequence of disjoint intervals {/i};; and for each i there 
exists a countable family of similitudes {gi,j }j with controction ratio { rj }j, and 
a probability weight {Pih with }:i Pi = 1, such that 9i,j(l;) C l; for each j, 
9i,j(/i)ng;,i'(Ii) =0 ifj=f=j', and 

J-L (i) = "'"'p •J-L(i) 0 g:- .1 
Ak ~ J Ak •J 

j 

where J-L~~ denote the restriction of J-L>-.k on the interval Ii, z.e., J-L~~(A) = 
J-L>-.k (Ii n A) for each Borel set A C R 

Theorem 2.6 (i) Let qo defined as in Theorem 2.3(i). Then for each q E 
lR\qo, the multifroctal formalism of J-L>-. 2 holds for a= a(q) := r'(q), where r(q) 
is the Lq -spectrum of J-L>-.2 • 

(ii) For each integer k ~ 3 and q E JR, the multifroctal formalism of J-L>-.k 
holds for a= a(q) := r'(q), where r(q) is the U-spectrum of J-L><k. 

Remark. (i) Lau and Ngai [8] obtained the formula of the Lq-spectrum of 
J..L>-.2 for q > 0, they proved that it is a differentiable function of q on (O,+oo). 
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Using this result, they showed [7] that the multifractal formula of J-1>. 2 holds 
for a = r'(q), q > 0. Porzio [14] extended the differentiability range of Lq­
spectrum to (- ~, +oo), and showed that the multifractal formula of J-1>. 2 holds 
for a= r'(q), q E (-~,+oo). 

(ii) Several people have obtained the explicit formula and numeral estima­
tions of dimH J-1>. 2 • See [1], [2], [8], [9], [12], [17]. 

References 
1. J.C. Alexander and J.A. Yorke, Ergod. Theory & Dynam. Systems 4(1984), 

1-23. 
2. J.C. Alexander and D. Zagier, J. London Math. Soc. (2) 44 (1991), 121-134. 
3. P. Erdos, Amer. J. Math. 61 (1939), 974-976. 
4. K.J. Falconer, Fractal Geometry, Mathematical Foundations and Applications 

(Wiley, 1990). 
5. D.-J. Feng, The limit Rademacher functions and Bernoulli convolutions asso­

ciated Pisot numbers, Preprint. 
6. D.-J. Feng, The similarity and multifractal analysis of Bernoulli convolutions, 

Preprint. 
7. K.-S. Lau and S.-M. Ngai, Multifractal measure and a weak separation condi­

tion, Adv. Math., to appear. 
8. -, Studia Math., 131, no. 3 (1998), 225-251. 
9. F. Ledrappier and A. Porzio, J. Stat. Phys. 76 (1994), 1307-1327. 

10. -, J. Statist. Phys., 82 (1996), 367-420. 
11. P. Mattila, Geometry of Sets and Measures in Euclidean Spaces( Cambridge 

Univ. Press, 1995). 
12. S.-M. Ngai, Proc. Amer. Math. Soc. 125 (1997), 2943-2951. 
13. Y.B. Pesin, Dimension Theory in Dynamical Systems: Contemporary Views 

and Applications (The University of Chicago Press, 1997). 
14. A. Porzio, J. Stat. Phys., 91 (1998), 17-29. 
15. Y. Peres, W. Schlag and B. Solomyak, Sixty years of Bernoulli convolutions. 

Preprint 
16. B. Solomyak, Ann. Math., 142 (1995), 611-625. 
17. N. Sidorov and A. Vershik, Ergodic properties of Erdos measure, the entropy 

of the goldenshift and related problems. Preprint, 1997. 

49 

 D
yn

am
ic

al
 S

ys
te

m
s 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 N
A

N
Y

A
N

G
 T

E
C

H
N

O
L

O
G

IC
A

L
 U

N
IV

E
R

SI
T

Y
 o

n 
10

/0
5/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.




