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1. Introduction

For 0 < p < 1, the limit Rademacher function f, is defined as:
fp(z) = (1 - ,D) ZPHRQHI)’ zE [Ov 1]
n=0

where R denotes the Rademacher function: R(z) is defined on the line R with
period 1, takes values 0 and 1 on the intervals [0,1/2) and [1/2,1) respectively.
The distribution of f, induces a probability measure x, on [0, 1], which is called
an infinitely convolved Bernoulli measure or simply a Bernoulli convolution.
That is,

po(E)=L{z €[0,1]: f,(z) € E}, VE C [0, 1] measurable

where £ denotes 1-dimensional Lebesgue measure. These measures have been
studied for more than 60 years, revealing many connections with harmonic
analysis, algebraic number theory, dynamical systems, and Hausdorff dimension
estimation (for a good survey, see e.g., [15] or [1]). For 0 < p < 1/2, the support
of p, is a Cantor set of zero Lebesgue measure and p, is totally singular with
respect to the Lebesgue measure. For p = 1/2, p, is just the 1-dimensional
Lebesgue measure restriction on [0,1]. For 1/2 < p < 1, p, is only partially
understood still now. Solomyak [16] proved 4, is absolute continuous for almost
all p € (1/2,1). For integer k > 2, let A is the positive root of the polynomial
1—2—z%—...—z* Erdés [3] proved that the Bernoulli convolution p», is
totally singular to the Lebesgue measure for each k > 2.

In this note we give the explicit formulas for the Hausdorff dimension of
the graphs of fy,, the Hausdorff dimension of almost all level sets (respect
to Lebesgue measure) of fy,, the Hausdorff dimension, information dimension
and the L%-spectrum ( ¢ € R) of py,, k > 2. We point out that for each k > 2,
pa, Is a locally infinitely-generated self-similar measure and the multifractal
formalism of which holds. For the detailed proofs, see [5], [6]. The reader may
refer to the books [4], [11], [13] for the relative definitions of dimensions.

* Supported by China Postdoc Foundation.
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2. Main results

11 1 0
(3 1) m=(10)

For any J = j; - j, € {0,1}"*, denote My = Mj o---oM; . For any 2 x 2

non-negative matrix B, denote by ||B|| = (1,1)B(1, 1)’.
We can formulate our main results as follows:

Set

_ log Ak /\k

Theorem 2.1 For each integer k > 2, let ay = . Then the Hausdorff

dimension of the graph of the limit Rademacher functzon fr. satisfies that

log z

dimyg Graph(fy,) = m,

where 0 < zx < Ag—1(defining A\; = 1) and zy satisfies that

1 -2kl 42k &
Tog a2 Myt =1
n=0 |]|=n

Let o € R, the a-level set of a function f is defined as {z : f(z) = a}.

Theorem 2.2 For k > 2, the Hausdorff dimension and boz-counting dimen-
ston of t-level set of the limit Rademacher function fy, are equal to

(2(jk()lc(+1 (Ak Z (W)™ > log||M,])

|J|=n

for almost all t € [0, 1] (respect to the Lebesque measure).
Theorem 2.3 (i) For any q € R, the LI-spectrum 7x,(q) of ux, is equal to

qlog2  logx(2,q)
log 25" log A;!

)

where

x(2,¢) =sup{z > 0: Y (D [IMy]|%)z*"*+3 < 1}.

n=0 |J|=n
o0
There exists a unique qo < —2 such that Z (Z|J|=n [|[Ms]|%°) = 1. When

q > qo, x(2,9) is the positive oot of Z (C1s1=n [IMs[|9)2***3 = 1, and it 1s
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an infinitely differentiable function of ¢ on (o, +00). When ¢ < qo, x(2,¢9) = 1.
Moreover x(2, q) is not differentiable at ¢ = qq.

(ii) For any integer k > 3 and any real number q, the LI -spectrum 7, (q)
of the Bernoulli convolution u, is equal to

glog2  logx(k,q)
Tt 1
log A log AL

)

where 0 < x(k, q) < Ak—1, x(k,q) satisfies that

1 —92gk-1 k
Rt A SUY IMal9)atn et = 1,

_ %
1-2z+2 ey Ayl

Moreover x(k, q) is an infinitely differentiable function on the whole line.

Theorem 2.4 For each integer k > 2, the Hausdorff dimension and the in-
formation dimension of the Bernoulli convolution py, coincide, the common
value 1s equal to

2mhn—hk=1 M;||log || M
log 2 <2“_3>2 Z_:O J%:n” || log || M|

log /\k 2k — 1 log /\k

Theorem 2.5 For each k > 2, the Bernoulli convolution py, ts a locally in-
finitely self-similar measure without overlap in the following sense: uy, is sup-
ported on the union of a sequence of disjoint intervals {I; };; and for each i there
exists a countable family of similitudes {g; ;}; with contraction ratio {r;};, and
a probability weight {pJ}J with 3. pj = 1, such that g ;(I;) C I; for each j,
gi,j(l)ngs,J( i) = 0ifj#7, and

“Ak EPJ”M °gi;

where p)‘k denote the restriction of py, on the interval I;, 1.e., /LE\)(A) =
px, (I; N A) for each Borel set A C R.

Theorem 2.6 (i) Let qo defined as in Theorem 2.3(i). Then for each ¢ €
R\qo, the multifractal formalism of p», holds for a = a(q) := 7'(q), where 7(q)
is the Li-spectrum of p»,.

(ii) For each integer k > 3 and g € R, the multifractal formalism of py,
holds for a = a(q) := 7'(q), where 7(q) ts the L-spectrum of p», .

Remark. (i) Lau and Ngai [8] obtained the formula of the LI-spectrum of
x; for ¢ > 0, they proved that it is a differentiable function of ¢ on (0, +00).
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Using this result, they showed [7] that the multifractal formula of p,, holds
for « = 7'(¢), ¢ > 0. Porzio [14] extended the differentiability range of L9-
spectrum to (—%, +00), and showed that the multifractal formula of uy, holds
for a = 7'(q), ¢ € (-3, +00).

(i1) Several people have obtained the explicit formula and numeral estima-
tions of dimg p»,. See [1], [2], [8], [9], [12], [17].
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