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Abstract

For integer k > 2, let p = \;, be the positive root of the polynomial 2* 4+ 2%~ 4+
-+ 42 — 1. We show that the infinitely convolved Bernoulli measure 1, ( the
distribution of random series "% (1 — p)p"e,, where the coefficients €, take in-
dependently the values 0 and 1 with probability %) is a locally infinitely-generated
self-similar measure without overlap. This result turns out to be essential in the
study of local properties of y,. It provides a direct way to obtain the explicit for-
mula for the Hausdorff dimension of p, and to analyze the multifractal structure

of p,. The multifratal spectrum of py, (k > 3) are obtained completely.
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1 Introduction

For 0 < p < 1, let y, be the distribution of the random series > '2%(1 — p)p"e, where the
coefficients €, take independently the values 0 and 1 with probability % The measure p,, is
termed as “infinitely convolved Bernoulli measure” or simply “Bernoulli convolution” since it
is the infinite convolution product of %(50 +6(1—p)pn)- These measures have been studied for
more than 60 years, revealing many connections with harmonic analysis, algebraic number
theory, dynamical systems, and Hausdorff dimension estimation(for a good survey, see e.g.
Peres, Schlag and Solomyak [PSS] or Alexander and Yorke [AY]). One can easily see that
for 0 < p < % the measure p, is supported on a Cantor set of zero Lebesgue measure and
thus p, is totally singular with respect to the Lebesgue measure; for p = %, p is just the
Lebesgue measure restriction on [0, 1]. However for % < p < 1, p, is only partially understood
still now. Jesson and Wintner [JW] proved that p, is either absolute continuous or totally
singular with respect to the Lebesgue measure. Wintner [Win] showed that p, is absolutely
continuous for p = 27/"(n =2,3,---), and Garsia [G1] found some other algebraic integers
for which g, is absolutely continuous. Moreover, Erdés [Erl] proved that i, is absolutely
continuous for almost all p closed enough to one. He conjectured that the result should be
true for almost all % < p < 1. Solomyak [Sol] has recently proved this conjecture to be true
(see [PS] for a shorter proof). On the other hand, Erdés showed that p, is totally singular if
p is the reciprocal of a Pisot number ( an algebraic integer is a Pisot number provided that all

of its conjugates are less than one in modulus. For example the positive root of polynomial

n n—1

x
and [BDGPS] for further information about Pisot numbers.)

Recently, a lot of interests have been focused on considering the Hausdorff dimension and

—x -+ —x — 1 is Pisot number for each integer n > 2. The reader may refer to [Sa]

multifractal structure of u, when p is the reciprocal of a Pisot number. Before citing the
relative works, we give here some basic notations and backgrounds. Let v be a Borel measure

on R, the Hausdorff dimension of v is defined by
dimg v = inf{dimpg A : A Borel, v(R\A) = F}.

For x € R, the local dimension of v at z is given by

Project supported by China Postdoctoral Science Foundation.
Keywords: Bernoulli convolution, Hausdorff dimension, L?-spectrum, multifractal spectrum, self-
similar measures, formalism.
1991 Mathematics Subject Classification. Primary 28A78, Secondary 28D20, 58F11.



if the limit exists. For a > 0, let K, = {x € R: d(v,x) = a}. For certain measure the set
K, may be non-empty and fractal over a range of «, and when this happens v is often termed
a multifractal measure. The main purpose of multifractal analysis is to study the multifractal
spectrum or singular spectrum of v defined by f(«) = dimy K,. The multifractal measures
and multifractal spectra were first proposed by physicist to study the scaling behavior of
physical measures on strange attractors, diffusion-limited aggregates, etc (see e.g. Mandelbrot
[Man], Frish and Paris [FP], Halsey et al [Ha]). Now multifractal analysis has become a strong
tool to describe residence measures on the attractors of dynamical systems, turbulence in
fluids, rainfall distribution, mass distribution in the universe, and many other phenomena.
In order to determine the function f(«), one can consider the Li-spectrum of v for each
q € R, which is defined by

g 1085 2 ([ — 6,20 + d])
7(q) —hrirsli%]nf logd

I

where the supremum takes over all the families of disjoint intervals [x; — §,z; + J]; with
x; €supp(v). Then it is asserted ([FP], [Ha], [HP]) and proved in certain cases (see e.g.
[CLP], [CM], [EM], [Lo], [O], [R], [RM]) the multifractal spectra f(a) are equal to the

Legendre transformation of the L?-spectrum 7(q), that is
f(a) =inf{ga —7(¢) : ¢ € R}. (1.1)

The relationship (1.1) is called the multifractal formalism. For the definitions of various
dimensions ( Hausdorff dimension, upper box-counting dimension dimp, packing dimension
dimp) and further properties of Li-spectrum, multifractal formalism, see e.g. the books [Fal],
[Mat], [Pe].
Przytycki and Urbanski [PU] proved that dimg p, < 1 if p is the reciprocal of a Pisot
V51

number. For the golden ratio A = *=—, several people obtained the explicit formula and

numeral estimates of dimg uy. Alexander and Zagier [AZ] found a formula for dimpg py by
analyzing the “Fibonacci graph”, and used it to show that 0.99557 < dimpg py < 0.99574.
Using another different proof, Sidrov and Vershik [SV] re-obtained the Alexander-Zagier
formula. Ledrappier and Porzio[LP1], and independently, Lalley [La] gave another theoretical
formula for dimy ) by expressing dimg py as the top Lyapunov exponent of certain random
matrix products. Ngai [Ng] also found a different explicit formula for dimg ) by showing
that for any boundedly supported Borel measure v, dimy v is equal to the derivative of the
Li-spectrum of v at ¢ = 1 if it exists. We should mention that Lau and Ngai [LN2] obtained
the explicit formula for the L?-spectrum of uy for ¢ > 0 and proved its differentiability
on this range. By a direct study of the Ruelle-Perron-Frobenius operator associated to the

random unbounded matrix product, Porzio [Po] proved the Li-spectrum of u) is differential



on (—%, +00). Recently, by introducing an algebraic method to analyze the local properties
of uy, Feng [Fe] obtained the explicit formula for the Li-spectrum of py for all ¢ € R, and
proved its smoothness on the whole line except for one point g9 < —2; He also obtained
the explicit formula for the L9-spectrum of uy, for ¢ € R ( A\g is the positive root of the
polynomial z*¥ + 21 4 ... 4+ 2 — 1, k = 3,4, - --) with showing its smoothness on the whole
line; and obtained the explicit formula of dimg w1y, by applying Ngai’s work. In the following

we formulate these results. Set

Moz(;i),Mlz(ig),M@:(;g). 12

For any J = ji---jn, € {0,1}", denote My = Mj, o---o Mj,. For any 2 x 2 non-negative
matrix B, denote by ||B|| = (1,1)B(1,1)".

Theorem 1.1 (Theorem C of [Fe|). (i) Denote Ay = X. For any q € R, the Li-spectrum

Tx, (q) of pa, s equal to
qlog2  logx(2,q)
log Ay " log Ayt

Y

where

x(2,q) =sup{z > 0: Y (Y |[My]|9)z*" <1},

n=0 |J|=n
oo
There ezists a unique qo < —2 such that (Zu':n || Ms||%) = 1. When q > qo, x(2,q) is the
n=0
[e.e]
positive root of 3 (3|52 [|[M;||9)2?™+3 =1, and it is an infinitely differentiable function of
n=0

q on (qo, +00). When q < qov, x(2,q) = 1. Moreover x(2,q) is not differentiable at ¢ = qo,

5 im0 (51 |19 g || M)
2 on>0 Un,go * (20 + 3)

(ii) For any integer k > 3 and any real number q, the Li-spectrum Ty, (q) of the Bernoulli

x/(27q0_) = 07 $/(27q0+) - - c (—O0,0)

convolution py, s equal to
qlog2  logx(k,q)
log )\,;1 log )\;1

)

where 0 < x(k,q) < Ap—1, and x(k, q) satisfies that

1— 22kt p ok &
o kD O D LA D B
n=0 |J|=n

Moreover x(k,q) is an infinitely differentiable function on the whole line.
(iii) For any integer k > 2, the Hausdorff dimension of the Bernoulli convolution py,
satisfies that

(o]
i o 2 27 EEL ST ([ My | log || M|
log 2 <2 —3) n=0 |J|=n

log Mk 2k —1 log \j,

dimH Hx, =



Recently Lau and Ngai [LN1] concerned whether the multifractal formalism holds for s,
if p is the reciprocal of Pisot number. By some rigorous e-d arguments, they proved that the

multifractal formalism of p, does hold over the following range of a:

{a>0: 7'(q) exists and is equal to « for some ¢ > 0} .

Using above result they showed the multifractal formalism of py holds for a = 7/(q), ¢ > 0;
Based on the previous work [LP2] joint with Ledrappier, Porzio [Po] extended this range to
a=1(q), =5 < q < +oo.

In the present paper, we will show that the multifractal formalism of u) holds for all
a = 7(q), ¢ € R\{i}, where qp is given as in Theorem 1.1; Moreover, the multifractal
formalism of py, (k= 3,4,---) holds for all @ = 7'(¢q), ¢ € R.

Our multifractal analysis is based on a remarkable fact: the measure p) is a locally
infinitely-generated self-similar measure without overlap (so do the measure py, , k = 3,4, ---).

To make it more precisely, recall that p, is a self-similar measure for the iterated function

11

system {pz, pxr + 1 — p} with the probability weight (3, 5), this is, p, satisfies that

1 _ 1 _
Hp = 5Ho© Pop + DYal 1 (1.3)

where ¢g ,(x) = px, ¢p1, = pr + 1 — p(for a proof, see e.g. Theorem 4.3 of Lau [L1]). The
measure /i, (p > 3) can not be easily understood since { ¢ ,, ¢1,,} does not satisfy the
open set condition, that is, there exists no non-empty open set U such that ¢y ,(U) C U,
$1,,(U) C U and ¢o,(U) N ¢1,,(U) = 0. However, in this paper, we can construct for each
integer k > 2 a sequence of disjoint intervals {I;}; such that py, is supported on U;I; (i.e.,
fa, (Uil;) = 1), and the restriction of ), on each interval I; is an infinitely-generated self-
similar measure without overlap (for details see Theorem 1.2). This fact is very important
for us to understand the local properties of uy, (k> 2).

Now we formulate our main results of this paper as follows.

Theorem 1.2 (i) Let A = ‘/3’2*1. The Bernoulli convolution uy is a locally infinitely self-
similar measure in the following sense: py is supported on the union of a sequence of disjoint
intervals {I;};; and for each j there exists a countable family of similitudes {g;;}; with
contraction ratio {r;};, and a probability weight {p;}i, such that g;;(I;) C I; for each i,

95.:(I;) N g (I;) =0 if i 7', and
u) =S pind o g7}

where ug\j) denote the restriction of py on the interval I;, i.e., ug\j)(-) = px(L; N-).
(ii) For each integer k > 3, let Ay be the positive root of the polynomial x* 4+ xF=1 4 ... 4

x — 1, then py, 1s also a locally infinitely-generated self-similar measure in the above sense..



Theorem 1.3 (i) Let qo defined as in Theorem 1.1(i). Then for each ¢ € R\{ix}, the
multifractal formalism (1.1) of uy holds for o = a(q) := 7'(q), where 7(q) is the LI-spectrum
of pas and f(a(q)) = —7(q) + alq) - q-

(ii) For each integer k > 3, the multifractal formalism (1.1) of uy, holds for a = a(q) :=
7'(q), where T(q) is the Li-spectrum of py, ; and f(a(q)) = —7(q) + a(q) - q.

Remark 1.4 (i) With some additive work Theorem 1.2 can be generalized to the biased
Bernoulli convolutions. For 0 < p < 1land 1/2 < p <1, let ugp ) denote the p-biased Bernoulli
convolution, i.e., the infinite convolution product of pdy+ (1 —p)d(1—p),n- Then for any k > 2,
u(ﬁ )is a locally self-similar measure without overlap.

(ii) Under some assumptions about the decay speed of contraction ratios and probability
weights, Riedi and Mandelbrot [RM] verified the multifractal formalism of infinitely generated
self-similar measures without overlap, see Theorem 10 of [RM]. However, our cases don’t
satisfy those assumptions.

(iii) It is still open question whether or not the multifractal formalism (1.1) of uy holds
for o € (7'(qo+), 7 (q0—))-

The proof of Theorem 1.2 is based on the precise estimates of the Bernoulli convolution
i, (k> 2) on so called “net intervals”, which we will discuss in Section 2.

We will give the detailed proofs of Theorem 1.2 and 1.3 for the case p = A (see Theorem
3.1 and 4.4). Since the similar proofs will works well for p = A\; (k > 3), to avoid our paper
being too long we only give the generating relations of I-colors and II-colors associated with
Ak (k> 3) in the Appendix. To make this paper self-contained, we give the proof of Theorem
1.1(i) in the Appendix.

Our paper is organized as follows. In Section 2, we present the definitions and properties
of net intervals, I-colors and Il-colors, and give the generating relations of I-colors and II-
colors for p = A. In Section 3, we prove Theorem 1.2 for p = A. In section 4, we prove
Theorem 1.3 for p = A, meanwhile, we give a direct way to obtain the formula for dimp )
(it will be shown to be equal to ), p;logp;/ >, pilogr;, where {p;} and {r;} are given as in
Theorem 1.2(i).). In Appendix 1, we proved Theorem 1.1(i). In Appendix 2, we present the
generating relation of I-color and II-colors for p = Ay (k > 3).

2 Net intervals, I-colors and II-colors

2.1 The definitions

Let % < p < 1. The similitudes ¢gp,¢1, : R — R are defined by ¢o,(xr) = pr and
¢1,p(x) = pr +1—p. For w= (i;)7; € {0,1}"", write ¢ p = @i, p 00 $j, p; the interval
¢w,p([0,1]) is termed a m-th basic interval. Denote by P, , the set of all endpoints of m-th
basic intervals, i.e., P, = Uyefo,1}mPuw,p({0,1}). It is clear that P, , consists of all the

ral



points of the form
m—1
pmrm+(1_p)zpnrn (rp, =0,0r 1 for 0 <n <m)
n=0

and P, , C Pyy1,-

The points in P, , partition [0, 1] into some non-overlap closed intervals, each of which is
called a m-th net interval associated with p. For example, P; , = {0,1—p, p, 1} and thus the 1-
th net intervals associated with any p are [0,1 — p], [1 — p, p] and [p, 1] respectively; Similarly
the 2-th net intervals associated with p = (v/5 — 1)/2 are [0,p°%], [p%, 0%, [0% 0], [p,20°]
and [2p?, 1]; The 3-th net intervals associated with p = (v/5 — 1)/2 are

[0, 0", 1%, 0%, 10%, 0%, 0%, 20°), [20°, 0> + "], [0* + 0", P, [, 20°],

and [2p2, p% + 293, [p? + 20°, 1].

Since P, , C Ppy1,p, it follows that each m-th net interval is the union of some (m+1)-th
net intervals, and each (m + 1)-th net interval is contained in a unique m-th net interval.
Denote by Z,, , the collection of all m-th net intervals. Now, we define a mapping I';, , :
T — 28 xR by

[a, b] — ({W : w € {0,1}™ such that — p™ < ¢, ,(0) —a < O} , bp:f) .

We call I', , to be the m-th I-color mapping, and call T';, ,([a,b]) to be the m-th I-color
of [a,b]. We can see from the definition that I';, ,([a,b]) contains the following information
about the net interval [a,b]: (i) the various relative distances (with a ratio p~™) between the
point a and the points of the form (1 — p) an;()l p"ry (rp, = 0,0r 1) which lie on the left side
of a and have distance less than p™ from a; (ii) the relative length of [a, b](with a ratio p~™).

For w € {0,1}™, write < w >,:={v € {0,1}"" : ¢,,(0) = ¢, ,(0)}, and use # < w >, to
denote the cardinal of < w >,. Define another mapping Yy, , : Z,, — 2RXN 5 R by

[a,b] — ({(Q%,pionz—a’# <w>,):w e {0,1}" such that
b—
" < Gupl0) —a < 0}, = 25)

We call Y, , to be the m-th II-color mapping, and call Y, ,([a,b]) to be the m-th II-color
of [a,b]. Compared with the I-color of [a,b], the II-color Y, ,([a,b]) contains the following
extra information: (iii) the multiplicity of the points of the form (1 — p) an;()l Py (rn, =0
or 1) which lie on the left side of a and have distance less than p™ from a.

Let us take an example. Suppose p = (\/5 —1)/2, let us consider the I-color and II-color
for the 3-th net interval [a,b] = [p?,2p?]. Since the points (with the multiplicity) of the form

(1-p) Zi:o p"ry (rp, = 0,0r 1) can be written as:

0, p*, 0%, P, % PP+ 0t PP+ 07, 20
2’s



Among the above points, only p3(with multiplicity 1) and p? (with multiplicity 2) lie on the
left side of a = p? and have distance less than p3 from a. Thus the 3-th I-color of [p?,2p?] is

3 2 2 2 3 2
p°—p° pe—p°, 2p°—0p
({ ? }7 ) ({ p’O}’l p)?
p p p

and the 3-th II-color of [p?,2p3] is

({(—P, 1)7 (07 2)}7 1- P)-

For z € [0,1] and m € N, define Ny, p(z) = #{w € {0,1}™ : =z € ¢, ,([0,1])}. We call
N p() the m-th overlap times at x. Given a m-th net interval [a,b] associated with p,
assume its II-color to be ({t1,n1}, -, {tr,nr},7). For convenience, we say that the integral

vector (ny,---,n,) is the Il-characteristic vector of |a,b]. It is an elementary fact that
T
Ninp(x) = ny, (2.1)
i=1

when x € (a,b). For this reason, we call Y ;_, n, the m-th overlap times of [a,b] and denote

it by N ,([a,b]). The definitions of net interval and II-color imply the following property:

Nimp(la,b]) = #{w € {0,1}": ¢u,([0,1]) N (a,b) # 0}
= #{w € {07 1}n : ¢w,p([07 1]) D [a,b]}

2.2 The properties of I-colors and II-colors

Let us first summarize some basic properties of I-colors and II-colors associated with the
reciprocals of Pisot numbers. These results were first proved in [Fe], here we give a sketch of

proofs.

Proposition 2.1 Let J = [a,b] be a m-th net interval associated with p (1/2 < p < 1), and
denote by Jy,---,J; all the (m + 1)-th net intervals which are contained in [a,b]. Then the
(m + 1)-th I-colors of Jy,---,J; are completely determined by the m-th I-color of [a,b).

Proof. It can be deduced directly from the definition of I-color. B

Proposition 2.2 If p(> 1/2) is the reciprocal of a Pisot number, then

(1) the number of all different I-colors associated with p is finite, this is, the set

Co:= |J Tmplla,t]) = [a,0] € T}

m>1

1s finite.



(ii) there exist two positive constant C, D (only depending on p) such that for each m-th
net interval J with II-color ({(tin1),-- -, (tr,nr)},7),

Co™ < |J] < o™, (2.2)

,UP(J) = 2_mzniﬂp([_tiv_ti +’7])’ (2-3)
i=1

D27 Nipp(J) < pp(J) < 27" Nip(J) (2.4)

where |J| denotes the length of J.

(iii) there ezists a positive constant ¢ (only depending on p) such that
me™ (7)< (1) < mepy(J) (2.5)
for any two adjacent m-th net intervals I, J associated with p.
(iv) for any real number q, the Le-spectrum 7,,(q) of p, is equal to
L. Iog(ZJeIm p(Mp(J)q) qlog2 . | 10g(ZJeIm p(Nm,p(J))q)
lim inf : = — + lim inf :
m—00 mlog p log p m—00 mlog p

1

Proof. We first prove (i). To see this, note that when p~" is a Pisot number, Garsia’s result

( Lemma 1.51 of [G1]) implies that for each positive integer d there exists a positive constants
¢g, such that if each r; (i = 1,---,n) takes only the value +d, +(d — 1),---,+1 or 0, then

n n
Z p "r,=0, or | Z P "rp| > cq.
i=1 =1

The above result implies that the number of different points of the form > ", p~"r, (rp =

—a
+1,0) which lie in a given interval (a,b) is not greater than ( noting that the distance

between any different two of these points is of the form > ", p~"r, (r, = £2,£1,0) and

thus not less than cg). Therefore, the sets

U {%w@) 00l 5, (0) — By 0)] < 7, wv € {0, 1}m}

m>0 P

and

U {¢w7p<0> sl p(0) — ()] < 7, wv € {0, 1}m}

m>0 pm
contain only finite many elements. This fact and the definition of C, yield the desired result.
The inequality (2.2) in the statement (ii) is a direct corollary of (i). To show the equality

(2.3), we iterate the self-similarity relation (1.3) of p, for m times, then

poD) =27 3" py(h (D)
we{0,1}7
for each interval I. Replace I by the m-th net interval J, we can obtain (2.3) by the definition
of II-color. The inequality (2.4) follows from (2.3) by using the finiteness of C,,.

'aY



The statement (iv) follows directly from the definition of L4-spectrum and (2.2), (2.4).

The statement (iii) (it is true for all p € (1/2,1) ) is not so easy to prove. In what follows,
we will prove it by induction. One may testify (2.5) directly for the case m = 1 since there
are just three 1-th net intervals with the overlap times 1, 2,1 respectively. Now assume that
(2.5) holds for m < k. In the following we will show that (2.5) holds for m = k + 1. Suppose
that I, J are two adjoint (k 4 1)-th net intervals, where I lies on the left side of J. There
are two possible cases:

(A) I, J are contained in the same one k-th net interval U.

(B) I, J are contained in two adjoint k-th net interval I’, J’ respectively.

( Let us recall the property of overlap times for net interval: if @ is a n-th net interval, then

Nop(@Q) = #H{w €{0,1}" 1 ([0, 1]) Nint(Q) # O}
= #Hw e {0,1}": ¢u,([0,1]) > Q} (2.6)

) In the case (A), it is clear that
NIW(U) < Nk+1,p(1) < 2Nk,p(U)» Nk,p(U) < Nk-f—l,p(*]) < 2Nk7p(U)v

and therefore

1

3 k1,0(J) < Nig1,p(1) < 2Npy1,,(J).

In the case (B), let us define

A ={w e {0,1}*: ¢, ,([0,1]) D I" and they share the same right end-point}
Az ={w € {0, 1}"\ Ay = ¢u,([0,1]) D I'},
As = {w € {0,1}*: ¢,,,([0,1]) D J" and they share the same left end-point},
As={w € {0, 11"\ Az 1 ¢u,,([0,1]) D J'}.

From the definition of net interval and the property (2.6), we have

A = Ay

Nio(I") = #A1 + #.As,

Nip(J') = #A3 + # Ay,

#AL+ # A2 < Ni1 p(I) < # A + 24 A,
#A3 + #As < Ny p(J) < #A3 +2#A,4.

According to the above relation, we can deduce

1
me+1,p(J) < Nig1,p() < (B +2)Npy1,,(J)

from the assumption ﬁ]\f}g’p(f) < Npp(I') < (E+1)Np,p(J'). B

1N



2.3 The case p= )\
V5 —1

We first consider the I-colors associated with A. Let J be any m-th net interval, and
J1,- -+, J; be the adjoint (from left to right) (m + 1)-th net subintervals of J. Denote by U,
Ui(1 <i <) the I-colors of J, J;(1 < i <) respectively, then we would like to express their
relation by

In this subsection, we always assume p = A :=

U—U +---+U,

and say that U generates out U;, 1 <14 <.

Under this expression, by direct calculation, we have

({0}, ) — ({05, + ({=A,01,1=2)

{=M\05L1—)) — ({A—1,0}0)

A =11 — ({=A0h1=N)+({A-1}1A) (2.7)
{A=1,050) — ({=A05L1—A) 4+ ({A—1}23— 1)+ ({=A,0},\)
(IA—1},20—1) — ({=A01,1-))

As we have seen, there are only five elements in the set Cy. In the following process, we
will label the net intervals according to the above generating relations.

Let Z = {a,b,c,d, e, f, f} be an alphabet set. For any m € N, we will label every m-th
net interval uniquely by a letter string of length m in the following way. Let J be a m-th
net interval, for convenience, we denote it also by J(™). For each 1 < i < m — 1, there is
only one i-th net interval that contains J, which we denote by J@. Then J is labelled as

()", € E™, where

a if Tya(JW) = ({0}, ))
b if Tya(JD) = ({=\,0},1—)\), and
eitheri = 1, or i > 1 with I;_; \(JO~D) = ({A — 1},2A — 1)

¢ ATAJTD) = ({N=1})
d if Fz,)\(‘](l)) ({)‘ -1, 0}7 )‘)
e HfTinJD)=({r=1},21-1)
€T, = ’ (28)
fooafTa(J9D) = {=\,04,1 =X\, i > 1,
Fi*l,/\(‘](z 2 ) = ({A_ 170}7)‘)7
and J@ has the same left endpoint as J(—1
? lsz)\( ) ({ )\0}1— )7i>1,

PZ—L)\(‘](Z 1 ) - ({A - 170}7)‘)7
and J® has the same right endpoint as J@—1)

For example, let us consider the Markov code for the 3-th net intervals J = [1 — X, 2)\?]
and J' = [A\? + A% \]. By direct check, [1 — A, \] is the unique 1-th net interval (and also the
2-th net interval) which contains J (and also J’); the 1-th I-color for [1 — A, A] , 2-th I-color

11



for [1 — A\, A\] and 3-th I-color for J (or J') are
{=A051=2), ({A=1,014), ({=A,0},1=4)

respectively. By our labelling principle, the Markov codes for .J , J’ are bdf, bdf respectively.
By the above labelling principle, any two different m-th net intervals correspond to differ-

ent relative Markov codes. A formal expression of the generating relation (2.7) can be given

below:

a+b

d

b+c

fre+f (2.9)

b

d

d

QL 6 o2

[ S A

- o

We will say that ¢ generates out j if there is an arrow from ¢ to j. The above relation

determine a 0-1 matrix H = (H; ;); jez by H;j = 1 if i generates out j. That is

QU O o Q2

(2.10)

o 0O 0 O O O = 9
SO O = O = O = <
oo oo~ o o O
_ O O O R O X
o 0o o R o o o ®
o O O R, O O O Tk
O O O R O O O

= o

For m > 2, it follows from (2.8) and (2.9) that each m-th net interval can be coded as an

element in

S™ = {(w)ity € 2™ Hppyoy =1,1<i<m—1, 21 =a,bor c}, (2.11)

and each element of the above set corresponds to unique one m-th net interval. For any
w € S™ we will use V,, to denote the m-th net interval corresponding to w.
We would like to know more about the possible forms of the elements in S™. For this

purpose, we write Xog = f and X; = f, and define By = B to be a collection of letter strings

as follows

B:={bde} | J{bdX; d - Xjde: k € Niy,- i =0 or 1}. (2.12)
Then by the generating relation (2.9), each element in S™ is the prefix of a letter string of

1O



the form of the following three cases:

W1 OWg-++0WpyO---,

a---QOW) OWy+++0WpO---,

" a’s (2.13)
C++COWL oW """ 0WpO---,

rc’s

where 7 € N and w; € B, 7 € N.

In what follows we consider the II-colors associated with .

Let J be any m-th net interval, suppose that Ji,---,J; are the (m + 1)-th net intervals
(from left to right) which contained in J. Let ©, ©,(1 < i < [) be the Il-colors of J,
Ji(1 <4 <) respectively. We express this generating relation by

Under this notion, we have

({(0,7)},A) =

{(=Ap), (0,9}, 1 =) =

(A =17} A7) —

A =1p),0,9)},r) =

{A=1,m} 2 —-1) =

where p,q,r € N.

Denote by
A
B(®a)
c)
DP:a)
E™
FPa)
F(p,Q)

0O=0;+---+0,.

({(O,T)},/\) ({(—)\,7’),(0,7’)},1—/\)
{(A=1,p),(0,9)},A)

({( ’ ),(O,T)},l—)\)—l—({()\—1,’/")},)\)

{(=Ap), 0p+ 11 =)+ {A-1p+¢)},2A - 1)
+{(=Ap+49),(0,9)},1-X)

(=271 A0, 1= A)

7

St

0,7)} A
P

—17“

~—

0,9)},1—2)
B A)
p),(0,9)},A)
—1r}2A—D
:0),(0,9)},1=X)
=(K—MMK&®L1— A)

({(
({(=A
= ({(A
=({(A -
{(A
{(=A

A\_/\_/\_//-\

then the generating relations of II-colors can be written as

.

(r)

A A0) 4 )

BP9 — DP9

cn  — B o)

DP9 — prta 4 p+a BP0 (2.14)
E  — B

Fped — poa

Fr) o pa)

19



Now according to the above generating relations, we define a family of matrixes T; ; for

each pair (4,j) € 2 x Z with H; ; = 1:

Ta,a = 1’ Ta,b = (1’ ]-)7
e
b,d — 0 1 )
Tc,b = (]-7 1)7 Tc,c = 1)
1 1 1 1 0
T = 5 T, = 3 T, += )
“I (0 1) e (1) @.] (1 1) (2.15)
Te,b = (]-a]-)a
oo (10
M=o 1)
1 0

With the above definition, the generating relation (2.14) can be re-written as:

A) AN Taa 1 BO)Tap

—

BP9 — pDE9Tha

M — B™MTep L 0T

DP9 — Fe)Tay y pa)Tae 4 FPOTy7
EM  — B®™Tep

e — pD@DTra

7P . peaTr,

This is, if ¢ — 41 + - - - + 4;, then we have

ni,ne) Ty, (1, mr) T 4

[rrene) — g T

(2.16)

For any matrix M, denote by ||M]|| the absolute value sum of all the entries of M. For

convenience, we write

Tz1x2~~-xm = T331,:E2 e 'T;vmfl,xm- (2.17)

Then according to the formula (2.16), we obtain the following lemma at once:

Lemma 2.3 Let J be a m-th net interval (m > 2) coded as w = (x;)", € S™, suppose its
II-color is ({(t1,n1),- -+, (tr,mp) }, ), then

(n1,--,n.) = Loy ifxy =a orc
7 o (17 1) : Txlxg---xm Zf r1=>

and

T
N (J) = an = | To1 20 |- (2.18)
=1

1A



Furthermore, suppose that w € S™ can be written as the concatenation wy o wo, where the

end-letter of wy is e. Then
Nina (Vo) = [|Tol] = 1Ty || ¥ [T, (2.19)

where V,, is the m-th net interval corresponding to w.

3 ) is a locally infinitely-generated self-similar mea-

sure without overlap

As we have mentioned in Section 2.3, for any positive integer m there is a one-to-one corre-
spondence between the collection of all m-th net intervals associated with A and the string
set " which is defined by

S™i={(2i)izy €E™: Hpjop, =1,1<i<m—1, z1=a,bor c},

where the 0-1 matrix H is defined by (2.10).
For any w € U;,>1.5™, we use V,, to denote the net interval corresponding to w.
Define
D={w=(zi)jeg € Un>15": zp=e€,2; #efor 1 <i<n}.

We will show that u) is supported on U,ecpV,,, and for each w € D, the restriction of uy on
V., is an infinite self-similar measure without overlap.

Let us recall the definition of the string set B (see (2.12)), it is easy to see that
B={w=(zi)j=y € D: x1 = b}.

For a fixed w € D, it is clear woi €U,,>1 5™ for each i € B; let us denote by g,, ; the similitude
(preserving-orientation) so that g, i(V.,) = Vioi, obviously, g, ; is determined uniquely and

has the contraction ratio Alll, where |i| denotes the length of the string i.

Theorem 3.1 pu) is supported on UyepV,. For each w € D,
Mg\w) — 22—|i| || 'ME\W) o ga—)j, (3.1)
ieB

where ,ug\w) denotes the restriction of uy on V,,, that is, ,uf\w)(A) = ux(ANV,,) for any A C R.

Before giving the proof of above result, we will prove the following three statements at
first:

(al) mll =X A) =3,
(32) ZieB )‘|i| =1,

1



(a3) Yiep2 M- [IT3]| = 1.
We know that V, = [0,1 — A] and V. = [\, 1]. Using the result of Proposition 2.2(ii) to V,
and V., we obtain that

(0,1 = A]) = 5 (a0, 1 = A]) + ma([1 = X, A)),
A 1]) = (AL = A AD) + pa (X, 1])),
which implies that 423 ([0,1 = A]) = pa([1 = A\, A]) = pa((A 1)) = 3
To prove the statement (a2), we observe that each string in B is of length 3+ 2n (n > 0),
and for each n > 0 there are just 2" different strings in 5 which are of length 3+2n. Therefore
Tiep Nl = S0 on\3+2n _ \3 EnZO(Q)\Q)n

— X
= 1w =1

Now, let us prove the statement (a3).

She2 M IT =272+ %, D i e in€{0,1} 27372 (1, 1) M, -+~ My, (1,1)
=272 43 5, 27071, 1) (Mo + My)™(1,1)

n
- 2 1
= 2_2 + ZnZl 2—3—2n(1’ 1) ( 1 2 > (17 1)/

=277 43,5270 230 =272 270 ()
=1.

The proof of Theorem 3.1. We first show that the intervals V,, (w € D) are disjoint. To
see this, pick any two different elements w and w’ from D. There are two possible cases: (i)
lw| = |w']; (ii) Jw| # |&'|, in this case we assume |w| > |&’|. In the first case, we write w = voe
and w’ = v/ o e. The net interval V,, and V,, have no overlap because they are two different
|v|-th net intervals. Since V,, = V,o5 U Vioe UV = (the end letter of v is “d”), it follows that

Uof
Vo = Vioe has no common endpoint with V,,. Therefore, V,, and V,, are disjoint. In the
second case, we write w = wj o ws where |w1| = |w'|. Since the end letter of w; is not “e”, the

net interval V,,, and V,, have no overlap, and therefore V,, and V., are disjoint (noting that
V., has no common endpoint with V,,,).

Now we show that ) is supported on U,epV,,. For this purpose, we give below the precise
values for px(V,,),w € D. Notice that D =BU{a"oci:ne N,ie BfuU{c"oi:n € N,ie B}.
For each i € B, using the result of Proposition 2.2(ii) we obtain that

pa(V) = 270 T3 - (1 = A, A]),
pr(Vamoi) = 2717 T - a1 = A, A]),
pir(Venos) = 2717 I T4 |- pa([1 = X, A)),
therefore
pr(Upep V) = ZwED A (Vi)
=Y ies 27T a1 = A A+
2ZieB anl 2-lil=n. TE] - pa([1 = A A
=3 ies2 T ma(1L =X ) =

10~



where the last equality follows from the statement (al) and (a3). Similarly, we can show that
,U«)\(Ui1,---,ineBVwoho---oin) = ,U)\(Vw), vn € Nyw e D.

For a fixed w € D, we begin to prove (3.1). It suffices to show that (3.1) holds for each

net interval V,,oi,0...01, Where iy,---,i, € B ( since if so, a standard argument can show that
(3.1) holds for any Borel subset of R).
For any j,ii,---,i, € B, we claim that g, j(Vioi o0--0in) = Viojoijo--oi,- 10 see this, given

c—a

two intervals [a,b] D [c,d] we say that the ratio ;=2 is the relative place of [c,d] in [a,b]. It
is clear that the relative place is invariant under any linear preserving orientation mapping,
hence, the relative place of gy, j(Vioio--0in) I G j(Viw) = Vi j is the same as that of Viei;0..01,,
in V. To prove our claim, it suffices to show that the relative place of V,,0j0i;0...01, i Vi j is
the same as that of Vj,ei,0...01, i V,,, and the lengths of intervals g, j(Visoiso--oin ) Visojoiro--oin
are equal. However, these two facts are easy to check according to the generating relationship
of I-colors.

Forn € Nandiy,---,i, € B, by the above analysis, we have g,, i, (Vioigo--oin) = Vivoijo--oin-
For j € B and j # i1, it is clear that g,,j(Vi,) N Vi, onoi, = 0 since g, (Vi) = Vi 3. Therefore

Sies 2 W T 18 0 g0 Vioiyoroin) = 2700 ([T3 ] - 187 0 658 (Vioiyooi,)
= 27l T3 |1 1§ (Visotyonoin)
= 271l | || 1§ (Vioiyonoi,)
= ME\W)(Vwoilomoin)a

which shows that (3.1) holds for V,,ei;0.-01,,- W

Remark 1 For each w € D, u&w) is equivalent to the image of one Bernoulli shift measure.
To see this, consider the one-side shift space (BY, o) endowed with the product measure 7,
where the factor measure on each i is equal to 27 /il . ||T}]|. Define the projection II“) from
BY to V, by

H(W) ((in)%o:ﬁ = ﬁ77121‘/::.10i10---oin7

then Theorem 3.1 implies that

or equivalently,

4 The multifractal analysis of 1)

Suppose v is a Borel measure on R, define R(v) = {a > 0: lim,jglogv([z—r,z+r])/logr =

a for some x € R}.

1™~



Proposition 4.1 Let p (p > %) be the reciprocal of a Pisot number. Then for each o in
R(MP)}

dimp{z € [0,1] : liﬁ)llog,up([x —r,x+r])/logr =a} < igﬂfq{{—mp(q) + aq}, (4.1)
T q
where dimp denotes the packing dimension.

Proof. For a > 0, denote by K, the set {x € [0,1] : lgﬁr]llogup([:v —r,x+r])/logr = a}.
It is clear K, # 0 if and only if & € R(u,). For each point z in [0,1] and integer m > 0,
denote by Jp, ,(x) the m-th net interval associated with p which contains « (if « (# 0,1) is
the endpoint of a m-th net interval, then there are two m-th net intervals which contain x;
in this case, we select the left one of these two net intervals as Jy, ,(x) ).

By (ii) and (iii) of Proposition 2.2,

Ko={ze[0,1]: lim 0&telms@) _ o (4.2)

m—00 log p™
In the following we prove (4.1) by considering ¢ > 0 and ¢ < 0 respectively.
First take ¢ > 0. For any integer n > 0 and real number ¢ > 0, denote

Fame={z €[0,1] : pp(Jmp(x)) > p™ 9 for any m > n}. (4.3)
By (4.2) and (4.3), it is clear that
Ko CUpZ 1 Fan,e (4.4)

for any € > 0.
Let us estimate the upper box-counting dimension of Fy, , ¢ for fixed n and e. To do this,

for each integer m > 0 denote
Qavmve = {J 6 Imvp : MP(J) Z pm(a+€) }7
ta,m,s = #Qa,m,e-

By (4.3) and Proposition 2.2(ii), Qg m is a p"-cover of F, , . for each m > n, therefore by

the definition of the upper box-counting dimension,

. 1 ta m,e
dimpF, n <limsup L. (4.5)
m—00 log p~™
Note that
ST o= > (1p(D)T = tagmep™ Y,
JELm,p JEQa,m,e
thus by (4.5) and Proposition 2.2(iv),
S log p,( )4/ prletas
TinpFan. < limsup (X sezn, (1o(1))/ )
m—00 10g p—m
log J))?
— _liminf (ZJeIm,p(Mp( )9) +late)
m—co log p™
= —7,(q0) + (a+€)g. (4.6)

10



Using the fact that the packing dimension of a given set is always less than or equal to its
upper box-counting dimension, and the fact that the packing dimension is countably stable,
by (4.4) and (4.6) we obtain that

dimp Ko < —7,,(q) + (a + €)q.

Letting € | 0 we obtain
dimp Ko < —74,(q) + aq. (4.7)

Now take ¢ < 0. A parallel argument shows that (4.7) still holds. To see this, one may

consider the sets
Fa,n,e ={z € [0,1]: pp(Jmp(x)) < pm("‘_e) for any m > n}

and prove similarly that
dimpFone < —7y, (@) + (a+ €)q.

Lemma 4.2 ([Y]) Let & be a finite Borel measure on the line R. If there exists a nonnegative
real number s such that

liﬁ)llogﬁ[x—r,x—kr]/logr =s

for € almost all x € R, then
dimg € = s.

Proposition 4.3 Let gy be defined as in Theorem 1.1(i). Then for each q # qo,
dimg{z € [0,1] : 11?01 log pux[x —r,xz 4+ r]/logr = a(q)} > —7(a(q)) + alq) - q, (4.8)
where 7(q) := Ty, (q) denotes the Li-spectrum of py and a(q) = 7'(q).

Proof. For a > 0, denote by K, the set { € [0,1] : lim,olog x|z — 7,2 +7]/logr = a}.

Suppose ¢ < qo. According to Theorem 1.1(i) we have a(q) = —igii and —7,, (a(q)) +
a(q)-q = 0. One may check that K, # () by showing K () contains the point 0. Therefore
(4.8) holds for this case.

From now on, we assume g > go. To prove (4.8) we concentrate a measure v, on Ka(q)

and examine the power law behavior of vg[z — 7,2 + r] as r | 0, so that we can use lemma
4.2 to give a lower bound of dimpy K, by finding the dimension of v,.

First we define a probability product measure 7, on the shift space (BY,c) with the
weights p; = p?ri_T(q) for each i € B, where p; = 27 l||T3|| and ; = Alil(Theorem 1.1(i) implies
that ) ;.zpi = 1). It is well known that 7, is a o-invariant ergodic measure. Consider the
projection II from BN to the net interval Vi, with ig = bde € B, which is defined by

H((in)?f:ﬂ = ﬁnzl‘/ioir"in'

10



It is clear that II is a continuous injection. Define v, to be the image measure of 7, under

the projection I, that is, v, = D, o II" 1. Then

V(I(Vioil-"in) = ﬁh o ﬁln (4.9)

Note that
1A (Vigir i) = (Vi)  Piy -+ Piy» (4.10)
Vigizin|l = [Vig| - 7y - 74, (4.11)

Since 7, is a o-invariant ergodic, by the Birkhoff Ergodic Theorem, there exists a Borel
measurable set G, C BY with 7,(G,) = 1 such that for each w = (i,,)%; € Gy,

lim log g (Vigiy i) —  lim ZIOgPU”w\l

n—-+00 n n—+00 1

= Y logpi

ieB

= Z p?ri_T(q) log(piri_T(Q)) (4.12)
ieB

lim 10g MA(‘/viOilmin) = lim Z lnggan

n—-+o0o n n—-+o0o N
= > B logpi
ieB

= Zpl T logpl, (4.13)
ieB

and

log |Vii; .-
lim 108 [Vigiy in| lim Zlog Tonw|l

n—-+o00 n n—+oo N
= Y h log ry
ieB

= Zpl T log Ti. (4.14)

ieB

(The integrality of functions w +— py|1, W = py1 and w = 7)1, or equivalently, the finite-

ness of Y ;cppir; 7(a )log(pl (Q)), EieBp?ri_T(Q) log p; and ZieBp?ri_T(Q) log r; come from
Corollary 5.11)

Now fix w = (ip);2; € G4. By (4.11) it is clear

Vioil"'in C [H(w) - |Vlo‘ “Tip o T H(w) + |Vlo| “Tip e Tin]? vn. (4'15)

N



On the other hand, we know that the end letter of the string i,41 is e, changing from i,
this letter to f and f , we get two letter string j,.1 and j/, 41 respectively. By the generating
relation (2.9), ie., “d = f+e+ f 7, we know that Viji,..i, O Vigisinjnis U Vioir-ininis U
Vi
length larger than the second. Thus,

oi1-inj,,, Where these three intervals does not overlap, the first and the third intervals have

Vioil'"in ) [H(w) - |‘/i()il"'inin+l‘7 H(w) + ’Vioil'"inin+1|]
= [H(w) - |Vio| Ty T Tigas H(w) + |Vio| Ty rinrin+1]7 vn. (4'16)

Now for any small number r > 0, select n so that [Viy| -7y, - i, 7i,, <7 < |Vig| -7, -7,
Then by (4.15) and (4.16), we obtain

[M(w) = (w) +r] < [l (w) = V| - iy -5 Tw) + [Vig| -7y -7, ]
- ‘/iOil“‘in—l7 (417)

and

[H(w) - T7H(w) + T‘] 2 [H<w) - ‘Vio‘ “Tip o Tipgs H<w) + ‘Vio‘ Ty Tin+1]
D Vioi1~-~in+1' (4.18)

The above two relations, formula (4.12)-(4.14) and Theorem 1.1 imply that

p Jogvlll@) —r @) + 1] Yieppir " log(pr; ")
n—+oo log r Sien p?r;T(q) log r;
= —7(q) +alq) g, (4.19)
and
lim log pa[Il(w) — 7, II(w) + 7] _ Y ieB piqr;T(q) log p;
n——+o0 log r ZieB pgri—T(Q) log -
= aq). (4.20)

4.20) implies II(G,) C K,(;- Note that v,(II(G,)) = V,(G,) = 1. Using Lemma 4.2 and
q (9) q q a\Yrq
(4.19) we obtain
dimpg vy = —7(q) + a(q) - g, (4.21)

therefore
dimy Ko (g > dimy I(G,) > dimpg vy = —7(q) + a(q) - ¢-

Remark 2 The proof of Proposition 4.3 contains a direct way to obtain the formula for

the Hausdorff dimension of u) and the logarithm density of ) at almost all (with respect



to Lebesgue measure) € [0,1] . To see this, define v, the same as in the The proof

of Proposition 4.3. By the definition of v,, one can see that vy is just equivalent to the

restriction py (with a constant ratio) on the interval Vj, (denoting it by ug\io) ). By (4.19),

ieB p?T;T(q) IOg(p?r;T(q)) _ > icn Dilogpi
ZieB p?T_T(q) log r; Zies pilog i

i

dimg v =

(it is easy to check that 7(1) = 0 by the definition of L9-spectrum). Since dimpy ug\lo)
= dimy v; and iy can be replaced by any element of B, it follows that dimpy gy = dimg vy.
Similarly the measure vy is the restriction of the Lebesgue measure on Vj, (with a ratio).

The formula (4.20) implies that

> ienTilogpi

limlo r—r,x+7])/logr =
i g ([ 1)/ log S prilog s

for almost all x € [0, 1] with respect to the Lebesgue measure.
Combine Proposition 4.1 and Proposition 4.3 to obtain the following theorem.

Theorem 4.4 Let qo defined as in Theorem 1.1(i). Then for each q € R\{iy}, the multi-

fractal formalism (1.1) of px holds for a = a(q) = 7, (q), where 7,,,(q) is the L?-spectrum

of pyx; moreover the Hausdorff dimension and the packing dimension of the set
{w € 0.1): limlog palo — 7, + 11/ logr = ()}
T

coincide, the common value is equal to —,, (a(q)) + a(q) - g.

5 Appendix

5.1 The proof of Theorem 1.1(i)

To make this paper self-contained, in this part we will prove (i) of Theorem 1.1. By Propo-

sition 2.2(iv) and Lemma 2.3, we only need to consider about the limit lim ( ) HTqu)%
wesm

for any real number ¢, where S™ is defined as in (2.11) and T},’s are defined by (2.15),(2.17).
Let the matrixes My, M; be defined as in (1.2). For j = ji---jn, € {0,1}", denote
Mj = Mj, o---0M;,. For any q € R, define

uog =29 Ung= Y [[M]|? (n>1). (5.1)
je{0,1}m

We will prove the following theorem.
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Theorem 5.1 For any real number q, the limit lim ( > ||Tw||q)% exists and is equal to
x(q)~1, where x(q) is defined by

x(q) :=sup{z >0: z:1L717(13;'2’1+3 <1} (5.2)
n>0
Moreover, let ¢ = qo be the real root of 3, ~gung = 1. then qo € (—00,—2). And when
q > qo, x(q) is the root of % (Z|J|:n [|M;]|9)2?" 3 =1, and it is infinitely differentiable on
(qo, +00); When q < qo, X(T(SO: 1. Furthermore, x(q) is not differentiable at ¢ = qo,

2002 7=n 1M |[% log |[M]])
ano Un,gy + (21 + 3)

'(q0—) = 0, 2'(qo+) = — € (—0,0).

We will prove the above theorem by a series of lemmas. At first, we define

Syt ={(x)i2, € S™: x1 = b},

wesS"

for any positive integer m and real number q.

Lemma 5.2 vy 4 =29 = ugq,v24 = 29 = Uy 4,039 = Up,q + Ul,q,
and for k > 2
k—2
V2k,q = (o ui,quk—(2i+3),q) + Uk—1,q
Vakt1,g = (Doim0 WigVokt1—(2i43),q) T Uk—1,g T Ukyg

Proof. Since S} = {b}, S? = {bd}, S} = {bde, bdf,bdf}, we can calculate vy q,v24 and vs,
directly. Denote Xo = f and X; = f. For any k > 2, by (2.13) each element w € S2* can be
written as one of the following two cases:

(i) w=bdXi,d - X;,_,d, i1, ig_1 € {0,1}.

(i) w = bdX;yd- -~ Xydeows, 0 <1<k —2, iy, i; € {0,1} and wy € 507 G+,

For the case (i), ||Ty|| = || M, - - - M;,_, || For the case (ii), by the formula (2.19), ||T,,|| =
M, -+ My - [T | Thus

vakg = 2 Twll?
wesg’“
= > [ Miyoa ([17+ >0 O 22 Mgl >0 [Tw]]9)
i1,ik—1€{0,1} 0<I<k—2 1,0 €{0,1} wes2h—(3+2)
k—2
= Up_149+t (ZZ Ul,q - U2k7(2l+3)7q)
=0

In the other hand, by (2.13) each element w € Sgkﬂ can be written as one of the following
three cases:

(ill) w = bdX;,d--- X, _,dX;,, i1,---,1, € {0,1}.

(iv) w=bdX;,d--- X;,_,de, i1, - ,ix—1 € {0,1}.



(v) w=bdX;d- - Xyyde ows, 0 <1<k —2, 41,0 € {0,1} and w, € SFT—(3+20)

For the case (iii), ||T|| = ||M;, - - - My, ||. For the case (iv), ||T|| = ||M;, - -- My, _,||. And
for the case (v), by the formula (2.19), ||To,|| = ||M;, - - - M;,|| - ||Tos, |- Thus by a discussion

similar to that for vy 4,we have

k—2
U2k+1,g = ( E Ul,q02k+1—(21+3),q) + Uk—1,g T Uk,q-
1=0

Lemma 5.3 lim ( Z HTqu)% = x(q)~t, where x(q) is given by (5.2).
b

Proof. We will prove the statement in two steps.

(i) mm—mo(vm,q)i < X(Q)il
Since >~ up ¢x(q)3T2" < 1 it follows that
n>0

k , k=2 ‘
() z%)ui,qX(Q)(Hzl)*% > wi gx(q) 22 oy x(q)
1=

=0

k . k=2 .
X(q)—%—l > %ui7qx(q)(3+2z)—2k—1 > Z ui7qx(q)(3+2l)72k71 +up_14+ Uk,qX(q)2
1=

=0
(5.3)
Select a positive number C' > max{1,x(q)~2,x(q) "'} such that
Vig < C-x(¢)7% i=1,2,3
Now we will prove by induction that
viq < C-x(g) (5.4)

for all © € N. Suppose that this inequality holds for any ¢ < 2k, then by Lemma 5.2 and
Inequality (5.3), we have

k—2
(D_im0 UiqVak—(2i+3),q) T Uk—1,4

U2k,q =
< O(XFg wigx(q)F =) fuy
< OO uigx(q)FH7) 4 Cx(q)uk-1,4
< Cx(q)7*,
k—
vakitg = (Disg UigUoiri—(2i43)q) + Uk—1q + Ukg
< C(TIg wigx(@) =2 fuy g
< OO tigx(q)PHI7271) 4 Cug_y g + Cx(g) kg
< COx(q)~21.

Thus the inequality (5.4) holds also for ¢ = 2k, 2k + 1. By induction, Inequality (5.4) holds
for all ¢ € N, which proves the statement (i).



(11) li7Inm—>oo (Um#]) Z X(Q)_l

1
Given any 0 < y < x(g)~!, then there exists positive integer N such that

N—2
1< Z ui,qy_?’_m.
i=0
Thus when k£ > N, we have

k—2 ]
y2k < Z g qy2h— (3120
=0 (5.5)

k—2

%-+1 2hH1—(3+2i

YRS N gyt B,
i=0

Select a positive number D < min{1,x(q)~!, x(¢)"2} such that
vig > Dy, i=1,--- 2N — 1.
Then by Lemma (5.2), Formula (5.5) and a discussion similar to that in the part (i), we have
viq > Dy, Vi€ N,

which yields lim (Um’q)% >y (0 <y<x(g)~!). Thus lim (Um,q)% >x(q)"h. .

Lemma 5.4 lim ( ) HTqu)% =x(q)t, where x(q) is given by (5.2).

Proof. By (2.13) each element in S™ can be written as g---aow, or ¢---cow, where 0 <
—— ~——
mi mi
my < m and w € "™, thus we have

m—1
Dol = Y0 Tl +2) 0 Y Tl +2. (5.6)

wesm weSy i=1 yes)

Since upn,q > [[Mg||? = (n + 2)7, it follows that the series > -, Uy qx?" T3 diverges for
x > 1. By the definition of x(q), we have x(q) < 1 and thus x(¢)~* > 1. By (5.6) and Lemma

5.3, we have

lim (Y [|T][)m = x(q) "

m—0o0
wes™m

The following lemmas consider about the differentiability of x(q).
Lemma 5.5 (i) If ¢ > 0, then for any m,n € N,

uquun7q Z um+n7q °

(ii) If ¢ < 0, then for any m,n € N,

uquunvq S um—i—n,q :



Proof. The above statement follows immediately from the observation that for any integer

m,n > 1,
LT\
ic{0,1}m je{o1yn 1q
1 1
= (1,1)M; :
1e{0 1}%6{0 1n 1 ] ! /
1 1 1
— M; ;
le{o 1}%6{0 1} 11 L
1 q
1e{0 1}mJe{0 1n R o,
1 1
_ e ,
le{o 1}%6{0 1} |0 1] "L
|

Lemma 5.6 Let 0y be the positive root of x> + 2x — % =0, i.e., Oy ~ 0.45774. And let
¢ be the Riemann-Zeta function, that is ((z) = > ,5yn~" (z > 1). Then for any q €

(=¢7H(E8), ¢ (1 + 6p)) ~ (—2.2599, —2.2543), we have

1<) tpg < +0c.
n>0
Proof. Denote U = (—(71(1%), —¢~*(1+6p)). By direct check, we have ¢(3) ~ 1.2021 < ¥
and ((2) ~ 1.6449 > 1+ 6, therefore (¢(3),((2)) D (2,1 + 6p), it follows U C (-3, -2).
Furthermore by computation, U ~ (—2.2599, —2.2543).
Since that any element in {0,1}" can be written as 0™1"2 ... or 10" ... it follows
that

Donz0lUng = Dp>0 Z\J\:n [ M|

20423 Sy IMGNT + 230510 2oy g1 1M MY - Myt M2 |
N1 — n
+2 Elzl Zm,..,nmﬂzl ||]W(7)11J\41n2 o 'Mo “ IM?QIMO 2l+1||q-

(5.7)
Since
4
, 1+ning m 1+ ng_1ng no—q
(Mg M72) - (M M) = | I
1 nay 1
>(1+ nmz) o (T4 ngy—1ngr)
g gy s (e () e L e
* * 0 1
> (14+ning)--- (1 +ng_1n9)(1 + ng41)
(5.8)
and

||M611M1712--~M5L2l71M{121|| S(1—|—n1)(1+n2)---(1+n21_1)(2+n2l)
[|Mgt M2 - - Mg My < (14 m0) (14 n2) - - (1+ n2) (2 + naryr)

YA



(which follows from that (1,1)M < (n+1,n+1) = (n+1)(1,1) for any ¢ € {0,1}, n > 0.),
by(5.7), when ¢ < 0 we have

D g <2742 (2+m) +2-(1+ ) 09O (Y (14 ning)?)) (5.9)

n>0 n>1 n>1 [>1 ni,ne>1
and
D tng=2042) 2+n)7 1+ > O -(1+n)9)) (5.10)
n>0 n>1 >1 n>1

From now on, we assume that ¢ € U. As we have proved, —3 < ¢ < —2.
At first, we have

an,n221(1 + n1n2)q =2 Zn21(1 + n)q — 21 + an,n222<1 + n1n2>q
<2 znZI(l + n)q — 29+ (Zn22 nq)2
=2(C(—q) —1) =27+ (¢((—q) — 1)?
<200— 1 +603=1,

(5.11)

by Inequality (5.9) we have >, - unq < +00.
On the other hand,

2942 Zn><1_((2 "‘)n)ql (12+ El>1((z:n>12(; "(‘ n)))l)

— 99 . —_q — — 2 — — 2

N s

- —q) — T
P R P 5 c<—q> -

by Inequality (5.10) we have > ~qung > 1. W

>1+

Corollary 5.7 (i) 3,5 Un,q tends to 0 when q tends to —oo
(ii) There exists unique qo < —2.25 such that 3, <qUn,q = 1.

Proof. By Lemma 5.6, there exists real number ¢; < —2.25 such that 1 < )" - tUnq < +00.
Thus from the definition of wy, 4, the sum > -;un4 (as a function of ¢) is increasing and

continuous on (—o00, ¢q1). On the other hand, note that

Un,g < max ||M||97¢ < 2977
Ung  |J|=n

for any integer n > 0 and real numbers ¢ < ¢’ < ¢, therefore

2 n>0 Un,g’

holds for any ¢ < ¢’ < ¢1, which implies (i). The statement (ii) follows from the continuity
of ZnZO Un,q O (—OO, ql) u

Lemma 5.8 Let 0y be the positive root of 2 + 2x — % = 0, then Zn21n “Upg < 400 if
q < —C Y1+ 6g) =~ —2.2544, where C is the Riemann-Zeta function.

s Ywd



Proof. By Inequality (5.8), for ¢ < 0 we have

Zn.un,q = 22n||M6‘]|‘1+2Z Z (1 + -+ + miog) || MY MP2 - MR M2k

n>0 n>1 k>1n1,-ngx>1

+2 Z Z (n1+---+ nng)HMgllMlnz oo M(;LQk—lM{l2kM(')"'2k+1Hq

k>1n1,ngg1>1

< 2> n@+n) 42> Y (o) (L mang)? - (L nop_1ngg)”?
n>1 k>1ni,ng, - nop>1
+ 2 Z Z (m +---+ n2k+1)(1 + nlng)q cee (1 + n2k71n2k)qngk+1

k>1n1,m2,nok,nogr1>1

= QZTL(?—I—TL)q—i—QZ Z 2kn1(1 4+ nin2)?- - (1 + nog—_1n9k)?

n>1 k>1mni,n2, - ngp>1
+2 E E anl(l + nlng)q cee (1 + n2k,1n2k)qngk+l
k>1n1,n2,nok,nogr1>1
q
+2 E E nok+1(1 +n1n2)?- - (1 + ngg_1n2x)ng,

k>1n1,n2,nok,nogr1>1

= 2> n@2+n)+ D n(l+nng)? x Y 4k( > (L+mamg)?)t!

n>1 ni,n2>1 k>1 mi1,mz>1

+ Z n1(1+ ning)? X an X Z4k( Z (1 + mymg)?)F1

ni,ng>1 n>1 k>1 mi,ma2>1

42> "0t x> YT (14 mymg)?)* (5.12)

n>1 k>1 mi,mo>1

Now suppose ¢ < —C~1(1 + ). By Inequality (5.11) , we have

Z (1 + n1n2>q < 1.
ni,n2>1
On the other hand, since ¢ < —2, it follows that the series Y, -, n?"! and mex ni(l+
ning)? converge. Therefore by Inequality (5.12), > < 71 upg < +00. B

Lemma 5.9 Suppose that ¢ € R satisfies Y, ~oUng = +00, then for any integer L there
exists 0 < y < 1 such that

L < Zun,qy” < 400.
n>0

Proof. Case 1: ¢ > 0.
In this case, up 4 > 1 for n > 0, therefore ) ., unq = +00. By Lemma 5.5, {uy4}n is
submultiplicative, therefore

lim ul/™ = inf ul/".
n—+too 4 p>1 ™4

Denote by r,y the value of above limit, then 1 < ry < oo and upq > 77 for n > 1. Hence

lim g Up,qz" = 400, which implies the desired result since the series > - un,qy" con-
T—1rg
n>0

verges on (0, rq_l).



Case 2: ¢ <0, and ), 5 tn,q = 0.

For any integer | > 0 and positive integers ni,na, - - -, n;, define

b(ni,ng,---,my) = (1, 1)M6“M{12 o MlT(Linod2)

n 1
a(ni,ng, -+ ymy) = (LO)Mg My - My ) ( 0)?

)

It is clear that

a(ni,ng,---,ny) < b(ni,ng, -, n)
and
a(ni,ng, -+, n)a(my,ma, -+, mg) < a(ny,ng, -, n;, My, Ma, -+, Mg),
where my, mg, - -+, ms are positive integers. It is not hard to show that
1 AP
a(ny,ng,---,my) > =b(ni,ne,---,ny), if [ is even.

( To see this, denote

( o ) = (M M}?) - (M M)
Tr3 T4

(5.13)

(5.14)

for even integer [. Then by induction on [, one can verify that among the x;’s, x; is the

greatest and x4 the smallest .)

For any integer L > 1, take an integer y(L) > L -479, and define p = 2¥(%), Now for any

O<ax<l,
2p—1
E Upqr" = 2742 E E b(ni,ma, -, ng)0 g™t
n>0 j=1 ny,mn;>1
2p—1 +o00

12 Z Z Z b(ny, -, nokpyj)? - @™t

J=0 k=1n1,nogpt;>1
2p—1

< 2942 Z Z b(ni,ma, -+, nj)l g™t
Jj=1 ny,n;=>1
2p—1 +o0
+92. Z Z Z a(ny, -, Mgy ) - ™ T2k
J=0 k=1ny, - nogpy;=>1
2p—1
< 2942 Z Z b(n1,ng, -+, nj)L g™t
j=1 ny,--n;>1
2p—1 +c0
+2-3 > Y a(ni, - nakp)?a(Nokpt1, s N2kptj)
J=0 k=1ny, - nogpy;>1
2p—1
< 2942 Z Z b(n1,mg, -, nj)L g™t

J=1 ny,-n;i>1

278"

< N2kp+;



2p—1
+2- (Z Z a(ny, - - 7nj)q xn1+---+nj)
j=0 n1,--,n;>1
—+00

( Z( Z a(nh . 7n2p)q xm—o—...—i-nzp)k). (5.15)

k=1 n1,np>1

Since a(ni,ng,---,n;),b(ni,na,---,n;) are polynomials about ni,ng,---,n; and 0 < x < 1,
it follows
Z a(ng,---,my)? 2"t < 0o
ni,,m>1
Z b(ng,---,n)? ™M < 00
ni,m>1

for any positive integer I. Thus by (5.15), >, < Un,q2z" < 0o provided that

Znh"',nQle a(nlv T 7n2p)q gtz <L
Since Enzo Up,qg = 00, it follows from (5.15) that Znh,“’n%Zl a(ny,---,ng)? >1 (or =
+00). Therefore there exists 0 < z < 1 such that an ongp>1 a(ny, -+, ngp)lz™mt 2 =1,
Moreover,
Zumqaﬁ" < oo forz € (0,z). (5.16)
n>0

For | = 2,22 ... p, by Inequality (5.13), we obtain that

Z a(ny,- - 7Tl2p)qzn1+"'+n2p <( Z a(ng,- -, nl)quJr---Jrnz)210/17

ni,,ngp>1 ni,,np>1

which implies that Y-, . ~;a(ni,---,ng)%™M T % > 1. Thus by (5.14), we have

Z b(nl,'--,nl)qz”1+'~'+”l 24(1’ l:2,22,"-,p.

ny,-,n;>1
Therefore
limgoyom 3 s g™ > 29+2- 3707 Doy D, e mg) T 2
>2142-y(L)-44
> 29+ 2L,

this and (5.16) yield the desired result. B

Proposition 5.10 Let x(q) be defined by (5.2) and qo be given as in Corollary 5.7 (ii), then
(i) x(q) =1 for q¢ < qo;
(ii) if ¢ > qo, then x(q) is the positive oot of 3, <qUn,qT
differentiable on (qo, +00), and

) = - Sz S Mg M) - x()
D >0 Unyg * (21 + 3) - x(g)2"+2 ’

(7ii) x(q) is not differentiable at ¢ = qo, moreover,

> on>0(2 7j=n [ M7 log [ M]])
ano Un,qo + (21 + 3)

43 = 1, and it is infinitely

< 0.

2'(qo—) =0, 2'(qo+) = —

N



Proof. Fix ¢ < qp. Since ), < uUn,q < 1, it follows x(q) > 1 by the definition (5.2). On the
other hand, u, 4 > ||M{||? = (ﬁ—i— 1)4, therefore Y, < tn,q@*" 3 = 0o if > 1, thus x(¢) < 1
by (5.2). The statement (i) follows. B

To show (ii), let ¢ > go. We have either 1 < > S unq < 00 0Or > ~(Unq = 00. In

the former case, Y, < Un,qz*" "3

is continuous on (0,1) and thus there exists z( satisfying
> om0 UngZa T = 1. By (5.2) x(¢) = 20. Now we assume Y, -, Unq = 00. By Lemma 5.9,
ther_e exists 0 < t; <ty < lsuchthat1l <} -, un,qt%" < 400 z;nd t1_3 <m0 un,qt%” < o0.
Thus1 <37 g U, gt3" 3 < 00, similarly we can show that x(q) satisfies Zn>0_un7qx(q)2"+3 =

1. Now we show below that x(q) is infinitely differentiable on (gg, +00). Define
G(g,x) = Zun,qx2"+3.
n>0
Fix ¢1 € (qo,+00). As we have shown, there exists real number y > x(g1) such that 1 <
G(q1,y) < +00. Take a real number z so that x(q1) < z < y, and take g2 such that

q2 > q1, 492~ 91 < y
z

Note that for any integer n > 0,

Un,go < max || M| < 47(@-a),
Un,qq [J]|=n

Therefore for any g < g2 and 0 < x < z, we have

G(g,) < D Ungs™™®

n>0
_ z
R
n>0 Yy

dun
2&37271%3 — Z Z HMJHqIOgHMJH$2n+3 < Zun7q(log4n)$2n+3

n=0 dq n>0|J|= >0
> S 2
= Z g,y (log 4”)4”(‘12_q1)(§)2n+3 < +o0,
n>0

and

Z Up (3 + 2n)x*" T2 < Z Up, g (3 + 2n) 23

n>0 n>0
= S B+ 2n)4”<qrq1>(§)2"+3 < 4oo.  (5.17)
n>0

The above three inequality imply that G(q, z) is well defined and differentiable on (—oo, g2) X
(0,2). A similar more discussion shows that G(g, ) is infinitely differentiable on (—o0, ¢2) X
(0,2). Thus by the Implicit Function Theorem, x(q) is infinitely differentiable on a neigh-
borhood of ¢;. Since ¢ is taken arbitrarily on (g, +00), x(¢) is infinitely differentiable on
(go, +00) and (ii) follows.

91



To show the statement (iii), we only need to calculate z'(qo+). For g > qo, starting from
the fact that

Z Un,qX(Q)QnJr?) - Z un,qox(QO)QnJrg =0,

n>0 n>0

we have

Z Un,q — Un,qo . X(q0)2n+3

x(q) —x(q0) _ nzo 170
q—qo om0 Ung(X(9)*" 2 + x(q)*"1x(q0) + - - + x(g0)*"+?)
Z Un,g — Un,qo
= 4

D om0 Ung(X(q)? T2 +x(q)? 2 4 -+ x(q) + 1)

Since > ung(2n + 3) < +oo on a neighborhood of gy (by Lemma 5.8 and 5.6), taking
q 1 qo we get the desired result. W

Corollary 5.11 Let x(q) be defined by (5.2) and qo be given as in Corollary 5.7 (ii), then

ZTL@Lmq>r:(q)2”+3 < 400
n>0

for any q > qo.

Proof. It follows immediately from the inequality (5.17). B
Proof of Theorem 5.1. 1t follows immediately from Lemma 5.4, Corollary 5.7, Proposition
5.10.

5.2 The generating relations of I-colors and II-colors for p =

Ao (k> 3)

Fix the integer & > 3. The generating relation of I-colors for p = A can be expressed by
a — a+b+h
b — d1
c — g1 +b+c
dpy (1<m<k—-2) — dnt
di_1 — f +e+ 7
e — qt+b+h (5.18)
f — 1
f — di
gm 1<m<k—-2) — gmy1+b+h
Jk—1 —
hym 1<m<k—2) — g +b+hnt1
hy—1 — Q1

D)



where

= ({0},1—p")

= ({p" = 1,0}, p")

= ({=p"},1-p")

= ({pkim -1, O}7pkim)
= ({—p"}, 1 - 20"
=
=
=
=

[STRS RIS HE S|

{p* —1,0}, ")

{o* —1,0}, ")

{=p" "} 1= pF = pFm)
{=p"} 1= pF = pF=m)

= o

Define the alphabet set Z; = {a,b,c,d1, -, dk_1,¢, f, f,91, s gk—1,h1, -+, hxg—1}. The gen-
erating relation (5.18) determine a 0-1 matrix Q = (Q; ;)i jez,, so that Q; ; = 1 if i generates

out j.

For m > 2, set

St = {(z)y € Gr)¥ : Quyzyy =L, 1<i<m—1, z1=a,borc}, (5.19)

then there is a one-to-one correspondence between S;* and the collection of all m-th net

intervals associated with p = Ag.

On the other hand the generating relation of II-colors for p = Ax can be expressed as

(A — A + B(LY) + Hfl)
B(Pﬂ) — D%p’q)
cW N G§1) L B 4 oW
D%)’q) (lgmﬁk—Q) _ Dfﬁf%
D;Efiql) — Frta 4 pr+a) 4 F(erq,q)
E(T) — Gg:r) +B(T77‘) +H](_T)
F(Z%q) — D%p’q)
7( s ) )
e — D§p q)
el 1<m<k-2) = G?(;)Jr1 LB 4 H}r)

" 1

where



AW ({(0, 1)} 1= pb)

Bra) {(p* = 1,p),(0,q)}, p¥)

o ({(=p 1)} 1—p")

DD (1< <k—1) o ({p — o) Org)} P
E™ = ({(=p", 1)}, 1 - 20%)

F(P.9) = ({(p* = 1,p),(0,9)}, p%)

A ({(pk —1 p),(O,q)} ? ")

GO (l<m<k-1 ({(~p r)}, =)
HY 1<m<k-1) :={(-p"n)}1 )
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