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Abstract

We introduce an algebraic method to study the local properties of infinite Bernoulli
convolution measures associated with the reciprocals of Pisot numbers. The distributions
of these measures on so called “colored net intervals” are shown to be the products of
matrixes, moreover for a class of Pisot numbers, these matrix products can be decomposed
into the products of real numbers. The explicit values of some fractal dimensions for the
limit Rademacher functions and Bernoulli convolutions associated with the positive root
of 2F + 21 ...+ o —1 (k=2,3,---) are obtained. Part of these results answer some

open questions and conjectures.
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1 Introduction

For 0 < p < 1, the limit Rademacher function f, is defined as:

fo(@)=(1—=p) S p"R@"), ©e0,1] (1)
n=0

where R denotes the Rademacher function: R(x) is defined on the line R with period 1, takes
values 0 and 1 on the intervals [0,1/2) and [1/2, 1) respectively.
The distribution of f, induces a probability measure p, on [0,1], which is called an

infinitely convolved Bernoulli measure or simply a Bernoulli convolution. That is,
pp(E) = L{z € [0,1] : fy(x) € E}, VE C [0,1] measurable

where £ denotes 1-dimensional Lebesgue measure. The Bernoulli convolution x, measures
the density of points of the form (1 — p) > "> p"ry (r, = 0, or 1). More precisely, for any
interval (a,b) C [0,1] and any positive integer m, let p,mn(a,b) denote the proportion of
points of the form (1 — p) 7' p"r,, (r, = 0, or 1) that lie in (a,b), that is

m—1
,u’p,m(aa b) = 2*771# {(r(brlv T ,Tm_l) € {07 l}m : (1 - P) Z pnrn € (a7 b)} )
n=0

then
ppla,b) = W}gnoo tpm(a,b).
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Equivalently s, can be expressed as an infinite convolution. Let §(z) denote the measure
with two atoms, each of weight 1/2, at the point 0,z. Then the measure i, can be expressed

as the infinite convolution

o = B(L—p) x B((L = p)p) * - B((1 = p)p") *---.

My is also a self-similar measure satisfying the following equation:

Hp = %Mpoqﬁ&/l)—i— %:U*po(bl_,,l)v (2)
where ¢g, and ¢, are two similar contraction mappings defined by ¢g,(z) = pz and
P1,p(z) = pr + (1 = p).

These Bernoulli convolutions have been studied for more than 60 years( for a good survey,
see [PSS]). For 0 < p < 1/2, the support of p, is a Cantor set of zero Lebesgue measure
and p, is totally singular with respect to the Lebesgue measure. For p = 1/2, p, is just
the 1-dimensional Lebesgue measure restriction on [0,1]. For 1/2 < p < 1, p, is only
partially understood still now. It follows from a theorem of Jesson and Wintner [JW] that
l, is either absolute continuous or totally singular with respect to the Lebesgue measure(
recently, Mauldin and Simon [MS] proved the converse result, that is, the Lebesgue measure
is either absolute continuous or totally singular with respect to p,). Erdés proved that s, is
absolutely continuous for almost all p closed enough to one [Erl]. He conjectured that the
result should be true for almost all 1/2 < p < 1. Solomyak [Sol] has recently proved this
conjecture to be true. In spite of this, the only explicit values of p for which 1, is known to
be absolutely continuous are p = 27/?( n = 1,2,---) discovered by Wintner [Win], and a
family of algebraic numbers discovered by Garsia [G1]. On the other hand, Erdds showed that
when p is the reciprocal of a Pisot number, then not only p, is totally singular but actually
its Fourier transformation fi,(x) does not even tend to zero at infinite [Er2]. We should
recall that an algebraic integer is called a Pisot number if all its conjugates are less than 1
in modulus. Up to now, the reciprocals of Pisot numbers are the only p > 1/2 for which
14, is known to be totally singular. The only quadratic p of this type is p = (=1 + V/5)/2,
the root of 22 + x — 1. The only such p satisfying a cubic equation are the real roots of the
following four polynomials: 23 + 22+ 2 — 1, 23+ 22 — 1, 23 + 2 — 1, 23 — 22 4+ 22 — 1, with
p ~ 0.5436898,0.7548777,0.6823278,0.5698403, respectively. Other examples of such p are
the roots of the polynomials ™ + 2" ! + ... 4+ 2 — 1, where n > 2. The reader may refer to
[Sa] and [BDGPS] for further information about Pisot numbers.

Bernoulli convolutions have been studied since 1930’s, originally because they are inter-
esting examples of phenomena in harmonic analysis. The work of Alexander and Yorke[AY]
relates to dynamics this old measure problem. They consider the transformation T}, :

R x [0,1] O :

T(w.y) = 4 PT2) y<1/2
P (pr+1-p2y—1), y>1/2



For 1/2 < p < 1, T}, is the “fat” Baker’s transformation, the map is not invertible and the
attractor is the unit square [0,1] x [0,1], it possesses a Sinai-Bowen-Ruelle measure whose
transverse component is just the Bernoulli convolution .

The nature of the measure y, will affect the Hausdorff dimension of the graph of f,. As
a class of Weierstrass-like functions, the limit Rademacher functions have been studied by
many people. For 0 < p < 1/2, both the Hausdorff dimension and box-counting dimension
of the graph of f, are equal to 1(see [PM] for a proof). For 1/2 < p < 1, it is easy to
show that the box-counting dimension of the graph of f, is equal to 2 — 101% g ;1 (see [PU]).
Przytycki and Urbanski [PU] showed that the Hausdorff dimension of the graph of f, is

logp~!
log 2

hypothesis in [HL1],[SS]), and it is strictly less than 2 — 101% g ;1 when p~! is a Pisot number.

equal to 2 — when 41, is absolutely continuous (this was also proved with an additional

The Hausdorff dimension of t-level set of f, is 1 — lolig; for almost all ¢ if p, is absolutely

continuous [HL2]. The reader may refer to [Fal, Mat] for the definitions and properties of

Hausdorff dimension and box-counting dimension.

This paper concerns the study of local properties of ji,, and the explicit computations
of some fractal dimensions associated with f, and p, when p is the reciprocal of a Pisot
number. As we have mentioned, in such case, p, is totally singular. To describe the degree
of singularity of u,, we can study its local dimensions, information dimension, Hausdorft
dimension, or L?-spectrum (¢ € R). Suppose that v is a Borel measure on the line. Recall

that the upper local dimension of v at x is defined by

1 _
d(v,z) = limsup ogz/([:z;l gr, ztr)
r—0+ ogr

)

and the lower local dimension d(v,x) is defined similarly by using the lower limits. When
d(v,z) = d(v, ), the common value is called the local dimension of v at x and is denoted by
d(v,z). Now let us recall the definition of information dimension of v. If k is a finite partition
of the line, let the diameter of x , denoted diam &k, be the maximum of the diameters of the
elements of k. Set

g(z) =zlogz™! 0<x <1,
9(0) =0.

Define
h(v, k) = g(v(A)).

A€k
For € > 0, let
h(v,e) = inf{h(v, k) : diam x < €}.

Then we define upper and lower information dimensions:

S _ h(v,€)
it (v) = iy sup

dim; ¢, (v) = lim inf My €)
e—0  loge!




and if they are equal dimj,g,(v) denotes the common value. Recall the Hausdorff dimension
of v is defined by

dimpy (v) := inf{dimy(E) : v(E) =1},

where dimg(F) denotes the Hausdorff dimension of E. And the Li-spectrum (q € R) of v is
defined by

. logsup >, v(Bs(w;))?
L(q) =1 f z
7 (q) }SIE(%E log &

I

where {Bjs(x;)}; is a disjoint family of d-balls with center x; € supp(u). We refer the reader

to [Pe] for more information about the above definitions.

Now, we recall some known results about the dimensions and L?-spectrum for Bernoulli
convolutions. In [Hu], T.-Y. Hu has obtained the explicit maximal and minimal values of the

local dimensions of i, whenever p = @(he also has given a generalized formula whenever

p is the positive root of 1 —z — 22 — --- — 2F(k > 3), however, as we will point out (see
Theorem 51) that his generalized formula is incorrect). Recently, Lau and Ngai have given a
closed formula of the L9-spectrum of p, for p = @ and ¢ > 0 [LN2] (they asked a question
that how to deal with the case ¢ < 0), they also have given an algorithm to calculate the
Li-spectrum of p, when p is the reciprocal of a Pisot number and ¢ is a positive integer [LN3].
For p = @, the Hausdorff dimension and information dimension of 1, have been studied
by a number of authors ([AY], [AZ], [LP1], [Ng], [SV]), these two values are shown to be
equal, and some different explicit theoretical formulas and numerical results for which have
been obtained. Przytycki and Urbanski [PU] proved that dimpg p, < 1if p is the reciprocal

of a Pisot number.

In this paper, we give an efficient algebraic method to analyze the local properties of p,
when p is the reciprocal of a Pisot number. As a result, we show that the measure p, on the
neighborhoods (“net intervals”) of any given point x € [0, 1] can be estimated explicitly by
some products of matrixes (see Theorem 53), more importantly, these products of matrixes
can be decomposed into the products of real numbers for a class of parameters p’s (i.e. the
reciprocals of Pisot numbers of the first class, see section 6), such is the case when p = Ay, is
the positive root of 1 —z—2%—---—2%(k > 2) (see Lemma 15, Lemma 40), or p is the positive
root of 23 — 2 4+ 22 — 1. By using some combinatorial and ergodic techniques, we obtain
the explicit formulas for the Hausdorff dimension of the graphs of f), (k > 2), the Hausdorff
dimension of almost all level sets (respect to Lebesgue measure) of fy, (k > 2), the Hausdorff
dimension, information dimension and the Li-spectrum ( ¢ € R) of py, (k > 2). We also
give the formal formulas (in the form of matrix products) for the Hausdorff dimension of
the graph of f, and Li-spectrum ( ¢ € R) of p, when p is the reciprocal of a general Pisot
numbers(see Theorem 56 and Theorem 57). Our method is also valid to analyze biased
Bernoulli convolutions associated with Pisot numbers and some other self-similar measure

with some separate condition(see Section 7).



Set

we(i) w0 (i)

For any J = ji---jn € {0,1}", denote My = Mj, o--- o Mj,. For any 2 x 2 non-negative
matrix B, denote by ||B|| = (1,1)B(1,1)".

We can formulate our main results as follows:
log Ak

log 2
the graph of the limit Rademacher function fy, satisfies that

Theorem A. For each integer k > 2, let ap = — . Then the Hausdorff dimension of

. log x
dimpy Graph(fy,) = 1027)\]/:’

where 0 < x, < Ap—1 (defining \1 = 1 ) and xy, satisfies that

1— 2213]{71 + xk oo -
e 2 (O It =
n=0 |J]=n

Let a € R, the a-level set of a function f is defined as {z: f(z) = a}.

Theorem B. For k > 2, the Hausdorff dimension and boz-counting dimension of t-level set

of the limit Rademacher function f\, are equal to

w2007 & n
D= (2= (k+1)(Ar)*) log 2 nz:()(()\k)k |Jz::nlog 1D

for almost all t € [0, 1] (respect to the Lebesque measure).

Theorem C.(i) For any q € R, the Li-spectrum Ty,(q) of ux, is equal to

qlog2  logx(2,q)
log )\2_1 log /\2_1

I

where

x(2,q) = sup{z > 0: Z( Z ||[My]|9)z?" 3 < 1},

n=0 |J|=n
oo
There exists a unique qo < —2 such that 37 (32, 5=, ||Ms]|?) = 1. When q > qo, X(2, q) is the
n=0

[e.@]
positive root of (Z\J|:n [|M;||9)22"+3 =1, and it is an infinitely differentiable function of
n=0

q on (qo, +00). When q < qo, x(2,q) = 1. Moreover x(2,q) is not differentiable at q = qo.
(ii) For any integer k > 3 and any real number q, the L1-spectrum 7y, (q) of the Bernoulli

convolution py, s equal to

qlog2  logx(k,q)
— + —1
log A log A,



where 0 < x(k,q) < Ag—1, and x(k, q) satisfies that

1 _kafl —I—xk 00 -
o (D Myt =
n=0 |J|=n

Moreover x(k,q) is an infinitely differentiable function on the whole line.

Theorem D. For any integer k > 2, the Hausdorff dimension and the information dimension

of the Bernoulli convolution juy, satisfy that

o0
) ) 27 hn=h=l 57 || My og || My]]
: : log 2 2" —3\" n=0 [JI=n
dimpg py, = diminfo pir, = _log A + ok _ 1) log Ak

Theorem E. For any integer k > 2, define

Rlp) = {y : Fr € [0,1], d(ux,,z) =y}
where d(py,, x) = lim,_olog(p, (x —r,z + 1))/ logr (if the limit exists). Then

log 2 1 log?2

Ripa) = [log)ﬁ1 PR log)\*l]'
And k log 2 log 2
0og og
R = . , )
(a) = [ +1 logA;! 1ogA,;1]
for k> 3.

In the following table we give some numerical estimations of dimg Graph(fy, ), dy, and
dimg py, for 2 <k < 10.

Remark (i) Theorem B has also some explanation in the language of beta-expansion as
follows: let p (1/2 < p < 1) be the reciprocal of a Pisot number, for z € [0,1/(1 — p)] we can
define the “local p-expansion multiplicity” of = as

Ap(z) = lim (log Npm(x))/m

m—o0

if the above limit exists, where N, ,,, () is equal to the cardinality of the set {(eo, -+, €m—1) €
{0,1}™ @ J(emy €met1,--) € {0,1}®, 2 = ;LZOS €ip'}. Then Theorem B deduces that for

k(1 _ k\2
Afa) = GRS S S o )

n=0 |J|=n

for almost all z € [0,1/(1 — p)].



Table 1: numerical estimations

k | dimy Graph(f, ) dy, dimpy py,

2 | 1.304 +0.001 0.302+0.001 0.99574+1074

3 | 1.11875217 +£10~® | 0.1025001503+10~10 0.98040931953+10~11

4 | 1.0525654074+1077 | 0.0415604549407694+10"14 | 0.9869264743338+1012
5 | 1.024596045+10~2 | 0.01842625239655+10"* | 0.9925853002741+10~12
6 | 1.011844824+107 | 0.00859023108854+10" | 0.99603259158494+10~12
7 | 1.005796386+1077 | 0.00412363866083+10" | 0.99793744550704+10"12
8 | 1.0028627294+1077 | 0.002013838057524+10"14 | 0.9989449154498+10~'2
9 | 1.001421378+10~2 | 0.00099344117302+10"* | 0.9994653680555+10~12
10 | 1.000707890+10~7 | 0.00049294459129-+10"™ | 0.9997306068783+10~12

(ii) Theorem C gives an answer to Lau and Ngai’s questions ([LN1], [LN2]) that how to
determine the L7-spectrum of p, for ¢ < 0, and how to determine L%-spectrum of y; 4 for
Pisot parameters 3 other than (v/5 4 1)/2 ;

(iii) Theorem D confirms an conjecture given by Alexander and Zagier [AZ], that “it
seems likely” to give an explicit formula for dimpy (uy, ), k= 3,4, -.

(iv) In Theorem E, the formula R(u)) was first given by Hu [Hu]; however, our result
about R(uy, ) (K > 3) correct Hu’s corresponding result.

(v) In a subsequent paper [Fe], with some additive work we have given detailed mutifractal

analysis of py, (k> 2) by using Theorem C.

Now we would like to explain why p, (1/2 < p < 1) is difficult to understand, and how
our method works when p is the reciprocal of a Pisot number. For 0 < p <1/2, p, is easy to
understand because for any « € supp(p,) and 0 <r <1,

il — 1y 1) m 2,
where m satisfies p™ ! < r < p™. This result is easy to deduce from the fact that ¢y ,([0, 1])N
#1,5([0, 1]) has at most one point and thus has null p, measure. If 1/2 < p < 1, ¢9,,([0, 1])N
#1,5([0,1]) is an interval and has positive j, measure. In such case, to estimate p,(a,b) for
an interval (a,b), one must estimate the number of points (including multiplicity) of the form
(1—p) 2 p"ry (7, = 0, 1) which lie in (a, b) for m € N, however, this is difficult in general
since the distribution of the points (1— p) anz_ol p"ry (rp, = 0,1) is very complicated because
of the overlap of ¢g, and ¢1,. Nevertheless, when p is the reciprocal of a Pisot number,
there is a rule followed from [G1] (which we call the local finiteness of p) on the distribution
of these points: given any two points x,y of the form (1 — p) Z;’”‘;Ol p"ry (rn = 0,1), if the

distance |z — y| < p™, then the number of all possible different values for p~"|z — y| is finite



(not depending on m), that is

m—1

#{p "z =yl @,y of form (1—p) > p"rp(rp = 0,1), |z —y| < p™}
n=0
is uniformly bounded for m € N. It is just relying on this rule that we can analyze the local
property of y1,. For each m € N, we partition the interval [0, 1] into some subintervals, which
will be called m-th net intervals, by the points p"r,, + (1 — p) anz_ol p"ry (r, = 0,1 for
0 < n < m). We associate each m-th interval with two special sort of vectors— its I-color and
II-color. These two vectors contain respectively the information about the distribution and
the multiplicity of the points of form (1 — p) Z?:_ol p"ry (rp, = 0,1) which lie “nearly” to the
net interval. In fact, the local properties for i, on a net intervals are completed determined
by its colors.. When p~! is a Pisot number, by the local finiteness of p we can show that
the number of the possible different I-colors is finite, thus we can associate each m-th net
interval with a Markov code of length m according to the I-colors, and due to this code we
can determine the II-color of this net interval by the product of m matrixes (the number of
different matrixes is finite). Thus we can determine the explicit value of the measure y, on
each net interval. Furthermore, we can represent each point of [0, 1] by an infinite Markov
code of finite states. Therefore we can use symbolic space to describe p,. For z € [0,1], and

m € N, denote
N p(x) = #{i =ivig--im € {0,1}" 1 2 € ¢3,([0,1])},

where ¢; , = ¢, p 0 ¢inp0 -0 @i, ,. Then the p, measure on the interval (x — p, x4 p")

can be shown to satisfy the following relation

pip(x — p™ @+ p™) = 27" Ny, ()

! is a Pisot number. In such case, Ny, ,(z) is shown to be the norm of the product

when p~
of m matrixes (the number of different matrixes is finite), and for a class of p’s this product
of matrixes can be decomposed into the product of some integers. We should point out that
Ledrappier and Porzio have considered the local properties of p, for p = (v/5 —1)/2 [LP1],
by using the technique of dynamics (“Markov partition”) and the combinatorial properties
of (v/5 — 1)/2, they showed that N, ,(z) is the product of some matrixes (the number of
different matrixes is countable inﬁnitej.

The paper is organized as follows: In Section 2, we introduce the definitions of net intervals
and their I-colors and II-colors, and present some basic properties. In Section 3, we give

some elementary properties of the graph and level sets of f,. In section 4, we consider

V5-1
Vo=

colors, the process of labelling net interval by Markov codes, and the measure distribution

the case p = Ay = We present in detail the generating relations of I-colors and II-
on net intervals, and prove in detail our main theorems associated with this parameter. In
Section 5, we deal with the case p = Ap(k > 3), and prove the relative results. In Section

6, we summarize some general results associated with other Pisot numbers. In Section 7, we



point out that with some additive work our method can be used to analyze biased Bernoulli
convolutions associated with Pisot numbers, or more generally, the self-similar measures
generated by a family of similitudes satisfying “weak separate condition”. In section 8, as an
appendix, we present the generating relations of I-colors for p which is the positive root of
d—a?+22-1=0.

2 Net intervals, I-colors and II-colors

In this section, we present the definitions and some basic properties of net intervals, I-colors
and II-colors. We show that the number of all possible I-colors associated with the reciprocal
of any given Pisot number is finite (see Lemma 2). Using this finiteness, we give the formal
formulas (in the form of overlap times of net intervals ) for the Hausdorff dimension of the
graph f, and the Li-spectrum (¢ € R) of y1, when p is the reciprocal of a Pisot number (see
Corollary 5 and Lemma 9).

2.1 The definitions
Let 1/2 < p < 1. The mappings ¢, 1, : R — R are defined as
b0,0(x) = pz, P1p(x) =pr+1—p.
For any m € N and w = (i;)jL, € {0,1}™, we write
Pus,p = Pir,p © O Piy p-
Denote by Py, , the set of endpoints of ¢, ,([0,1]) (w € {0,1}"™), that is
Py = {¢u,p(0) : w € {0, 13"} J{dw,(1) - we {0,1}7}.
One can see that ¢, ,(0) = (1 —p) 77 pPing1 and ¢y, (1) = p™ + (1= p) 7 pipgs for

w = (ij)jLy. Thus Py, , consists of all the points of the form

m—1
pmrm+(1—P)an7”n (rp, =0,0r 1 for 0 <n <m).
n=0

It is easy to see Py, C Ppyy1,, from the fact that ¢u ,(0) = ¢uo0,p(0), dwp(1) = Puot p(1).
The points in P, , partition [0, 1] into some non-overlap closed intervals, each of which is
called a m-th net interval associated with p. For example, the 1-th net intervals associated

with any p are

[071 _/3]7 [1 _pvp]’ [ﬂ, ”

respectively; The 2-th net intervals associated with p = (v/5 — 1)/2 are
[0, 0], [0, %), (0%, Pl 0,207, [20°,1).

10



The 3-th net intervals associated with p = (v/5 — 1)/2 are
[0, 0% 1%, 271 107, 071, 1%, 20%), [20°, 0% + %], 10? + 0, 9, [, 207,

and [2p%, p* + 2p%], [p* + 2p%,1].

Since Py, , C Ppt1,p, it follows that each m-th net interval is the union of some (m+1)-th
net intervals, and each (m + 1)-th net interval is contained in a unique m-th net interval.
Denote by Z,, , the collection of all m-th net intervals. Now, we define a mapping I';, , :
T, — 2R X R by

[a,b] — ({W : w € {0,1}™ such that — p™ < ¢, ,(0) —a < 0} , bp_m“) .
We call I',, , to be the m-th I-color mapping, and call T'y, ,([a,b]) to be the m-th I-color
of [a,b]. We can see from the definition that I'y, ,([a,b]) contains the following information
about the net interval [a,b]: (i) the various relative distances (with a ratio p~"™) between the
point a and the points of the form (1 — p) ZZZ:_OI p"ry, (rn = 0,0r 1) which lie on the left side
of a and have distance less than p™ from a; (ii) the relative length of [a, b](with a ratio p™™).
For w € {0,1}™, write

<w>p={v e {0,1}™: ¢y ,(0) = ¢, ,(0)} .

we use # < w >, to denote the cardinal of < w >,.
Define a mapping Yt Ly p — oRxN o R by
[a,b] — ({(Mw,# <w>,):w e {0,1}" such that
p

b—a
—)
P

P < Gupl0) —a < O},

We call Y, , to be the m-th II-color mapping, and call Y, ,([a,b]) to be the m-th II-color
of [a,b]. Compared with the I-color of [a,b], the II-color Y,, ,([a,b]) contains the following
extra information: (iii) the multiplicity of the points of the form (1 — p) Z;n;()l Py (rn, =0
or 1) which lie on the left side of a and have distance less than p™ from a.

Let us take an example. Suppose p = (\/5 —1)/2, let us consider the I-color and II-color
for the 3-th net interval [a, b] = [p?,2p3]. Since the points (with the multiplicity) of the form
(I1-p) Zi:o p"ry (rp, = 0,0r 1) can be written as:

0, p*, 0%, P, % PP+ 0t PP+ 07, 20
—
2’s
Among the above points, only p3(with multiplicity 1) and p? (with multiplicity 2) lie on the
left side of @ = p? and have distance less than p® from a. Thus the 3-th I-color of [p?,2p3] is

2
~)

p*—p* p*=p* 2p°
§ }, 7

,03 ) pg = ({—,0,0},1 _p)a

11



and the 3-th II-color of [p?,2p3] is

({(_P, 1)’ (07 2)}7 1- 10)'

For x € [0,1] and m € N, define

Nanp(@) = #{w € (0,1 € gu,([0, 1))}.

we call Ny, ,(x) the m-th overlap times at x. Given a m-th net interval [a, b] associated with

p, assume its II-color to be
({tla nl}a ) {tT7 n?’}? ’7)

For convenience, we say that the integral vector (nq,---,n,) is the II-characteristic vector of

[a,b]. Tt is an elementary fact that
T
Nnpl@) =) nr, (4)
i=1

when z € (a,b). For this reason, we call Y ;_, n, the m-th overlap times of [a,b] and denote

it by Nu,,p([a,b]). The definitions of net interval and II-color imply the following property:

Nm,p([(h b]) = #{w € {07 1}n : ¢w,p([o) 1]) N (avb) 7é 0}
= #Hwe{0,1}": ¢u,([0,1]) > [a,b]}

2.2 The properties of I-colors and II-colors

Lemma 1 Let J = [a,b] be a m-th net interval associated with p. Denote by Jy,---,J; all
the (m + 1)-th net intervals which are contained in [a,b]. Then the (m + 1)-th I-colors of
J1,- -+, Jp are completely determined by the m-~th I-color of [a,b).

Proof. Assume the I-color of [a,b] to be ({t1,---,t.},7). By the definition of I-color, we

have
(a— p™,b) [ {bwp(0) s w € {0,1}™} = {a+t1p™, -, a+tp™},
(@ =", b) ({bw,(0) 1w € {0, 1} 1} = (a = p™, b))
{a+tip"+pm0: 1<i<r,§=0orl-—p},
and
[a,b]( Pr1,p = [a,b](a+tip™ +p"0: 1<i<r,0§=0,1-p,porl} (5)
={a+tip"+pm0: 1<i<r,0=0,1—p,porl, 0<t;+6<n~}.
Since there are [ different (m + 1)-th net intervals Jy, - - -, J; contained in [a, b], it follows that

there are just [ + 1 different elements (including a and b) in the set [a,b] () Py41,p, therefore
by (5) the set
{ti+0: 1<i<r,0=0,1—p,por1,0<t;+60<~} (6)

12



consists of [ + 1 different points: 0 = hy < hg < -+ < hyp1 = 7. Hence J; = [a + hip™,a +
hi+1p™] (1 <i <1). By the definition, the I-color of J; is

{p 2 (t;j+0—h): —p<tj+0—h; <0, 1<j<r,

0 =0o0r1—p}p Y hiy1 — hi)). (7)

It follows from the formulas (6) and (7) that the I-colors of J; (1 < i < [) are completely
determined by the I-color of [a,b]. B

Denote
Cpi= | J{Tmp(la, b)) : [a,b] € T}

m>1
That is, C, consists of all the possible I-colors of net intervals associated with p. The following

lemma is our start point:
Lemma 2 If p is the reciprocal of a Pisot number, then C, is a finite set.

Proof. When p~! is a Pisot number, Garsia’s result ( Lemma 1.51 of [G1]) implies that for
each positive integer d there exists a positive constants cg, such that if each r; (1 =1,---,n)
takes only the value +d,+(d — 1),---, 41 or 0, then either

n
i=1
or

n
| prnrn| > ¢q.
i=1

The above result implies that the number of different points of the form > ", p~"r, (rp =
b—a

+1,0) which lie in a given interval (a,b) is not greater than ( to see this, note that the
C2
distance between any different two of these points is of the form Y ;" | p~"r, (r, = £2,+£1,0)

and thus not less than ¢y). Therefore, the sets

U {%(0) 20l () — B0y 0)] < 7, wv € {0, 1}m}

m>0 P

and

U {¢w7p<0> sl p(0) — )] < 7, wv € {0, 1}’“}

m
m>0 P

contain only finite many elements. This fact and the definition of C, yield the desired result. B

Corollary 3 For 1/2 < p < 1, if p is the reciprocal of a Pisot number, then there exists

positive constant ¢ (depending on p) such that
cp™ < |J| < p™ (8)
for any m-th net interval J, where |J| denotes the length of J.
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Proof. The right hand side of (8) follows from the fact that each m-th net interval is
contained in ¢, ([0, 1]) for some w € {0,1}™. On the other hand, the finiteness of C, implies
the left hand side. W

Lemma 4 Forl/2 < p < 1, suppose J is a m-th net interval with II-color {(t1,n1),-- -, (tr,nr), 7},
then

(i) pp(J) =27 ; nattp([—ti, —t; + 7).

(ii) If p=1 is a Pisot number, then there exists a constant D > 0 such that
D27 Ny p(J) < pp(J) <27 Ny p(J)

Proof. For 1/2 < p < 1, it is clear that 41, is a non-atomic measure and has positive measure
on any subinterval of [0, 1]. Now suppose that J = [a, b] is a m-th net interval with II-color

{(t1,n1),- -, (tr,ny),v}, then by the similarity of y, (see Formula (2)) we have

o) =27 3 (@)
we{0,1}™
By the definition of net intervals, if ¢, ,(0)—a < —p™ or ¢, ,(0) > a, then ¢y, ,([0, 1]) () int(J) =
0 and thus 1,(¢;, 1, (J)) = 0 since ¢ ,(J) (1(0,1) = . On the contrary, if —p™ < @, ,(0)—a <
0, then J C ¢, ,([0,1]), therefore
_gbw,p(O) —a _gzbw’p(O) —a b-—a

Gup(T) = [05,(a), 65, (0)] = | o o o

By the above analysis we have

po(J) =27 ) |

we{0,1}™m,—p™M <y, p(0)—a<0

po(J) =27 mipu([—ti, —t; + )
i=1

by the definition of the II-color. Therefore we complete the proof of the statement (i).

Now suppose p~

is a Pisot number, since the collection C, of all possible I-colors is a
finite set, it follows that the number of all the possible different intervals [—t;, —t; + 7] is
finite. Denote by D the minimal value of y, measure on [—t;, —t; +]. Then 0 < D < 1,

therefore by the statement (i), we have
D27 N, p(J) < pp(J) < 27" Nip(J).
which proves the statement (ii). H
Corollary 5 For 1/2 < p < 1, if p is the reciprocal of a Pisot number, then the L1-spectrum
Tu, (@) of pp is equal to

lo J)4 o N, ()

m—00 mlogp B logp m—oo mlogp

(9)
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Proof. By the definition of Li-spectrum (see Section 1) and Lemma 4(ii), it suffices to prove
that the left hand side of (9) is equal to

) _ ) q
lim inf log sup Zz (:up [372 6, x; + (5])

10
510 mlogp ’ (10)

where the superum in (10) takes over all disjoint family of intervals [z; — §,z; + 0]; with
€ [0,1]. Let ¢ be the constant in Corollary 3.
We first show (9)>(10). Fix m € N, take § = 1¢p™. For each J € I, ,, select a interval
s(J) C J such that |s(J)| =26 and p,(s(J)) > Tcpy(J). Then

D () < { (197 Xsez,, (1o(s())); ifq =0

T€Tm,p > geTn., (o(s(J)))1, q<0

which implies (9)>(10).

Now we show the converse relation. For any small > 0, let m be the integer so that
p™ < & < p™~L. Suppose that [z; — J, 2; + §]; is a disjoint family of intervals with z; € [0, 1].
Since for each i, [x; — d, z; + §] intersects at most f—p + 1 many m-th net intervals, it follows
that when ¢ > 0,

po([zi — 0,z +6))T < (pp( U J))*
JGIm,p,Jﬂ[Zi—(S,Z‘i-‘y-(S]#Q)

2
< () S )
P JELm,p, JN[zi—8,2;+8]#£0
Note that each net interval intersects at most two elements of [x; — d,x; + J];, by the above

inequality we have

> pollwi — 6,3+ 6])7 < 2((;2,) + 1) Y (up())? for g > 0. (11)
i JELm,p

Since for each i, [x; — 0, x; + J] contains at least one m-th net intervals, it follows that

S tplls = S+ 3T <Y (plT)) forq <0, (12)
i JELm.p

Inequalities (11) and (12) imply (9)<(10). &

Lemma 6 For any 1/2 < p <1 and m € N, suppose that I and J are two adjoint m-th net

intervals associated with p, then

1

o1 Vmp() < Ninp(1) < (m + 1) N, () (13)
Proof. We prove the statement by induction.

One may testify (13) directly for the case m = 1 since there are just three 1-th net
intervals with the overlap times 1,2, 1 respectively. Now assume that (13) holds for m < k.

In the following we will show that (13) holds for m = k + 1.
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Now suppose that I, J are two adjoint (k + 1)-th net intervals, where I lies on the left
side of J. There are two possible cases:

(i) I, J are contained in the same one k-th net interval U.

(ii) I, J are contained in two adjoint k-th net interval I’, J' respectively.

( Let us recall the property of overlap times for net interval: if @) is a n-th net interval,
then

Nip(Q)

#H{w € {0, 1}" 1 du,([0,1]) Nint(Q) # 0}
= Hw e {0,1}": ¢u,([0,1]) D Q} (14)

In the case (i), it is clear that
Nk,p(U) < Nk—i—l,p(l) < 2Nk,p(U)7 Nk‘,p(U) < Nk-i-l,p(J) < QNk,p(U)a

and therefore
1
§Nk+1,p(=]) < Nig1,p(1) < 2Ngy1,p(J)-

In the case (ii), let us define

A ={w € {0,1}*: ¢, ,([0,1]) D I" and they share the same right end-point}
Az ={w € {0, 1}"\ A1 = ¢,,,([0,1]) D I'},
As = {w € {0,1}*: ¢,,,([0,1]) D J" and they share the same left end-point},
As={w € {0,1}"\ A3 : ¢,,,([0,1]) D J'}.

From the definition of net interval and the property (14), we have

Ay = Ay

Nip(I') = #A1 + # Ao,

Nipo(J') = #A3 + # Ay,

#HAL + # A < Npp1,,(1) < #AL + 24 A,
#A3 + # Ay < Nip1 p(J) < #A3 4+ 2#A,4.

According to the above relation, we can deduce

1

12 kel T) < Niprp(I) < (B +2)Nerr, ()

from the assumption 2 Ny ,(J) < Ny ,(I') < (k+ 1)Ng,(J'). B

Combining Lemma 4 and Lemma 6, we have the following corollary:

Corollary 7 If p (> 1/2) is a reciprocal of a Pisot number, then there exists a positive
constant ¢ (only depending on p) such that for any m € N

me 1) < ugl1) < mep, (7). (15)

where I and J are any two adjoint m-th net intervals associated with p.

16



For m € N, let ay,1 < am2-++ < Gmye,, be the different elements of {¢, ,(0) : w €
{0,1}™}, and denote by dg.m) (1 <j < oy) the cardinal of {w € {0,1}™ : ¢y, p(0) = am;}-

Lemma 8 (i) %(d§m))s < > (Nmp(J))? for any s >0 and m € N.

j:]. JEZm,p

(ii) If p~! is a Pisot number, then there exists D > 0 (depending on p), such that

Om

ST >D N (Nupl))*

jzl JGIm,p

for any 0 < s <1 and m € N.
Proof. (i) By the definition of net intervals, each a,, ; (1 < j < o,,) is the left endpoint of

Om
a m-th net interval which has the m-th overlap times not less than dg-m), thus > (dg-m))s <
j=1
Y>> (Nmy(J))?® for any s > 0 and m € N.
JETm.

(ii) Now suppose that p~—*

is a Pisot number. Since both the sets

U {QSW,P(O) ;(JSv,p(O) : |¢w,p(0) - ¢v,p(0)| < Pm7 w,v € {O> 1}m}

m>0 P

and

U {(b‘”’p(o) ;d)v’p(l) o Gw,p(0) = dup(1)] < o™, w,v € {0, 1}m}

m>0 P

are finite, it follows that there exists L € N such that for any = € {¢, ,(0) : w € {0,1}""},
there are at most L different many y € P, = {0u,,(0) : w € {0,1}"} U{du,p(l) : w €
{0,1}™} satisfying that

y—p" <z <y.

Therefore, for any a,, ;, there are at most L different many m-th net intervals J = [a, b], such
that a — p™ < ap,j < a.

On the contrary, for any m-th net interval J = [a, b], suppose that a, i, - -, Gy 1+, are the
all points of ap, ;(1 < j < 04,) such that a —p™ < a,, ; < a, then N, ,(J) = dl(m) +-- '+dl(-Tr)7
thus

(Nonp(1)* = (™ 4+ 1) < (@) 4o+ (@)’

for 0 < s < 1. Let J run over Z,, ,, since for each a,,; there are at most L’s m-th net

intervals J = [a, b] satisfying a — p"™ < ap,; < a, it follows that

ST (Nnp(J))* < L%(@m))i 0<s<l.

JETm j=1

The desired result follows by letting D =1/L. W
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Przytycki and Urbanski ([PU], p.184) have given a formal formula for the Hausdorff

I'is a Pisot number,

dimension of the graph of the limit Rademacher function f, where p~
that is m) )
lo am dm logp~+/log2
dimg (graph f,) = lim gzj*l( J ) il
m—00 m log P

(16)
For our necessity, we re-express it in the following form (using Lemma 8 ):

Lemma 9 For 1/2 < p <1, if p~! is a Pisot number, then

log Y ez, (N p())108P" /1082

= lim T
m—00 m log P

dimg (graph f,)

3 Some elementary properties of the limit Rademacher func-

tions

In this section, we give some elementary properties of the graphs and level sets of the limit
Rademacher functions.
Denote by F' the set {2% : neNI1=0,1,---,2" — 1}. One may check the following

lemma directly.

Lemma 10 For any 1/2 < p < 1, (a) the function f,(x) is continuous on (0,1)\F, (b) for
anyx =1/2" € F (Lis an odd integer), f,(z+) = fo(z) and fo(z—) = fo(z)+p""1(2p—1),(c)
fo(0+) =0 and f,(1—) = 1.

Denote graph(f,) = {(z, f,(z)) € R®*: =z € [0,1)}, then the above lemma implies the

following result at once:

Lemma 11 Forany 1/2<p <1,

l l

g fo(Ge=)) s neN1<i<2"—1}.

graph(f,) = graph(f,) | J{(
Define the mappings ®¢ ,, ®1,, : R? — R? by

1 11
Qo (2, y) = (535, py), Pip(x,y) = (5:6 +o5eyt (1—=p)).

Then it is easy to check the following lemma:

Lemma 12 For any 1/2 < p < 1, graph(f,), graph(f,) are invariant under ®q ,, ®1,. That

18
1 1

graph(f,) = | ®ip(graph(f,)), graph(f,) = | @i, (graph(f,)),
=0 1=0
graph(fo) = [ | ®i,n((0,1] x [0,1]).

k>1 ie{0,1}*
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For any t € [0,1], the t-level set L, , of f, is defined as {z € [0,1) : f,(z) = t}. From
this definition, we have L, , x {t} = ([0, 1] x {t}) () graph(f,). For convenience, we define

Ly, = (10,1] x {t}) () eraph(f,).
Then by lemma 11, L; , x {t} = ﬁt,p for any t € [0,1]\ f,(F'—), where f,(F—) denotes the set
{folx—) 2 € F}.
Lemma 13 (i) For anyt € [0,1], and 1/2 < p < 1,
diimBlA}t,p = lir?j;p log;rf\lfg;g(t)’ dlmBLtp = lbrzriglof W
(it) For any t € [0,1]\f,(F—), and 1/2 < p < 1,

Tm 1og Nin,p(t 1og N, o (
dimpLy, = hﬂ?_?;lop W, dimpl;, = hrg 1510f (M

where dimp, dimp denote the upper and lower box-counting dimensions respectively.

Proof. By Lemma 12,

graph(f,) = (| |J @i,((0,1] x [0,1]).

k>1 ie{0,1}*

Notice that for any w € {0,1}", @, ,(z,y) = (Yuw,p(), du p(y)), where g ,(x) = 5,11 ,,(z) =

241 Tt follows that for any m € N, the number of different w € {0, 1} for which ®,, ,([0, 1] x

[0,1]) intersects Ly, for fixed t, is the cardinality of {v € {0,1}™ : t € ¢,,([0,1])}, i.e.

N p(t), therefore the number of 27™-mesh cubes which intersect I:t,p is Ny p(t), hence the

statement (i) follows from the definition of the upper and lower box-counting dimensions.
The statement (ii) follows from that L; , x {t} = L, for any t € [0, 1]\ f,(F—). B

4 The case p= )\

Vh—1
R

In this section, we always assume p = A :=
4.1  The generating relation of I-colors and the Markov codes for net
intervals

Let J be any m-th net interval, and Ji,-- -, J; be the adjoint (from left to right) (m + 1)-th
net subintervals of J. Denote by U, U;(1 < i <) the I-colors of J, J;(1 < i <) respectively,

then we would like to express their relation by
U—U+---+U,

and say that U generates out U;, 1 < i <.
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Under this expression, by direct calculation in the way discussed in the proof of Lemma

1, we have
({0}, A) — ({05 )+ ({=A011-2)
{=X\0}1=X) — ({X—=1,0},N)
{A—1}12) — {=A0L1T=)+({A-1}A) (17)
({A—=1,0}, ) — ({2051 =XN+({ =122 =1)+ ({—=A,0},1 =)
{A=1122-1) — ({—=A,0},1—X)

As we have seen, there are only five elements in the set Cy. In the following process, we
will label the net intervals according to the above generating relations.

Let = = {a,b,c,d,e, f, f} be an alphabet set. For any m € N, we will label every m-th
net interval uniquely by a letter string of length m (“Markov code”) in the following way. Let
J be a m-th net interval, for convenience, we denote it also by J (m) Foreach1<i<m-—1,
there is only one i-th net interval that contains J, which we denote by J®. Recall that ia(e)
denotes the i-th I-color. Recall that I'; y denotes the i-th I-color mapping. Then J is labelled

as (z;)", € 2™, where

(o i TA(JD) = ({0},0)
b if Tya(JD) = ({=),0},1—)\), and
either i = 1, or i > 1 with T;_; \(JO™D) = ({A — 1},2X — 1)
¢ i Tin(JD)=({A-1}2)
d if Tix(JD) = ({A—1,0}, )
e AfTAJD)=({N-1},20 1)
T; = . . (18)
foafTia(JD) = ({=X,01,1 =\, i > 1,

L (J07D) = ({A = 1,0}, 0),
and J® has the same left endpoint as J(—1
if PM(J )) = ({ A0} 1—A),
szl,)\(‘]( - ({)‘_ 170}7/\)7
and J® has the same right endpoint as J(

|

i—1)

For example, let us consider the Markov code for the 3-th net intervals J = [1 — A, 2)3]
and J' = [A\? + % \]. By direct check, [1 — A, A] is the unique 1-th net interval (and also the
2-th net interval) which contains J (and also J'), the 1-th I-color for [1 — A, \] , 2-th I-color
for [1 — A\, A\] and 3-th I-color for J (or J') are

({_)‘70}7 1- /\)7 ({)‘ - 170}7)‘)7 ({_A70}7 - )‘)7

by our labelling principle, the Markov codes for J , J’ are bdf, bdf respectively.
By the above labelling principle, any two different m-th net intervals correspond to differ-

ent relative Markov codes. A formal expression of the generating relation (17) can be given
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below:
a+b

b+c

fre+f (19)
b

d

d

L N A A

\

We will say that ¢ generates out j if there is an arrow from ¢ to j. The above relation

determine a 0-1 matrix H = (H; j); jez by H;j = 1 if i generates out j. That is

abcde f f

a 11000 00

b 0001 0O0O0

c 0110000
H=d 0000111 (20)

e 010 0O0O0O0

f 0001 0O0O0

f 0001000
For m > 2, it follows from (18) and (19) that each m-th net interval can be coded as an

element in

S™ = {(2)it, € 2™ Hppoy =1,1<i<m—1, 1 =a,bor c}, (21)

and each element of the above set corresponds to unique one m-th net interval. For any
w € 8™ we will use V,, to denote the m-th net interval corresponding to w.

We would like to know more about the possible forms of the elements in S™. For this
purpose, we write Xog = f and X; = f, and define By = B to be a collection of letter strings

as follows

B:={bde} | J{bdX; d--- Xjde: k € Njiy,- i, =0 or 1}. (22)

Then by the generating relation (19), each element in S™ is the prefix of a letter string of

the form of the following three cases:

W1 OWg - 0OWpO---,
a...aowlow2...owno...’

N——

ra’s (23)
C-+COW]l OWy "+ 0OWpO---

rc’s

where r € N and w; € B, i € N.
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4.2 II-colors of net intervals

In this subsection, we give the generating relations of II-colors. And we show that the m-th
overlap times of a m-th net interval is equal to the product of some matrixes, furthermore it

can be decomposed into the product of integers.

Let J be any m-th net interval, suppose that Jy,---,J; are the (m + 1)-th net intervals
(from left to right) which contained in J. Let ©, ©;(1 < i < [) be the Il-colors of J,
Ji(1 <i <) respectively. We express this generating relation by

©=0;+---+0,.

Under this notion, we have

({(0.7)}.3) = ({0710 + (A7), (0.1}, 1= 3)
(AL 011 -2 = (A~ 1p)(0.0)},2)
{A=1,7)}A) = ({(=A7), (0,01 1=0)+({(A=-1Ln}A)
AN =19, 0,050 = ({(=Ap),0,p+ %1 -N+ {0 -1,p+q)},2\—1)
+({(=\p+a), (0,9} 1-N)
{O-1np2-1) = {ANL{0O} 1))
where p,q,r € N.
Denote by
A ({(0.7)}N)
B9 = ({(=A,p), (0,9)},1— )
cr = =1,1)}A)
DP9 = ({(A=1,p),(0,9)},\)
E® = ({(A=1,7)}2x—1)
FeD = ({(=A,p), (0,9)},1— )
Fro . _ (=X p),(0,9)},1—N)

then the generating relations of IlI-colors can be written as

A — Al 4 g

BP9 — pma

cm  — B Lo

DWwa) —  prta 4 plta) +F(p+q,q) (24)
EM — B

Frad — poa

7P — D9

Now according to the above generating relations, we define a family of matrixes 7; ; for

each pair (7, j) € Ex E with ¢ generating out j in the sense of (19):
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Ta,a = 17 Ta,b = (17 1)7
1 0
Toa = ,
(0 1)
Tc,b = (17 1)) Tc,c =1
oo (1 (N 4o (1o
Vo) ) T 1) (25)
Te7b—(1,1)
10
Tpq= ,
fd 0 1
1 0
T, = ,
f7d O 1

With the above definition, the generating relation (24) can be re-written as:

(AN —  AMTaa 4 B Tab
BPd) — D@D
cr — BTy 4 00)Tee
DPd) — FeDTe;  pe9Tae FPOTuF
EM — B®™Tep
e — pEDTra
F(”"’“’) — pwaTs,

This is, if ¢ — 41 + - - - + 4;, then we have

n1ne) T, (n1ym) Thiy

) — gt T (26)

For any matrix M, denote by ||M]| the absolute value sum of all the entries of M. Then

according to the formula (26), we obtain the following lemma at once:

Lemma 14 Let J be a m-th net interval (m > 2) corresponding to w = (x;)[~, € S™,

suppose its II-color is ({(t1,n1), -, (tr,nr)},7y), then

(1, ny) = LTy w - Tag s Ty ifr1=aorc
S (L) Ty ay  Topws - Ty 2 f 21 =0

and

,,
N (J) = Z i = | Toyao * Tonas Lo s oml| (27)
i=1

Let us consider a little more about the value of the right hand of Formula (27). For

convenience, we write

Tryzozm = Tav s Top1,om- (28)

Lemma 15 Suppose w € 8™ can be written as the concatenation wyows, where the end-letter
of wy is e. Then
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Nipa (Vo) = [Tl = [T || X || T I (29)

where V, is the m-th net interval corresponding to w.
Proof. Suppose that the II-color of V,, is ({(t1,n1), -+, (t,nr)},7y). Noting that the II-color
of V,, is of the form E®) and the first letter of ws is b, by Lemma 14 we have

(nl,"‘,nr) =D (171)Tw23 b= ||Tw1||a

which proves the lemma. B

4.3 The exponential sums of matrix products

In this subsection, we consider about the limit lim ( ) ||Tw||q)% for any real number ¢,
where S™ is defined as in (21) and 7T},’s are defined by (25),(28). We show that this limit

value is either the positive root of a transversal equation or equal to 1, and as a function of
q it is differentiable except for one point gy < —2.

Let the matrixes My, M; be defined as in (3). For j = ji---j, € {0,1}", denote Mj =
Mj, o---0M;,. For any ¢ € R, define

wg =2 ung= Y [IMl|" (n>1). (30)
je{o,1}r

Then we can formulate the main result of this subsection as follows:

Theorem 16 For any real number q, the limit lim ( HTqu)% exists and is equal to
x(q)~', where x(q) is defined by

x(q) :=sup{z >0: Z Up g2 < 1} (31)
n>0
Moreover, let ¢ = qo be the real root of Y ~gung = 1. then qo € (—00,—2). And when
q > qo, x(q) is the root of § (>2171=n [|M;]|9)2?" 3 =1, and it is infinitely differentiable on
(qo, +00); When q < qo, X(TSO: 1. Furthermore, x(q) is not differentiable at ¢ = qo,

2002 7j=n (1M |7 log |[M]])
ano Un,qo - (20 + 3)

We will prove the above theorem by a series of lemmas. At first, we define

7' (qo—) =0, 2’'(qo+) = —

€ (—00,0).

Sp' = A{(@i)ily € S w1 = b},

and

mg= Y IILIIY,

wesS"

for any positive integer m and real number q.
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Lemma 17 vy 4 = 29 = ug 4,24 = 29 = ug,q, V3,¢ = U0,q + U1,q,
and for k > 2
k—2
U2k,q = (Zizo ui7qv2k7(2i+3),q) + Uk—1,q
k—2
Vakilg = (Doimo WigV2kt1—(2i43),q) T Uk—1,4 T Ukg

Proof. Since S} = {b}, S? = {bd}, S} = {bde, bdf,bdf}, we can calculate vy q,v24 and vs,
directly. Denote Xog = f and X7 = f. For any k > 2, by (23) each element w € ka can be
written as one of the following two cases:

(i) w=bdX; d- - X;,_,d, i1, ig_1 € {0,1}.

(ii) w = bdX;, d - Xydeows, 0 <1< k—2, -4 € {0,1} and wy € 5.7 2,

For the case (i), by the definition of T, (see (25),(28)), ||Tw|| = || M, --- M;,_,||- For the
case (ii), by the formula (29), ||T,|| = ||M;, - - - M, || - ||Tw,]|- Thus

vakg = 2 |[Toll?
wGS?k
= > Moy 17+ >0 (0 22 (Mol X2 (Tl
i1,,ip—1€{0,1} 0<i<k—2 41,-,3;€{0,1} wesf’“*“””
k—2

= Up_14+ (ZZ Upg " Vok—(214+3),q)
—0

In the other hand, by (23) each element w € Sng can be written as one of the following
three cases:

(ill) w = bdX;,d- - X4, dX;,, 41,1 € {0,1}.

(iv) w=bdX;,d--- X;, _,de, i1, -+ ,i_1 € {0,1}.

(v) w=bdX;,d- - Xyde ows, 0 <1<k —2, iy, iy € {0,1} and wy € SFH—E3+20),

For the case (iii), ||T,|| = || M, - - - M;,||. For the case (iv), ||T,|| = [|M;, - - - M;,_,||. And
for the case (v), by the formula (29), ||T,|| = ||M;, --- M;,|| - ||Tw,||. Thus by a discussion
similar to that for vy 4,we have

k—2

V2k+1,9 = (Z UpgU2k 41— (2143),q) T Uk—1,q + Uk g-
1=0

|
Lemma 18 lim (3" [ITL][%)7 = x(a) ™, where x(q) is given by (31).
b

Proof. We will prove the statement in two steps.
T 1 _
(1) limym o0 (Vm,q) ™ < x(q) !

Since >~ up ¢x(g)3T?" < 1 it follows that

n>0
2%k k 3120) 2k < ot 342i)—2k
x(q)” > > Ui,qx(q)( +20)-2k > > ui,qx(q)( +20)-2%k 4 Ug—1,4%(q)
i=0 i=0

k , k—2 ,
X(q)—Qk—l > %uijqx(q)(?)—&-h)—%—l > Z ui,qx(q)(?’“”_%_l +Uup_1,4 +Uk,qx(q)2
1=

=0
(32)
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Select a positive number C' > max{1,x(q)~2,x(q) "'} such that
Vig < C-x(q)”", i=1,2,3
Now we will prove by induction that
vig < Cx(q)” (33)

for all ¢ € N. Suppose that this inequality holds for any ¢ < 2k, then by Lemma 17 and
Inequality (32), we have

k-2
(Zi:o ui,qUZk—(2i+3),q) + Uk—1,q

V2okqg =
< C(TE wigx(g)®H7) puy g,
< OIS uigx(q) @ H972) + Ox(q)up—1,4
< Cx(q)~?,
V2k+1,q = (Zf:_g Ui qUok41—(2i43),q) T Uk—1,q T Ukg
< O wigx(@) 720 Loy g g+ upg
< OIS wigx(q) P71 4 Cug_y g + Cx(q)un g
< Cx(q)~21

Thus the inequality (33) holds also for ¢ = 2k, 2k 4+ 1. By induction, Inequality (33) holds for
all 7 € N, which proves the statement (i).

ce\ 1e 1 _
(11) himm—wo(vm,q)m 2 X(Q) !

Given any 0 < y < x(g)~!, then there exists positive integer N such that

N-2
1< Z ui,qy_?’_%.
i=0
Thus when k > N, we have

k—2 ,
2k < Y w; g2 B2,
k = k41 ' 3
PPRHL < ST gy 2R (3420
i=0

Select a positive number D < min{1,x(q)~*, x(¢)"2} such that
vig > Dy, i=1,--- 2N —1.
Then by Lemma (17), Formula (34) and a discussion similar to that in the part (i), we have
viq > Dy, VieN,
which yields lim (vmyq)% >y (0<y<x(q)~!). Thus lim (vqu)% >x(q)"h. H
m—0o0 m— o0
Lemma 19 lim ( ) HTqu)i =x(q)~1, where x(q) is given by (31).
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Proof. By (23) each element in S™ can be written as g---aqow, or ¢---cow, where 0 <
mi mi
my < m and w € S, thus we have

m—1
DTl = Y ITullf+2 )0 > Tl + 2. (35)
wesm wesy 7=1 wes]

Since upq > |[[MF||? = (n +2)9, it follows that the series > - Up,q@?" T3 diverges for
x > 1. By the definition of x(q), we have x(¢) < 1 and thus x(¢)~! > 1. By (35) and Lemma

18, we have

. q i . 1
im (37 (715 = x(q) .
wes™
|

The following lemmas consider about the differentiability of x(g).
Lemma 20 (i) If ¢ > 0, then for any m,n € N,
Um,qln,g = Umtn,g-
(ii) If ¢ < 0, then for any m,n € N,
Um,qlUn,g < Um-n,q-

Proof. The above statement follows immediately from the observation that for any integer

m,n > 1,
A 1\’
Um,gUng = 2, (1,1)M; > (1,1)M;
ie{0,1}m 1 JE{O n 1
1 q
= Ml (17 1)M.] )
16{0 1}mJe{0 1} 1
1 11\’
= M; )
1e{0 1}mJe{o 1} 1 1
q
1
Um+n,q = y
16{0 1}m je{o < [ 1 ] )
q
1
= 0 M] ,
16{0 1}m_]€ 1 1
[ |

Lemma 21 Let 6y be the positive root of x> + 2z — % =0, d.e, Oy =~ 0.45774. And let
¢ be the Riemann-Zeta function, that is ((z) = >_,51n™" (x > 1). Then for any q €
(=¢7H(52), =711 + 6p)) ~ (—2.2599, —2.2543), we have

1< Zun,q < 400.
n>0
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Proof. Denote U = (—(1(3%), —=¢~1(1+6y)). By direct check, we have ((3) ~ 1.2021 < 18
and ((2) &~ 1.6449 > 1 + 6, therefore ({(3),¢(2)) D (38,1 + 6y), it follows U C (-3, —2).
Furthermore by computation, U ~ (—2.2599, —2.2543).
Since that any element in {0,1}" can be written as 0™ 172 ... or 1™0"2 ... it follows
that
Don>0Ung = Dp>02|j=n [|1Ml]?
29+ 230, oy [IMGN19 423051 Yo gyt || MG M2 - M= M2 |9
+2 lel an,.-.,nglﬂg HM(?IM{LQ o 'MSLQZAM{LQZM(?ZHI Hq~

(36)
Since
_ 1+ning m 1+ ng_1ngy no—
(Mgt M) - (My™ M| = || i
n2 1 nay 1
> (14+ning) - (1 4+ ngy_1ny)
1 oo (1 _ 1
|| M M2 '“M{LQZM(;LQZHH > || ( (L4 ning) - (1 +ny—1ny) * > < 21+1 > I
* * 0 1
> (1 + n1n2) e (1 + nzlflngl)(l + n21+1)
(37)
and

[|Mg M2 - Mg M7 | < (1 4m1)(1+n2) -+ (14 n2-1)(2 + na)

|| Mg M7 - Mg My < (L) (14 n2) -+ (14 120) (2 + nargr)
(which follows from that (1,1)M < (n+1,n+1) = (n+1)(1,1) for any ¢ € {0,1}, n > 0.),
by(36), when ¢ < 0 we have

D ung <2742 (2+m)T+2-(1+ ) 09O (Y. (14 ning))) (38)

n>0 n>1 n>1 [>1 ni,ne>1
and
D g >274+2> 2+n) (14> O (1 +n)9)) (39)
n>0 n>1 >1 n>1

From now on, we assume that ¢ € U. As we have proved, —3 < ¢ < —2.
At first, we have

an,le(l +ning)?d =2 anl(l +n)?— 27 + Zn1,n222(1 + ning)?
<25 (1 +n)T =204 (3, 59n9)?
=2(¢(~q) = 1) =27+ (¢(~q) — 1)°
<290—%—|—92:1,
by Inequality (38) we have }_ -, unq < +o00.
On the other hand,

20423, 5124+ n)T- (143251 (X5 (1 +n)? )l)

— 924 .w: (_Qq)( q) —
NS aEE TN

- —-q) — T
S e >141 2—c<—q> -1
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by Inequality (39) we have 3 <qung > 1. B

Corollary 22 (i) >~ un,q tends to 0 when q tends to —oo.
(ii) There exists unique go < —2.25 such that 3, <qun,qg = 1.

Proof. By Lemma 21, there exists real number ¢ < —2.25 such that 1 < > g unq, < +00.
Thus from the definition of u, g, the sum ) - ,unq (as a function of ¢) is increasing and

continuous on (—o00, q1). On the other hand, note that

Un,q < max ||MJ”q—q/ < 90—q'
Un,q’ |J|=n

for any integer n > 0 and real numbers ¢ < ¢’ < ¢, therefore

2 >0 Un,g
holds for any ¢ < ¢’ < ¢1, which implies (i). The statement (ii) follows from the continuity
of Enzo Up,q o0 (—00,q1). W

Lemma 23 Let 6y be the positive root of x> + 2z — % = 0, then Zn21n CUpg < 400 if
q < —C Y1+ 60g) =~ —2.2544, where C is the Riemann-Zeta function.

Proof. By Inequality (37), for ¢ < 0 we have

Zn.un,q = 22n|\M3[|q+2Z Z (nl+...+n2k)”M67'1M{12_"MS’LQkflMlnngq

n>0 n>1 k>1mny,-ngop>1

+2Z Z (ng+--- +n2k+1)||MglMln2 ...MO"%*lM{lszngkﬂHq

k>1n1,ngg41>1

< 2Zn(2+n)q+22 Z (n1 + -+ nog) (L +nang)?- - (1 + nog—1n2k)?
n>1 k>1mn1,n2,ngp>1
+ 2 Z Z (n1 + 4 n2k+1)(1 + nlng)q s (1 + ngk_lngk)qngk+l

k>1mn1,n2,nak,nok4+1>1

= 2Zn(2+n)q —}—22 Z 2kng (1 4+ ning)?- -+ (1 + nop—1n9x)?

n>1 k>1mni,ng2,ngp>1
+2 Z Z 2kni(1+nin2)?--- (1 + ngk_lngk)qnngrl
k>1ny,ng, - nog,nokt1>1
+2 Z Z n2k+1(1 + nlng)q cee (1 + ’I’Lgk_ﬂ”LQk)qnngrl

k>1mni,n2,nak,nok+1>1

= 2) n@2+n)T+ DY m(l+mng)? x> k(Y (L+mymg)9)F!

n>1 ni,n2>1 k>1 mi,mz>1

+ > m(lFmng) x Yy ntx Y 4k( Y (L+mim))*!

ni,n2>1 n=>1 k>1 m1,m22>1

+2an+1 X Z( Z (1 +mymg)?)* (41)

n>1 k>1 mi,mo>1
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Now suppose ¢ < —( (1 + ). By Inequality (40) , we have

Z (1 + nlng)q < 1.

ni,ng>1

On the other hand, since ¢ < —2, it follows that the series >_, -, n9*! and Donma>1 (1 +
ning)? converge. Therefore by Inequality (41), >, < 1 tUpq < +00. B

Lemma 24 Suppose that ¢ € R satisfies ano Up,q = +00, then for any integer L there
exists 0 < y < 1 such that

L < Zun,qy” < 400.
n>0

Proof. Case 1: ¢ > 0.
In this case, u, 4 > 1 for n > 0, therefore ) ., unq = +00. By Lemma 20, {tunq}n is
submultiplicative, therefore

lim w!/” = inf ul/".
n—+4oo 7 n>1 "7

Denote by r,y the value of above limit, then 1 < ry < oo and up > 77 for n > 1. Hence

lim g Up,qz" = +00, which implies the desired result since the series >, - un,qy" con-
$—>7’q
n>0

verges on (0, r(]_l).

Case 2: ¢ <0, and ), ~(Upgq = 00.

For any integer | > 0 and positive integers ni,ng, - - -, n;, define
ny no ny 1
a(ni,ng,---,ny) = (170)M0 My “'Ml(modz) 0 )’
ni no ny 1
b(ni,ng,---,my) = (1, 1)Mo My "'Ml(modz) 1 )
It is clear that
a(nla ng, -+, nl) < b(nl, ng, -+, nl)
and
a(n17n27 Ty nl)a(mlme) Ty ms) S a(n17n27 e, MY, M, TN, 7ms)7 (42)
where my, mo, - - -, ms are positive integers. It is not hard to show that
1 e
a(ni,ng,---,ng) > Zb(nl’m’ -,my), if [ is even. (43)

( To see this, denote

( o ) = (MAM}?) - (M M)
Tr3 T4

for even integer . Then by induction on [, one can verify that among the x;’s, x1 is the

greatest and x4 the smallest .)
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For any integer L > 1, take an integer y(L) > L-479, and define p = 2¢(L) | Now for any
O0<z<l,

2p—1
E Upqgx" = 2942 E E b(ni,ng, - -+, mj)T- g™
n>0 J=1 g,y >1
2p—1 400

235 ST blnn, g @

J=0 k=1n1,nogps;j>1
2p—1

< 2742. Z Z b(ni,ng, - -+, ny)? - gmtE
Jj=1 ni,--n;>1
2p—1 +o0
+2. Z Z Z a(nl’ e 7n2kp+j)q L N2k
J=0 k=1n1,nogpy;>1
2p—1
< 2942 Z Z b(ni,ma, -+, nj)0 g™t
j=1 ny,n;>1
2p—1 +o00
+92. Z Z Z a(ny, -, nogp)la(nogps1, - - ’n2kp+j)ql-”l+'”+n2kp+j
Jj=0 k=1n1,nogpt;>1
2p—1
< 2942 Z Z b(ni,ma, -, ng)0 g™t
j=1 ny,n;>1
2p—1
£2-(3° D almeimy)t )
J=0 ny,-n;>1
—+00
(320 3 alng, - mgy)t amit ey, (44)
k=1 ny,-ngp>1
Since a(ni,ng,---,n;),b(ni,na,---,n;) are polynomials about ny,ng,---,n; and 0 < = < 1,

it follows

Z a(nlv T 7nl)q g™ < oo
ni,ymp>1

Z b(ny, -« my)? g™ < 0o
ni,,n>1
for any positive integer I. Thus by (44), >, < un,gz" < o0if ),
1.

g1 (T, ngy) T AT <
Since ), 5o Ung = 00, it follows from (44) that ) nap>1 a(ny, - ngp)? > 1 (or =
+00). Therefore there exists 0 < z < 1 such that Zm,...,nzp>1 a(ny, -+ mgp)lzmttnzm = 1,
Moreover,
Zun’qx" < oo forz € (0,2). (45)

n>0
For [ = 2,22 ... p, by Inequality (42), we obtain that

Z a(nla T 7n2p)qzn1+~--+n2p < ( Z a(”l, e nl)qzn1+"'+nl)2p/l,

ny,eemop>1 ni,--,n;>1
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which implies that Y-, <;a(ng,---,ng)%™ T+ > 1. Thus by (43), we have

Z b(nl,'--,nl)qz”1+'~'+”l 24(1’ l:2,22,"-,p.

ni,,ng>1
Therefore
. 2p—1 o
limg_,_ ano Upgr™ >2942- Z]’I;1 an,---,njzl b(ny,---,nj)e - 2t
>2142-y(L)-42
> 29+ 2L,

this and (45) yield the desired result. B

Proposition 25 Let x(q) be defined by (31) and qo be given as in Corollary 22 (ii), then
(1) x(q) =1 for q < qo;

(ii) if ¢ > qo, then x(q) is the positive root of Y, <o Un,qx?" ™

= 1, and it is infinitely
differentiable on (qo, +00), and

50 (i 1M [9Tog M) - ()27
Dm0 Ung - (204 3) - x(gq)?+? ’

2'(q) = -

(iii) x(q) is not differentiable at ¢ = qo, moreover,

2502 g2 [1M] |9 Tog || M)
ZnZO Un,qo (2n + 3)

Proof. Fix ¢ < qo. Since ), g un,q < 1, it follows x(¢) > 1 by the definition (31). On the
other hand, un,q > [[Mg'||? = (n+1)%, therefore 3, -, Up,q@?" T3 = 0o if £ > 1, thus x(¢) < 1
by (31). The statement (i) follows.

To show (ii), let ¢ > go. We have either 1 < > _jung < 00 Or > ~(Ung = 00. In
2n+3

2'(qo—) =0, 2'(qo+) = —

the former case, >, <o Un,qT is continuous on (0,1) and thus there exists xg satisfying
> n>0 Un 2" = 1. By (31) x(q) = zo. Now we assume > n>0Ung = 00. By Lemma 24,
there exists 0 < ¢1 <tz < 1 such that 1 < Y7, 5 ungti" < +00 and 3 < D om0 Ungls" < 0.
Thus 1 <}, 5¢ Up, 15" < 00, similarly we can show that x(q) satisfies > n>0 Up g% (q)*H3 =

1. Now we show below that x(q) is infinitely differentiable on (gg, +00). Define

G(g,x) = Zun,qu”H.

n>0

Fix ¢1 € (go,+o0). As we have shown, there exists real number y > x(q1) such that 1 <
G(q1,y) < +oo. Take a real number z so that x(q1) < z < y, and take g2 such that

@ >q, 4777 < g

Note that for any integer n > 0,

Un,qo < max || M;||2"0 < grla2—aq1)
Un,g,  |J]=n
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Therefore for any g < g2 and 0 < x < z, we have

G(g,z) < Zuquz%+3

n>0
_ z
— Z Ungy y2n+34n(q2 q1) (7)2n+3 < +o0,
n>0 Yy

du
D g = 3 D Ml log IMy[[e*" P < Y n g log 47

n>0 n>0|J|=n =
z
3 P g I E S < o,
n>0

and

Z Un g(3 +2n)2?" T2 < Z Un,go (3 + 2n) 2?3
n>0 n>0

= Z U, g "3 (3 + 2n)4n(qz_q1)(i)2n+3 < +o0.
n>0 y

The above three inequality imply that G(q, z) is well defined and differentiable on (—oo, g2) X
(0,2). A similar more discussion shows that G(q, z) is infinitely differentiable on (—o0, ¢2) X
(0,2). Thus by the Implicit Function Theorem, x(g) is infinitely differentiable on a neigh-
borhood of ¢;. Since ¢ is taken arbitrarily on (go, +00), x(¢) is infinitely differentiable on
(qo, +00) and (ii) follows.

To show the statement (iii), we only need to calculate 2’(go+). For ¢ > qq, starting from
the fact that

Z un,qx(q)2"+3 - Z un,qox(qo)2n+3 =0,

n>0 n>0
we have
Up,g — U
Z n.q — .40 | X(q0)2n+3
x(q) = x(q0) _ >0 17
q— qo > >0 Un,g(x()*" T2 +x(¢)*"1x(q0) + -+ 4+ x(g0)*"+?)

2 : Un,qg — Un,qo

>0 q—4qo
Dm0 Ung(X(q)? T2 +x(q)? 2 4 -+ x(q) + 1)

Since ) ,,~( tn,q(2n+3) < 400 on a neighborhood of gy (by Lemma 23 and 21), taking ¢ | qo
we get the desired result. W

Proof of Theorem 16: it follows immediately from Lemma 19 and Proposition 25.

4.4 The Hausdorff dimension of graph(f))

Theorem 26 Let o = lolié\; , then

log x(a)

)
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where x(a) is the unique positive root of the transcendental equation

oo
E un,ax3+2” =1.
n=0

Here up,g = 27 and un,a = Y icqo 30 |[Mil|*, n =1 .

Proof. The theorem follows from Lemma 9, Lemma 14 and Theorem 16. B

4.5 The box-counting dimension and Hausdorff dimension of level sets of

I

4.5.1 Symbolic space

Recall that for any positive integer m, there is an one-to-one correspondence between the

collection of m-th net intervals associated with A and the string set S” which is defined by
S = {(2i)izy €E™: Hpjop, =1,1<i<m—1, x1=a,bor c},

where = = {a,b,c,d, e, f, f}, H is a 0-1 matrix defined by (20).

For any w € Upp,>15™, we use V,, to denote the net interval corresponding to w. Define
sN .- {(z)2, € =N . Hypnioy =1,i> 1,21 = a,bor c},
and consider the mapping II : sN [0, 1] defined by
w= ()2~ [ Vijms (46)
m>1

where w|n denotes (z;)",. Clearly II is surjective. And it is also one-to-one except for a set
of countable points; more precisely, denote by L the set of all left and right endpoints of net
intervals associated with A, that is, L = U,;,>1P,, x, where P, ) is defined as in Section 2,
then II is injective on [0, 1]\ L and two-to-one on L.

Consider the set
SN = (@)= ezN m, . =1i> 1,2 = b},

its image under the mapping II is the 1-th net interval V;, = [1 — A, A\]. By the generating

relations (19), any element in X := {b,d, e, f, f} generates out neither a nor ¢, it follows that

SN = (@, esN: @,

pai = 1,0 > 1,21 = b},

where H = (lﬁIm)i,jeg is the restriction of H to the index set X, i.e.,

m)
Il

(47)

- o a o
o o = o o <
== R =
O O O~ O O
o O O = O <
O O O = O |
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The matrix H is primitive, that is, there exists a positive integer m such that all the entries
of H™ are positive. In our case, HS > 0.

Now let us consider the subshift space of finite type, (Zg, o), where

SN = @) e 5N Ay, = 1> 1),
and the shift mapping o : EE — EI\HI is defined by

(zi)i2y = (Ti1)i2y-

In what follows we define a Markov measure on (ZI;I ,O).
Recall that we have used the letters b, f, f to denote the I-color ({—X,0},1 — \), d to
denote the I-color ({\ — 1,0}, ), and e to denote ({\ — 1},2\ — 1). Now we define

W= =7=1=Avw=A r=2A-1

Define a matrix P = (P; ;)i jes by

AL if § generates out j in the sense of (19)
Pij=9." .
0 otherwise.
That is B
b d e f f
b 0 1 0 0 0
d 0 0 2X2—1 1—-X 1-2X
P = e 1 0 O 0 O )
f 0 1 0 0 0
f 01 0 0 0
Suppose p = (Pp, Dd; Pes pf,pf) is the probability vector satisfying that pP = p. By direct

calculation,
1 1 1 1 1

P =G v T o 744y 4430 1430
_(5—2\/5 V5 5-2v5 3V6-5 3\/5—5)
5 57 5 7 10 7 10 7
Since P is primitive, there exists a o-invariant ergodic measure ¢ ( which is often called the

(p, P) Markov measure) on Eg, such that for any n-th cylinder set [z122- - xy,] C ZIEI ,

E([x1m2 - wp]) = Py Py Pryzg -+ Py 12, (48)

( one may refer to [Wal] for further information about the (p, P) measure ).

Now we consider the projection of the measure £ under the mapping H]SN : SIN —
b

[1 — A\, \], which is written as (H\SN)#ﬁ and defined by
b

(HISE\;)#ﬁ(A) = §(HI;I§(A))7 for A C 1 =X Al

b
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It is clear that (II] N)#§ is a Borel measure on [1 — A, \]. The following lemma shows that
(11 N)#f is equlvalent to the Lebesgue measure on [1 — A, \].

Lemma 27 For any Borel set A C [1 — X, \], we have

(1] )6 (4) = 3375 £(4).

Proof. For any n-th cylinder set [bxa---x,] C Sb , 10 N([bZL’Q -xy]) is just the n-th net
interval Vjy,....,,. Note that the length of V..., is equal to A"y, , we have

L(Vie,) LVoy-..z,,)
LVigo...z = LV 2 coex R
Wheaan) = X ) X 2, )
— )\ryb X m X -0 X M
) Y,_1
- )\'Yb Pb,J?Q e Pxn—lyxn
A
= ﬂpbe T " Pa:n_hacn
Po
AV
= —&([bxe--xy
o ([bzo 1)
AMYb
= (H| )#5 (Vbxz"'ﬂﬂn)v
g

thus the lemma holds for all the n-th net intervals which contained in V. By a standard

argument, the lemma holds for every Borel subset of V;,. B

Lemma 28 For & almost all w = (x;)2, € SN,

log HTw\nH
m . S—

n—00 n

— (log2)¢(bde) + 3 S (log[|Miy i, IDE(AXd - Xy de])
k>1141,-,i,=0 or 1

where win = (2;)"q, Xo = f, X1 = f, and Ty, ..z, is defined by (25) and (28).

Proof. Let E denote the set

e
{(xi)2; € EI;II : 3 integer sequence m; 1 oo, lim —2

=1, 2y, =e}.
]*)OO m]+1

Since ¢ is ergodic and £([e]) > 0, it follows that {(E) = 1.
For any w = (z;)72, € E() Sg\], define the integer sequence m;(w) ( j € N) such that

I <mi(w) <ma(w) < - <my(w) <---
.’ij(w)ze, ]:1727
x; # e, if i € N\{m;(w): j € N}.

We can write w as

W=W10W20:--0WpoO
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where w; = (xl):nll(w), wy = ()

sN

ma(w) mp (w)

iy (@) 410 T Wn = (7),_ (@) 417 By the structure of

, one can see that
wj € B={bde} | J{bdX;,d - Xjde: k€N, iy, i =0or 1}
for each integer j. Thus by Lemma 15, we have
oo = T [ [ Toa |-+ 1Ty [ (49)

For any v € B, denote by [v] the cylinder set in Sg\l associated with v. Then the formula
(49) means that

mp (w)—|v] i
ITomell = [T Tl Al (50)

veB,lv|<my (w)

where A7,)(-) is the characteristic function on [v], that is,

x[ymy):{ Lty e

0 otherwise.

Hence (@)l
log HTw|mk(w)H Z 1 mki_ Y j
el eimele) Xy (0?w) log [| T, |]- (51)
mk(w) veB,lv|<mg(w) mk(w) Jj=0

Since £ is ergodic, by the Birkhoff ergodic theorem, for each v € B,

mp(w)—|v|

Z Ay (cw) = &([v]) for & almost all w € EﬂSbN (52)

.

Combine (51) and (52) to obtain that

1 Twm
m ogH \ k >Zg )log ||T,|| for & almost alleEﬂSg\I- (53)

k—oo veB

Since || T, @)l < 4mk@)  the right-hand side of the above inequality is convergent and
bounded by log4.
Now fix { € N. For any m > [ and v = bdX;,d--- X;, de € B, we have

TNl < N Tax;, gl - 1 Taxiyax,, all - W Tax;, - dex,,dll-
Thus by the formula (50), for mg(w) > 20 + 3,
(W)= (v
log HTw|mk(w) H 1 e j
— 1 < > Y Apylow)log[|T,||
mi(w) veB,|v|<2i+3 () J=0
mp(w)—21

1 .
/ J .
+ > (@) > Apy(oiw)log || T ||

I/'E{dXiln-dXil: i1,-++,2;=0 or ].} Jj=0

37



By the above inequality and Birkhoff ergodic theorem, for £ almost all w € E() SbN ,

1 Twm w
B el S ) 10g) )

hmoo (W) veB,|v|<21+3

n ) SNl (54)

V’G{dXiln'dXilZ i1,+,4;=0 or 1}

Note that for any v/ = dX;,d---dX;, we have

V) = paPaix, Px, 4 Pix, =1 _
5([ ]) i1 i1 “ pbedPX”dee

DPd
- P (pdxid---dX,
P LoaPx; dPde &l ! i)

Pd Pd

Do Poalax, Px; d- - Pax;, Px; alde

< max , x E([bd Xy d---dX;e]),
{pbededee pbededee} (bd X, icl)
and
log [[T,/[| < log||Thax,, d--daxiell;
thus

Pd Pd
2. E(VDlog |7 < max{ | |
v'e{dX, dX;): i1,,ip =0 or 1} P PoaPraPae” pyPoaPrqFae
x Y &) log |||
veB,|v|=21+3

Since ), g &([V]) log||T,|| converges, the right-hand side of the above inequality tends to 0
when | — 400. Thus by (53) and (54), we have

10 Twmw
lim M = _&(lv] logllTullforﬁa-e-WEEﬂSlN

k—o0
veB

Therefore we obtain the desired result by the facts khm M+ é(c;) =1forwe EN Sg\l and
—00 M W
EE)=1.1

4.5.2 Box-counting dimension

Lemma 29 For L almost allt € [1 — X, ], the boz-counting dimension of the t-level set Ly x

of fx exists and is given by the following formula

w515 & (3-v5\"
dimp(Lyy) = Zg log|Ty||=-Z< > > log|[My]|. (55)
n=0

ueB 10log 2 e
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Proof. The first equality follows from Lemma 13, Formula (27), Lemma 27 and Lemma 28.

To see the second equality, note that

[ Toaell = 2,
Db Py 3 3
bd = . = A3 (20— 1) = o\
b)) = 5P LV = N 2A -1 =y
| Toax, d--xi dell = [|Miy..i, ]I,
§([bdXiyd - - X de]) = 2)\pi T LWVhax, dxi,de) = ppA*F,
thus,
dEWhloglITl| = pp Y A" log||Myl|
veB n=0 |J|=n
= A A2 log || Myl
n=0 |J|=n
_ A iA2n+2. Z IOgHMJH
744N
n=0 |J|=n
WE-15 S (3-vB\""
- MRS (58] S welan
n=0 |J|=n
|

Theorem 30 For L almost all t € [0,1], the box-counting dimension of the t-level set Ly x

of [ exists and is given by the following formula

n+1
, V5—15 <~ [3-+5
dimp (L) =~ ) ( ) ) log||Myl|.
n=0

101log 2 2 =

Proof. Note that
0,1) = Vi [ J(U21 Vi) (U521 Vi)

For any i € N, denote by F; the affine mapping from Vi, onto V, with the ratio A=¢. For
each = € Vi, the infinite Markov code II™!(z) of z is of the form a’bow (where II is defined
as in (46)) and the infinite Markov code of Fj(zx) is of the form b o w. Thus the mapping
F; preserves the box-counting dimension of x-level set, therefore the formula (55) holds for
L almost all ¢ € V. The same result holds for V,;,, j € N. Thus we have proved the

theorem. l

4.5.3 Hausdorff dimension

As we have seen in the proof of Lemma 28, for £ almost all ¢ € [1 — A, \] there are infinitely
many e’s which appear in the code II71(t); We will show that for such ¢, the t-level set Ly is
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a kind of Moran set—homogeneous Moran set and its Hausdorff dimension can be estimated
from below rigorously.

Let us recall the definition of homogeneous Moran set. Let {nj}r>1 be a sequence of
positive integers and {cj }r>1 be a sequence of positive numbers satisfying ny > 2,0 < ¢, < 1,

nicy < 6 and nger, < 1 (k> 2), where 6 is some positive number. Let

D=|J Dy with Do={0},Dp={(ir, -, ix); 1<i;<my, 1<j<k}
k>0

Ifo=(o1,--+,0k) € D, 7= (71, ,Tm) € D, we define o x 7 = (01, , 0%, 71, *, Tim)-

Suppose J be a closed interval of length 6. A collection F = {J, : o € D} of closed
subintervals of J is said to have a homogeneous Moran structure if it satisfies

(1) Jp = J;

(2) For any k > 0 and o € Dy, Jox1,J 042, ", J 54n,,, are subintervals of J, and
j owi ﬂj oxj =0 (i /=j) where ;1 denotes the interior of A;

(3) For any k > 1 and any o € Dy_1, 1< j <mng, We have

| o5
:Ck_
| ol

where |A| denotes the diameter of A.
Suppose that F is a collection of closed subintervals of J having homogeneous Moran

structure, E(F) := () U J, is called a homogeneous Moran set determined by F and
k>1o€eDy,
the intervals in F, = {J,; o € Dy} are called the k-order fundamental intervals of E(F)

and J is called the original interval of E(F). It can be seen from above definition that for
any fixed J, {ng}r>1, {ck}r>1, if the positions of k-order fundamental intervals are changed,
we get different homogeneous Moran sets. We use M(J, {ny}, {ck}) to denote the collection
of all such homogeneous Moran sets determined by J, {ng}r>1, {cx}x>1. One may refer to
[FWW, FRW] for more informations about homogeneous Moran sets. For the purpose of
the present paper, we only need a simplified version of a result contained in [FWW], whose

simpler proof will be given here for the convenience of the reader.

Proposition 31 For any F' € M(J,{ni},{ck}), we have

logning - - - ng

dimg F' > liminf .
n—oo —logcicy - Cpp1ngy1

Proof. Denote by ¢ the right hand side of the above inequality. Suppose t > 0. Let u be
the probability measure concentrated on F such that u(A) = (ning---ng) ! for any A € Fy.
Let 0 < s < t. By the definition of ¢, there exists ¢ > 0 such that

ning - --ng(cice - cpringe1)’ > ¢ (VE > 1).

Let U C [0,1] be an arbitrary closed interval with |U| < ¢;. There exists a positive integer k
such that cico -+ g1 < |U| < crea- - k. It follows that
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3U|

C1C2 "~ C41
ii) U intersects at most 2 k-order fundamental intervals.

i) U intersects at most (k 4 1)-order fundamental intervals;

By using the inequality min(a,b) < a'=b°* (0 < s < 1), we have

2 3|U| 1
, X
ning---ng C1€2 -+ Cp41Mk41 ning---ng

1 3|U 5
g ’ ‘ 21—8
ning:---Ng \C1€2*** Cp41Mk+1

1 6
< *3521_S|U|S < *’U|S
C C

u(U) < min(

This implies dimg F' > s then dimgF >¢t. R

Lemma 32 For £ almost all t € [1 — \, )],

n+1
, TV5—-15 = [3-V5
dlmH(Lt,/\)—W‘Z%< B ) ZIOgHMJH-

=

Proof. We define the set E and the integer sequence m;(w) ( j € N) for every w € E) SbN
in the same way as in the proof of lemma 28. Let IT defined as in (46). If w € E) S,N, we

claim that
Lriyx € M([0, 1], {[|To, |1}, {2711, (56)

where w = wj owgo---0w,o---. Using this claim and Proposition 31, we have

dimyg L > liminf log(HTle X X ||ka”)
Mw) < k—oc0 log(2‘“’1‘+"'+|“’k+1| X HkaHHil)

L Tog(|[T | % - x 1Ty
k—o0 log(2‘w1‘+“'+‘wk+l|)
. Jog( T my w11
= limin
k—o0 mk+1(w) log 2
. log (1| Tiy;my (w)l)
= limin
k—oo  my(w)log?2

v

)

thus according to Lemmas 27-29 and the fact that dimy(-) < dimp(-), we have obtained the
result of this lemma.
Now we begin to prove the claim (56). Fix w € Eﬂsg\]. For any positive integer k the

II-color of the my(w)-th net interval V., ., is given by

E(HTw‘mk(w)H) = ({()‘ - 17 HTw\mk(w)H)}a 2X — 1)7
thus from the definition of II-color, we know that the collection
Dy = {i € {0,1}™): T(w) € éia(0.1))}
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has the cardinality ||T,m, )|/, and any two elements i,j of Dy, satisfy that ¢;([0,1]) =
#52([0,1]). Define J = [0, 1]. For any i € Dy, define

Ji =i ([0,1]).  (recall that ¢o(x) = x/2, Y1(x) = (z+1)/2.)

Then Lyyw)x = (hz; Usep, Jir and thus Ly, x € M([0, 1], {|| T, I}, {27 1«11, which proves
the claim. H

Theorem 33 For L almost all t € [0,1],

n+1
- V5—15 <X (3-+5
dimpg (L y) = Z( ) Z log [| M ]].
0

10log 2 2 Ton

Proof. It follows from Lemma 32 and a discussion similar to that in the proof of Theorem
30. 1

O
4.6 The Li-spectrum of pu)
Theorem 34 For any q € R, the L2-spectrum 7, (q) of px is equal to

qlog2  logx(q)
logA=!  logA—1’

where

oo
x(q) =sup{z e R : Zun,qx3+2" <1},

n=0
o0
and un,g = o130 || Mil|?. There exists unique qo <0 such that 3 (32 5=, [[M]|*) = 1.
’ n=0
o0
When q > qo, x(q) is the positive oot of > (szn ||M;]|)2?"+3 = 1, and it is infinitely
n=0
differentiable on (qo,+00). When q < qo, x(q) = 1. Moreover x(2,q) is not differentiable at
q = qo-
Proof. The theorem follows from Corollary 5, Lemma 14, Lemma 19 and Theorem 16. B
Remark 1 Using a different method, Lau and Ngai [LN2] obtained the same formula of
Tuy (@) only for ¢ > 0. And they proved the differentiability of 7, (¢q) on (0,+00). Porzio [Po]

extended the range of differentiability to (—%,—I—oo). The above theorem give the complete
answer to the question posed in [LN2] that how to get the formula of 7,,(q) for ¢ < 0.

4.7 The dimensions of )

We first consider the local dimension of py. As we have shown in section 4.5., there is a natural
projection II from the symbolic space SN onto the interval [0,1]; see (46). Denote by L the
set of all left and right endpoints of net intervals associated with A, that is, L = Up,>1Pp 5,
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where P, ) is defined as in Section 2, then II is injective on [0, 1]\L and two-to-one on L.
For x € [0,1], each point in II71(z) is called the infinite Markov code of z. We will give the
formula of the local dimension of u) at z in terms of matrix products by the infinite Markov

code of z.

Theorem 35 For each w = (x;)2, € SN, the upper and lower local dimension of uy at

II(w) are given by

_ log 2 ) log || iy} |

Aur, (@) = 2057+ Jim sup = 2240,
log 2 lo Twn

d(p, T(w)) = =55 + lim infM’

logA\=1  nooo nlog \
where w|n = x1 - xy and Ty, is defined as in (25) and (28).

Proof. By the definition of upper local dimension (see Section 1),

log pix(I(w) — 7, I(w) + 1)

d(ur I(w)) = limsup

L0 logr
1 M(w) =A™, 11 AT
— lim sup 8AIIW) — A TI(w) + )
n—+00 log A™

By the above equality, Lemma 4(ii) and Lemma 6,

— log 27nNm7)\(Vw|n)
Ao TI(w) = Tim_sup 2,

(57)

where V|, is the net interval corresponding to wln, and N, )\(Vw‘n) is the overlap times of
Vosln-
Similarly, we have

. . log2—n m)\(vwn)
(i, () = Jim_inf === 2rnels

(58)
By Lemma 14, Ny x(Vyn) = [|Ty)n ]|, this and (57)-(58) yield the desired formulas. B

Theorem 36 For L almost all x € [0,1], the upper and lower local dimension of py at x

coincide, and the common value is equal to

log 2 7\/5 —15 = [(3-/5
d = log || M;]].
(,U,)\,.T) log )\71 101log A ( ) L; og ” JH

Proof. There is a natural connection between the local dimension of ) at a given point x
and the box-counting dimension of the x-level set L, ) of the limit Rademacher function fy.
That is,

- log 2 log2 .
d = -dimpL
(/’L)\7$) 10g A_l log)\ ﬂB CE7A
log 2 log2 ——
d = -dimpL
d(px, ) og AT T ioga dmsLen
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for z € [0,1]\U, where U is a set of countable many points. This is the direct corollary of
Lemma 13(ii) and Formulas (57)-(58). By Theorem 30 we obtain the desired result. B

Using Theorem 35, we can determine the set

R(px) ==A{y: Fx €[0,1], d(pur, x) = y}.

The following Theorem was first proved in [Hu] by using some combinatorial techniques..
Here we provide a different proof, the method used in which is valid to determine the sets
R(py,) for k > 3; see Theorem 51, where we correct the false result given in [Hu] about
R(py, ) for k> 3.

Theorem 37 R(u)) = [lolgigl -1 101;%\%1].

Proof. Let B be the collection of letter strings defined as in (22). Since for any letter strings
ilai27"'7in7"' GB?

i10i20~--0in0-"€SN,

and
[T}y 0ig0-0in || = | Ty [| X [ Thp || X - X [T, 1,

by Theorem 35 we have

log 2 1 log 2 1
R D — . — . 59
(:u/\) [lOg A1 lOg A1 Zo, log A1 IOg AL yO]a ( )
where
B T 1 1
Zo = Sup . , Yo =11 . )
ies i ies i

here |i| denotes the length of the letter string i. In the end of our proof, we will show that
To = %log A~ !and yo = 0.
On the other hand, for any w € SN, w|n is the prefix of an infinite letter string of the

following possible forms:
atoijoigo - oipo---, ijoigo---0ipmo---, oijoigo---0ipo---,

where | € N and 1iy,ig, i, - € B; furthermore, by the generating relation (19), there
exists a letter string j of length less than 4 such that the concatenation (w|n)o j is of the

following possible forms

a' oijoipo-- oiy, ijoizo - oiy, doijoiyo - oiy,
where [ € N and iy,1i2,- i, € B. Since ||T,:|| = ||T.|| = 1, therefore the above analysis
implies that
- log 2 1 log 2

{y: Jz €0,1], d(ur,z) =y} C |




and
log 2 1 log 2

log A~ log A1 S log)\_l]'
Therefore by (59)-(61) and yo = 0(what we will prove afterwards),

{y: 3z €[0,1], d(pr, ) =y} C | (61)

log 2 1 log 2 1

R = — . _
(12) [log)\—l log A~1 o, logA=!  log A1

“Yo)-

In what follows, we determine the exact values of zy and .

Note that for any integer n > 0,

1 n
bd(fd)"e € B, Tygayme = (Mo)" = ( 01 ) ,

it follows yo = 0 since (log || Tya(raynell)/(2n + 3) tends to 0 as n tends to infinity.
To determine the value of xq, let us consider the possible form of the element B. Recall

that each element of B is of the form
bdXZldXane, 77,20, il,-'-,in:OOI‘ 1, (62)

where Xg = f and X; = f; and HdeXild”'XindGH = ||M;, -+ M;,||. For fixed integer n, one

can verify that the maximal value of ||M;, --- M;, || is equal to

24 A4 (=1)raztt

| MoMi My -+ Mymoas)|| = e AT
Therefore
24N+ (=1 nA2n+4
T
rg = sup +
n>0 2n+3
24 )\ -1 n)\2n+4
log( A+ ; ) +log A"
_ 14X
= sup .
n>0 34 2n
Note that Inta 4
1 24 A4 (=1)"Am 1 24 A+ A 1
21 < slog(———5—) = 5 log2
3 o8 1+ 22 )= gloalna ) = gloe2,
1 1
—logA\™" = _log A7
on 08 9 %8 7
we have
— max{log2, SlogA~'} = log !
:Uo—maxgog, 20g —20g .
|

The Hausdorff dimension and information dimension of p) have been considered by many
people, e.g. see ([AY], [AZ], [LP1], [Ng], [SV]). For completeness, we present here Ngai’s

results:

45



Lemma 38 ([Ng/) Suppose that v is a Borel probability measure on R with bounded support
and its Li-spectrum 7,(q) is differentiable at ¢ = 1. Then the local dimension d(v,z) is
equal to 7.,(1) for v almost all x € R. As a result, the Hausdorff dimension and information

dimension of v coincide, the common value is equal to T,(1).
The following theorem follows by a direct calculation of 7/, (1).

Theorem 39 (/Ng/) The Hausdorff dimension and information dimension of uy satisfy

o0
> 27273 57 (| My|[log || My ]|
log2 n=0 |J|=n

log A 9log A

dimp py = dimypo py =
5 The case p =\, (k> 3).

In this section, we prove our main results for the case p = A\x (kK > 3). The main ideas and
proofs are similar to that for the case p = A. Certainly, the generating relations of I-colors
and II-colors for this case are much more complicated.

For simplicity, in this section we would use some symbols and notions the same as in

Section 4, however the meaning of which are changed here(e.g. =, 3, S™, SN, I1, v g, Tij)-

5.1 The generating relations of I-colors and II- colors.

At first we give the generating relations of I-colors associated with p = Ag:

({0},1 = p%) — ({0}, 1= %) + ({p* — 1,0}, p¥)
+({=pF} 1= pF = pF )
{=p"}1-p" — ({1 =" =P + ({pF - 1,0}, p%)
+({—p"} 1= p")
({pi - 170}api) — ({_piilvo}noiil) for 2 S [ § k?
{p—1},p) — ({p" = 1,0}, p%) + ({—p"}, 1 — 20F)

+({p* — 1,0}, 0"

({—p"},1-2p") — ({11 = pF = P + ({7 — 1,0}, pF)
+({—p"H 1= pF =

{=p" 11— p% = p* ) — ({=pF 11— pF = pP )+ ({pF = 1,0}, p%)
+({=p"}1—pF = pF 1) for 1<j<k—2

{=p}, 1= p"=p) — ({=p"} 1= pF = pF )

(=" 1=p"=p"1)  — ({1 = =)+ ({pF - 1,0}, 0Y)
+({fpk}, 1-— pk — pk_l_l) for 1<I<k-2

L ({=p"}1=pF —p) — ({1 1=p =

Let = = {(17 b? c, d17 U 7dk—17 €, fa Zgl, oy 9k—1, h‘l7 T, hk_l} be an alphabet set. For any

m € N, we label every m-th net interval uniquely by a letter string of length m in the
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following way: let J = J,,, be a m-th net interval. For 1 <i < m — 1, denote by J; the i-th

net interval that contains J. Then J is labeled as (z;)7, € 2™, where

a if Ti (i) = ({0},1 = p¥)
b if T ,(J;) = ({p* — 1,0}, p¥), and either
1 =1, or

1> 1 with Fi,p(Jifl) 75 ({p — 1,0},[))

c if Ty (i) = ({=p"} 1= p%)
dm (m:1,~--,k—1) if I'; ( ) ({pkim_lao}wokim)
e lffzp( i) =({—p"} 120"

Ti = f lfrlp( ) ({pkilao}vpk)’ i > 17

P%ﬂ(']%— ) = ({p - 170}7/))7
and J; has the same left endpoint as J;_1
i T,y () = (0" — 1,0}, o), i > 1,
Fz,p(!]zf ) = ({p - 1)O}ap)7
and J; has the same right endpoint as J;_;
gm (m =1, k—1) ifT;,(J;) = ({-p"~ m} 1- p’“—p’“’m)
o (=1, k= 1) BT, () = ({—pF) 1= b — o)

N

The above generating relations of I-colors can be given formally as below:

a — a+b+h

b — d

c — g1 +b+c
Ay (1<m<k—2) — dmnpt

di_1 — fte+f

e — g1 +b+ M (63)
/ —

f — dx

gn (1<m<k—-2) — gpt1+b+Mh
9k—1 —

hym 1<m<k—2) — g +b+hmt1
s — g1

The above relations determine a 0-1 matrix @ = (Q; ;)i je=, so that Q;; = 1 if i generates
out j.
For m > 2, set

S = {(wi)it, € 2" Quypisy = 1,1 <i<m —1, x1 =a,bor c}, (64)

then there is a one-to-one correspondence between S™ and the collection of all m-th net
intervals. For any w € S™, we will use V,, to denote the m-th net interval corresponding to

w.

47



We would like to know more about the possible forms of the elements in S™. For this

purpose, write

b(k) =bdy - dp_q

Xo(k) = fdi---dr1

Xi(k) = fdy---dp (65)
YO(]) =413y, j:17"'7k_1

Yl(]) ::hl"'hj7 j:17"'7]€_1

and define a collection By of letter strings as

By := {b(k)e}
ULb(k) X5, (k) -+ X;,(K)e : L€ N, ji,--+, 5, =0or 1}
ULYi (p1) - Y, (pm)b(B)e :m e N, 1 <py, - p1 < k-1,
1<pn<k-2 i;="CY 1 <j<m)ori;=2CY 1<j<m)} (66
U{Yi (p1) -+ Vi, () b(R) X, (K) - - - X5y (R)e : I,m € N,
Ji,og=0o0r 1, 1<py,-pm1<k—-11<p, <k-2
iszw(1§s§m)oris:L2_l)s(1§S§m)}

then the generating relation (63) implies that each element in S™ is the prefix of a letter

string of the following three forms:

W] OWg **0OWp 0=+, the first letter of wy is b

(- -@QOoW] oWy --0owyo---, the first letter of wy is b or hy
——

ra’s

C -+ COW]OwWy-+-0Owpo---, the first letter of wy is b or gy

)

rcs

where r € N and w; € By, 7 € N.

Let us consider the generating relations of II-colors associated with Ax. Denote by

AW {(0.1)},1 - o)

B@a) = ({(" = 1,p),(0,9)}, 0"

cW = ({(=p" D} 1= p")

DRV (1 <m<k—1) = ({(pF™ = 1,p),(0,9)}, pF™)
B = ({(=p" 1)} 1—20%)

o) = ({(p* = 1,p),(0,9)}, p*)

FP = ({(o* = L,p), (0,9)}, ")

G l<sm<k=1) = ({(=p""" )} 1= pk = phm)
Hy 1<m<k=1) ={(=p"r)}h1-pr—ptm)



then the generating relations of II-colors associated with A can be written as:

We can define a family of matrixes T; ; for each pair ( 4, j) € Ex = with ¢ generating out

(A — A(1)+B(1’1)+H£1)
BP9 — D%:n,q)
cW — Ggl) + Ly 4 o)
DEY(1<m<k-2 — DP9
D;(fiql) — Frta ¢ pr+a) 4 F(Hq,q)
E(r) _— Gg’f‘) +B(7"77‘) —I—HET)
9 — D%:n,q)
=(P.9) 7
e — pirY
GR<m<k-2) = GV, +Br)4HD
Gl(cr—)1 = Hl(r)
HY) 1<m<k-2) = &V 4Ben gD,

" 1
\ H]E-,)]_ E Gg)

j in (63), such that if an I-color generating relation is given by

T —> 0+ -+ 1y,

then the associated II-color generating relation will be given by

[mne) — 1

That is,
(( Tua=1,
10
Tva, = ,
b (01)
Tczgl = (]‘7 ]‘)7
10
T, = :
d'nudm+1 ( 0 1 )
1 1
Tdk*l:f - ( 0 1 ) ?
Tevgl = ]'7
1 0
Tja, = ,
S (01)
Tgmygm+1 = Tgm,h1 = ]-7
Tgkflvhl =1,
ThM7hm+l Thm7gl 1’
Thy g =1

For any w = (z;), € S™, define T, = Ty 2 - Torg g -+ T

fnl’”-’nr).Tivil + . Il(nlv"'zn’r‘)'Ti,il )
Tavb = (]‘7 1))

chb = (L 1)5 Tc,c =1,
(1<m<k-2)

1 10
(1) (1)
Te,b (17 ]-)7 Te,hl =1,

10
T, = 7
fd1 ( 01 >
Ty p = (L, 1), (1<m<k-2)
Thm,b: (1,1), (1 Smgk_2)

Zm_1.2m- Lhen we have
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Lemma 40 For m > 2, let J be a m-th net interval associated with A\, corresponding to
w = (z;)%, € S™. Suppose its Il-color is ({(t1,n1),- -, (tr,nr)},7), then

T
N (J) i= Z ni = |[Toywo - Toows Lo r,om |-
=1

Furthermore if w can be written as the concatenation wy o wa, where the end-letter of wy is e,
then

Non o, (Vi) = Tl = [[Tooy [| X [[To -

Define a sequence of integers {t, 1 }22 such that ¢y, = 1, and %tr,k (r > 0) is the number

of different integral solutions of the following conditional Diophantine equation:
pr+--+pm=r suchthat meN, 1 <pi,--- ,pp1 <k—-1,1<p, <k-2.

Lemma 41 For any positive integer r,

11 11\ /1

10 0 0 0

trp=2-(1,1,---,1,0)- | 0 0 0
k—2 :

00 10 0

r

Proof. Denote by %t(i,)c (1 <i<k—1) the number of integral solutions of the equation
P14+ +pm=r suchthat meN, 1 <p, -, pp1<k—1, pp =1,

then it is clear that

1 k—1 (7
{ g X (0
tr-f—l,k’ = tr,kz (2 <i<k-— 1)

Note t,. = Zf;f ts;ﬁ, by (70) we can get the desired results. B

For any integer m > 1 and real number ¢, define
Sg’fgl,hl = {(x;), € 8™, x1 =b,q1, or h1},

Um,q = Z HTqu7 q¢c ]R,

m
WESE 1 hy

where S™ is defined by (64) and T; ;s are defined by (69).
By a discussion similar to that in the proofs of Lemma 17 and Lemma 18, we can show

the following two lemmas.
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Lemma 42 Let u, 4 be defined by (30). For m >k +2,

m—1
Um,q = ( Z Cl,qvm—l,q) + dm,qa
l=k+1
where
Cg= Y. teatig l=k+1Ek+2,-- (71)

r,i>0,r+ki+k+1=l

and g < dmg < Cmg + Cmtl,g + o+ Cmthg

(vmq)i = x(k,q)_l, where

Lemma 43 lim
m—0o0
o0
x(k,q) = sup{z : Z gt <1} (72)
l=k+1

Now let us consider the differentiability of x(k, q).

Lemma 44 For any real number q, let x(k, q) be defined by (72). Then x(k,q) is the positive

1 —2zF1 4 ok kot 1 N
1 —2x+ 2k ' Zu”:qx = 1. Moreover, 0 < x(k,q) < Xg—1 and it is an
n>0

infinitely differentiable function of q¢ on the whole line.

root of

Proof. Note from (71) that
oo
D cgr! = (143 bpa”) (Y tngr™ ), (73)
l=k+1 r>1 n>0
Using Lemma 40 and a direct calculation, we have

1 — 2k 4 2k

1+Zt7«7kx’": 1 —2x+zk
r>1 +oo if > M_1.

if 0<x< A1 (74)

Thus to prove Lemma 44, by a reason similar to that in the proof of Proposition 25, we only
need to show that for any g there exists 0 < y < 1 such that 1 < Z?ikﬂ clvqyl < 00.

Assume that this statement is not true, then there exist two real numbers ¢’ and 0 < 2/ < 1
such that

o0

Z Clg’ (@) <1
I=k+1
and
o
Z Cl’qltl =+oo if t> x. (75)

I=k+1
Since Y12, . ag (') < 1, it follows from (73)-(74) that

' < A1, Zumq ()P < 4o, (76)
n>0
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Therefore by (75), we obtain

Z Up gt = 400 for t> 2/, (77)
n>0

which means ), -, un,q = +00 since 2’ < 1. According to Lemma 24, we can find 0 <y < 1
such that

Zumq (@) < Z Un.q - Y™ < 400,

n>0 n>0

which leads to a contradiction with (77). W
Lemma 45 Let S™ and T; ;’s be defined as in (64), (69), then

. q %:: 1

wesS™m

where x(k,q) is given as in (72).

Proof. Similar to the proof of Lemma 19. B

5.2 The theorems
Theorem 46 For k > 3, let oy = log )\Izl/log 2, then

. logx(k, o
dimpg graph(fy,) = glogi‘)\kw

where 0 < x(k, ay) < Ag—1, and it is the positive root of

1—2xk 14 gk
' Z u”yakxkn+k+1 =L

_ k
1—-2z+«x 750

Proof. The theorem follows from Lemma 9, Lemma 40, Lemma 45 and Lemma 44. W

Theorem 47 For k > 3, denote by L.y, the t-level set of fx.. Then for L almost all
t €10,1],

. ~ dim RO =207 & kn o
dimp (Ly ) = dimp(Li y,) = (2 — (k+ 1)(M\p)*) log 2 ;(()\k) ;ﬂl g ||M]l).

Proof. Denote X = {b7 dl? e 7dk:—17 €, f7 ?a g1, k-1, h17 to 7hk:—1}- Define a 0-1 matrix
Q = (Qi,j)@jez such that

A 1, if ¢ generates out j in the formula (63)
Qij = .
0, otherwise

Denote by v;(i € ¥) be the relative length of the color 7, that is,
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W=7 =95 = )k e =1-200)",
’yd ()\k)k S, (8 1 k‘ — 1)
Vgs = Vhe = 1 — ( ) ()‘k:)k_87 (5:17""k_1)

Define a probability matrix P = (P; ;); jex by

Ak - 2, if i generates out j in (63)
iy = " .
0, otherwise

Let p =(p;)iex be the probability vector such that p = pP. By direct calculation, we have

_ 1_2()‘ )k - ()\k)k
SRR O’ 24, = e 2 DO
k
pf:pf:Q—(kJrAl)(Ak)k’pe: 2 — (k+1)(Ap)k
Pg. = Ph, = b (L= () = AR ), s = Lok L

2—(k+1)(Mp)

Let € be the p-P Markov measure on the subshift space EISI which is defined as

EISI ={w= (), € ZN . in’xi“ =1 for alli > 1}.

Then by a discussion similar to the proof of Lemma 28, we obtain that for £ almost all
w=(z;)2 € EQN,
o8 H winl|

TL‘)OO

=Y &([ev)log||T ],

vEBy
where T; ;’s and By, are defined by (69), (66). Since each element v of By, can be written as

one of the following four forms:

(7). b(k)e,

(i2). (k) Xj (k) - X, (K)e,

(Z”> Yi1 (pl) o Yvim (pm)b k)e,

(). Yi(p1) - Vi, (pm)b(k) X}y (K) - - - X, (F)e,
where j1, -+, i =0o0r 1, 1 <p1, - pm1 <k—1,1<p, <k—2 and is = LQ_I)S (1<s<
m) or iy = w (1 < s <m). And the values of {([ev]) and ||T,]|| for these four cases are
equal to

§([ev]) ||

(0) T W) 2

k
.. Pe
(i1). N (AR || My - M|
(ZZZ) % . (/\k)p1+---pm+k+2 2
k
. Pe
(). ZEL (g |
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Therefore

+oo
ZE([eu])logHT,,H %.Z(ZlOgHMJH)()\k)lHkH

veB =0 |J|=!
Ztrk (k)" Z > log [[My]]) (M) HE+2
r>1 =0 |J\ l
= 1+Ztrk (Ae)" .Z > log || M |[)(Ag)EHEH2
r>1 =0 |J|=l

_ WA —20)9)
- zk_ (k+1)()\12)’f - ()

+00
> (D log Myl ()™

e 1= 200+ (A)F
L =2 4 (Ap)k

1=0 [J]=i
QW —200)M)? kn
2= (k+ 1)(Ap)F) T;O(()\k) |Jzznl‘%%HMJH)-

By a discussion similar to that in the proof of Theorem 33, we have for £ almost all ¢ € [0, 1],

dimH(Lt7)\k) = dimB(Lt,Ak):

QR =200 oy ke
= @ (b 0w g 25 2 sl

Theorem 48 Let k > 3. For any q € R, the Li-spectrum 7y, (q) of py, 1is equal to

qlog 2 logx(k,q)
log Ayt log A\t

1—2zF 1 4 gk

here 0 < x(k,q) < Me_1, and it satisfies that ———————
where x(k,q) k—1, and it satisfies tha 9w 1 ot

Z U, xR = 1. Moreover,
n>0
T, (q) is an infinitely differentiable function of g on the whole line.

Proof. The theorem follows from Corollary 5, Lemma 40, Lemma 45 and Lemma 44. B
Define

sN = {(x)52 1€HN Qujziyy = 1foralli > 1, 1 =a,b or c}, (78)

there is a natural projection II from the symbolic space SN onto the interval [0, 1], which is
defined by

(@i)Z1 = N1 Vi
here V..., is the n-th net interval associated with \j corresponding to (z;)} ;. Then by a

discussion similar to the proofs of Theorem 35 and Theorem 36, we obtain the following two

theorems.
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Theorem 49 Let I : SN — [0,1] defined as above. Then for each w = (x;)72, € SN, the

upper and lower local dimension of py, at II(w) are given by

_ log 2 log || Tl
d(pr,, (w)) = I Tnlog Ay
(/Mkv (w)) log A,;l T nggo Sup nlog \; ’
log2 .. log]|Tl|
,(,U/\k» (w)) log )\lzl ™ nl—>Hc}o m nlog A\

Theorem 50 For L almost all x € [0,1], the upper and lower local dimension of uy, at

coincide, and the common value is equal to

~ log?2 1 M)k (1 —20)%)? & n
o) = ot T ophe =k 0w 2 2 1D

Let consider the set

Rpr,) =1y Fz €0,1], d(pxr,, ) =y}

for £ > 3. Hu gave a result that R(uy,) = [lolgizl - %ILOgg):\k, lol;i;l]; see Theorem 1.19 of

[Hu]. However, this result is false. In the following we give the correct result.

Theorem 51 For k > 3, R(,u,\k) = [kiﬂ . lolgizla lolgizl]'

Proof. The proof given here is similar to that of Theorem 37. Let By be the collection
of letter strings defined as in (66) and 7j;’s defined by (69). Since for any letter strings
i17i27"'7in7"' eBk

ilOiQO“‘OinO“‘ESN,

and
HThOiQO-"OinH = HTMH X ”Ti2H X X HTlnH7

by Theorem 49 we have

log 2 1 log 2 1
R D — -1, — - Y1), 79
(12) [log AL log At ' log A\t log ! o] (79)
where
o o8l Gl Lo [Tl
T1=Sup — ., —, =ml ——,
ieBy li| ieBy, i

here |i| denotes the length of the letter string i. In the end of our proof, we will show that
T = k%rllog2 and y; = 0.
On the other hand, for any w € sN (SN is defined by (78)), w|n is the prefix of an infinite

letter string of the following possible forms:

ijoigo---0ipo0---, the first letter of iy is b
aloijoigo---0iyo0---, the first letter of i; is b or Ay
doijoigo---0iy,o0---, the first letter of i; is b or g1
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where [ € N and i,i9, iy, -+ € By; furthermore, by the generating relation (63), there
exists a letter string j of length less than k + 2 such that the concatenation (w|n)o j is of the

following possible forms

ijoigo---0ipy, the first letter of iy is b

aloijoigo---0iy,,, the first letter of i; is b or Ay

doijoigo---0iy, the first letter of i; is b or ¢

where [ € N and iy,12, i, € Bg. Since ||T || = ||T.:|| = 1, therefore the above analysis

implies that

- log 2 1 log 2
: dx e [0,1], dluy,z) =y} C — STy, ——— 80
{y [0, 1), d(px, =) = y} [log AT ot T og A;Zl] (80)
and log 2 1 log 2
0g 0g
: dx € [0,1], d(ux,z) =y}t C — cxr1, ————|. 81
{y [0, 1), d(px, x) =y} [log AT logn T ™ Tog A,;l] (81)
Therefore by (79)-(81) and y; = O(what we will prove afterwards),
log 2 1 log 2 1
R(pn,) = 1, -~y

log A;t log At T log Al log Ay

In what follows, we determine the exact values of 1 and y;.

Note that for any integer n > 0,

1 n
b(k)(Xo(k))"e € Br,  Tory(xo(k))re = (Mo)" = ( 01 > :

it follows y1 = 0 since (log || Ty (xo(k))mell)/(kn + Kk + 1) tends to 0 as n tends to infinity.
To determine the value of z1, let us consider the possible form of the element Bj. Recall

that each element of By, is of the forms

where ji,--, 1 =00r 1, 1 <pi,- pmo1 <k —1,1 <pp < k-2, and iy = =0 (1 <s <
m) or ig = w (1 < s <m). Since Tyy(p) = Tyy(p) = 1 for each 1 < p < k — 1, it follows
that

- sup log ||Tb(k)X]-1 (k)X (k:)e||
1>0, j1,51=0or 1 |b(k3)Xj1 (k) - 'le(k?)6|
= sup M
1>0, j1,ji=0or 1 Kl+k+1
_ qup (BIMOM - Mignoas)|
1>0 kl+k+ 1
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2 AH(=1)INZHE
g BT e A7)
1>0 El+k+1
) _1[ 2044
log( +)\41_i)\2))\ ) +log A7
- (k+1)+ ki
Note that
1 24+ X\ (—1)I\2+4 1 2+ X+ 1
1 < 1 = log 2
1 oel 1+ A2 )< prrlostae ) T gy lee?
1 1
T log\~! = %log AL
we have
= max{ ! log 2 llo)\_l}— ! log 2
T1T ARG T 0RS e F T 08
|

Theorem 52 The Hausdorff dimension and information dimension of py, (k> 3) satisfy

00
. o > 27 Rl ST [ My || log || M|
. . log2 (2% —3\" n=0 |7I=n
dlmH Bx, = dlmmfo X, = _log )\k 2l~c -1 ’ log )\k

Proof. By Theorem 48, 7y, (¢) is a differentiable function of ¢. Thus by Lemma 38,
dlmH Hx, = diminfo X, = T,/\k(l)7

the desired result follows from the direct calculation of 73 (1) by the formula of 7, (q). We

omit the detail of this calculation. B

6 The case for other Pisot numbers.

In this section we will summarize some results for the reciprocals of general Pisot numbers.

Suppose p (> 1/2) is the reciprocal of a Pisot number. By Lemma 2, #C, < 400, that
is, the number of different possible I-colors associated with p is finite. Thus according to
the generating relations of I-colors associated with p, we can find a finite alphabet set 2 =
{a,b,c, -} (each letter in  represents an element of C,, sometimes several letters represent
the same one element of C,. We always use a to represent ({0}, 1;pp), b to ({%,0}, %)
and ¢ to ({%}, 1;/)p).), and obtain a 0-1 matrix H = (H; ;) jen such that for any positive
integer n there exists a one-to-one correspondence between the collection of all the n-th net

intervals associated with p and the set
S"i={(xi)imy € Q" Hyy gy, = 1for 1 <i<n, and 1 = a,bor c}.
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Moreover, according to the generating relations of II-colors, we can define a family of matrixes
T; ; for each pair (7, j) € QxQ with H; ; = 1, such that if the m-th net interval J corresponding
to w = ()], € S™ has the II-color ({(¢1,n1),--, (tr,nr)},7y), then

(s 1) = 1 - T 00 Taows T 1,8m ifxy =aorec (82)
9 b T - .
(17 1) ) Tx17x2 ’ sz,xs o .Txmflzxm ifz1 =0
and
-
N p(J) = mi =||T,|, (83)
i=1

where Ty, := Ty, 2o Ty 1 -

Before we give the explicit u, measure of a given net interval, we define at first two families
of vectors p;, q; (i € Q). Suppose i € 2 represents the I-color ({(t1,n1), -, (t,,n,)},7), then
define

Di :(1771)
——
r1’s
and

tp([—t1, —t1 +7])
Mp([_tm —t + ’YD
By (82) and Lemma 4(i), we obtain
Theorem 53 If J is a m-th net interval corresponding to w = (x;)*, € S™, then
tp(J) = 27", Ty oy Ty o Qo -
Moreover {q;}icq satisfies

{ Qa+(1>1)Qb+QC:2 (84)

Qi = 9-1 Zj, H; =1 T%yjqj, fOT’i e

One may get the exact values of {g; }icq by using (84). For example in the case p = \/‘?’2_1,
Q= {a,b,c,d,e, f, f}, Ti;’s are given by (25), and

2
SY
I
=
~
I

I
VR
W= W=
N——

WIND WIN

Now define

sN = {(xi)2; € ol Hyy 2oy = 1for1 <i < oo, and 21 = a,bor c}.
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And consider the mapping II : sN [0, 1] which is defined by

W= (xl);)il = ﬂ Vw|m7

m>1

where w|n denotes (x;)/",. Clearly II is surjective, and it is one to one except at countable

many points.

Theorem 54 For each w = (z;)72, € SN, the upper and lower dimension of ji, at Il(w) are

given by
=5 10g2 . 10g HTw|nH
d(pp, (w)) = log p— 1 +TL1LH;O SUPW
log 2 log ||T;
Aty 1)) = B2 1 iy g 8 Petnll
logp~t = nooo log p

Proof. It follows from Theorem 53, Corollary 3, Lemma 4(ii) and Lemma 6. H

Lemma 55 For any g > 0, the following limit

1
i E ’ q
77hlblm log | 70| | (85)

wes™m

exists.

Proof. Let L be the minimal positive integer such that for any 7 € €, there is a string
W € UL _, 8™ such that the end letter of W is 4. Define

U™ ={(x;)i=, € Q": H, =l1lforl<i<n}, m=1,2,---.

i Ti+1

Then for any positive integer m and real number g > 0,

L
DT < YT Y Tl

wesSm weym 7=0 wesSm+i
L
< SO NTLIE Y 1Tl
j=0 wesS™ w'evy
L
= > N0 D> Tl (86)
wes™ J=0w’elUJ

Since for any ¢ > 0, > cpm [|Tw||? is a submultiplicative sequence of m, that is

DTS Y NTlx Y T

welmtn welUm weun

for any m,n. Therefore the limit limy, oo = 1og > cym ||T0||? exists. This and (86) yield
the desired result. B
By Lemma 9 and (83) we obtain

99



Theorem 56 The Hausdorff dimension of f, is equal to

1
lim ————log Y ||T,|| 180/ 82, (87)

m—oo mlog p~ o
By Corollary 5 and (83), we have

Theorem 57 For any real number q, the Li-spectrum 7,,(q) is equal to

1
+ lim inf ———log E || T 7. (88)
1 -1
mlog p wesm
As we have shown, the formulas (87) and (88) can be simplified furthermore for the cases

p = Ag (k> 2), the essential reason for which is that in these cases,

any I-color associated with p can generate out ultimately

an I-color of the form ({¢,},7) (89)

and therefore ||T,,|| can be decomposed into some product of ||T,,]|’s.

We call p~! the Pisot number of the first class if the property (89) holds for p, or we
call it the Pisot number of the second class.

As we have mentioned in Section 1, there are only four algebraic integers of degree 3
to be Pisot numbers which are less than 2. They are respectively the positive roots of (i)
2222 —2x—-1=0, (ii) 23 — 22 -1 =0, (iii)2® —2 -1 =0, and (iv) 2® — 222 + 2 — 1 = 0;
In Section 5, we have discussed the case when p is the reciprocal of the positive root of (i).
However what about the other three cases? By direct computation, (89) holds only if p is
the reciprocal of the positive root of (iv). In section 8, as an appendix, we will give the
generating relations of I-colors associated with the reciprocal of positive root of (iv). One
can simplify the formulas (87) and (88) for this case in a manner similar to that for the case
p= X (k>2).

We end this section by two questions:

(i) Is the limit ( 85) always differentiable on ¢ > 0 for any reciprocal of Pisot number?

(ii) Beside the generating relations of I-colors, is it possible to find a simpler method to

determine whether a given Pisot number is of the first class?

7 Final remarks

In this section, we would like to point out that with some additive work our method is valid
to analyze the local properties of some other self-similar measures.

(i) Biased Bernoulli convolutions associated with Pisot numbers: let p (> 1/2)
be the reciprocal of a Pisot number, for fixed 0 < p < 1, the Biased Bernoulli convolution

ugp ) is defined as the self-similar measure satisfying that

) =i 0 6, + (1= Pl 0 67,
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where ¢g ,(x) = pr and ¢1 ,(x) = px + (1 — p).
To consider ,u,()p ), we define the net intervals and their I-colors the same as those in Section
2. In place of II-colors, we will introduce the notion of II®")-colors. Let A = {0, 1}N be the

sequence space with the Bernoulli measure v, = (p,1 — p)N. It is not hard to see that
o
Mgp) =vpo H;l where I, (z) = (1 — p) anp".
i=0

Now suppose J = [a, b] is a m-th net interval associated with p, the 11(®)-color of J is defined

as an element of 2RX]R x R :
({(¢w,p(0) — a,u(w)) tw € {0,1}" such that — p™ < ¢y, ,(0) — a < 0}, b-a
where u(w) = Up{x = (xl)?il eEA: Hﬂ(‘r) € [a,b], (ZS.Z’I"'JJm;P(O) = ¢w,p(0)}~ )
p

pr P
By considering the generated relations of II%)-colors, we can show similarly that the p

),

measure on a m-th net interval is still given by the product of m matrixes. For simplicity,

here we only give some results for p = @

Proposition 58 Let p = % Suppose that J is a m-th net interval (m > 2) corresponding
tow = ()12, € S™ (S™ defined as in (21)), and the IIP)-color of J is ({(t1,u1), - -, (tryur) },7),

then
2

p .
1, T, o
p(1-p)* p*(1-p) ‘
() = G 1= 2 Ty Ty T, if o =0
(1-p)? ,
m . T”gi)@ ) Tﬂgg?ﬂ% o ngzl)fl,xm ifx =c
and Mgp)(J) =uy + -+ + u,, where the matrizes TZ-(I;) are given by
T8 =p. 7% — (1 -p)% (1= p)p),
(») 1.0 )
bd 0 1)
» _ 1— 2 T(p) =1—
c,b (( p)pap )a c,c D

Using the above proposition and similar proofs as in Section 4, we can give the explicit

(p)

formulas for the Hausdorff dimension, information dimension and L9-spectrum of u (5_1)/2"

For example, we have
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(p) I I Z\J\:n cylogey

. S T (p) _ i
dimp Pos-1)2 = dimingo s ™ 2 p—p2 log((v5 —1)/2)

where

2
pb—Dp
cy = (1—P,p)M}f)---Mj§f) < b )

and M¢" =T}, M{" =T},

More generally our method can be used to consider the following measures:
(ii) Self-similar measures generated by a family of similitudes with weak separate

condition. Let {S;}", be similitudes with the same contraction ratio p, {S;}"; is said to

satisfy weak separate condition if there exists a positive constant ¢ such that
|Siy 0 Sy 0+ 0.5;,(0) = 55, 085, 00855, (0)[ =0 or >cp"

for integers n > 1,1 < iy, ---,i, < m, and 1 < ji -+, j, < m.(the weak separate condition
was first introduced in [LN1], the present setting is the same as in [FLN]). Let v be the self-
similar measure generated by {S;}/", with the probability weights (p1 ---,pm). If {S;}I",
satisfies the weak separate condition, then one can still show that the v measure on any net
interval is given by the matrix product( letting I denote the minimal bounded interval so
that S;(I) C (1) for 1 <14 < m, then m-th net intervals are obtained by the partition of I by
all the endpoints of S;(I), |J| = m.)

8 Appendix: the generating relations of I-colors associated

with the positive root of 23 — 22 + 22z — 1 = 0.

In this case the number of different I-colors is 29, which can be written as:
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Vi= ({0}p —p+1),

Vo= ({=p* +p— 1,0}, —p* + p),

V= ({p* —php* —p+1),

Vi:=({p* =}, p%),

Vs = ({=p,0}, —p+ 1),

Vo :=({p—1},0%),

Vii={p* = p,0}, 0" —p+1),

Vs := ({p— 1,0}, p%),

Vo :=({— ,0+p—1—p 0}, —=p* + p),
Vip = ({— pp —p}p* =2p+1),

Vip == ({—p? +p—1p 1,0}, —p* + p),
Vig = ({p* - —p} P,

Vig = ({— PyO}P —2p+1),
Vigi=({-p*+p—1,-p*+2p—1,0},—p% + p),
Vis := ({p—lp —p} P,

Vie := ({=p* +p—1, p,O} —p*+p+0),
Vir:= ({p* = 2p,p* = p}, 0 = 2p + 1),
Vig == ({p* — p, 0} p?),

Vig := ({—p, —p%, 0}, —p + 1),

Voo 1= ({p2—1p —p} 2% = p),

Var := ({—p, —p* = p,0}, —p + 1),

Vag 1= ({P2—1 P—l}P)

Voz := ({=p, p* = p,0},0* = 2p+ 1),

Vo :=({=p2+p—1,p—1,—p>+2p— 1,0}, —p2 + p),
Vos := ({p* = 1,p = 1,p* = p}, p?),

Vag := ({p — 1},2p — 1),

Var = ({p—lp - p,0},p%),

Vog := ({—p* +p—1,—p,—p* 0}, —p* + p),
Vag := ({p* = 2p, —p, p* — p}, p* = 2p + 1),

And the generating relations of I-colors can be written as:
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Vi—=Vi+Vo+ Vg

Vs — Vg + Vo + Va;

V5 — V7;

Vi — Vg + Vo + Vig + Vi1 + Via;
Vo = Vi + Vig;

Vi1 — Vie + Vir;

Viz — Vis;

Vis — Vi1 + Voo + Vo
Vir = Vag;

Vig = Vag + Vay + Vas;
Va1 — Var + Vag + Vag;
Vag — Var;

Vos — Vi1 + Vao + Vs
Vor — Vi1 + Vag + Vo
Vag — Vas;

Vo — Vs;

Vi— Ve + Va;
Vo — Vo + Vi
Ve = Vo + Vi
Vip = Vis;

Vig — Vi + Va;
Vig — Vig;

Vie — Vai;

Vis — Vs + Vo;
Vao — Vag;

Vag — Vi1 + Vig;
Vag — Vog + Vag;
Vag — Va;

Vog — Vag + Vay;

The reader may check that for any 1 <14 < 29, the I-color V; can generate out ultimately Vag.

Acknowledgment: The author would like to express his deep gratitude to Prof. Z.Y. Wen

and Dr. J. Wu for many valuable discussions and suggestions.

References

[AY] J.C. Alexander and J.A. Yorke, Fat baker’s transformations, Ergod. theory &
Dynam. systems 4(1984), 1-23.

[AZ] J.C. Alexander and D. Zagier, The entropy of a certain infinitely convolved
Bernoulli measure, J. London Math. Soc. (2) 44 (1991), 121-134.

[BDGPS|] M.J. Bertin, A. Decomps-Guilloux, M. Grandet-Hugot, M. Pathiaux-Delefosse,
and J.P. Schreiber, Pisot and Salem numbers, Birkhduser-Verlag, Basel, 1992.

[Erl] P. Erdés, On the smoothness properties of a families of Bernoulli convolutions,
Amer. J. Math. 62(1940), 180-186

[Er2] —, On a family of symmetric Bernoulli convolutions, Amer. J. Math. 61(1939),
974-976.

[Fal] K.J. Falconer, Fractal geometry, mathematical foundations and applications. Wi-
ley, 1990.

[Fe] D.-J. Feng, The similarity and multifractal analysis of Bernoulli convolutions.
Preprint

64



[FLN]

[FRW]

[FWW]

[G1]

[Hu]

[HL1]

[HL2]

[JW]

[L1]

[LN1]

[LN2]

[LN3]

[LP1]

[LP2]

[Mat)

A.-H. Fan, K.-S. Lau and S.-M. Ngai, Iterated functon systems without overlaps.
Preprint

D.-J. Feng, H. Rao and J. Wu, The measure properties of symmetric Cantor sets
and their applications. Progress in Natural Science 7(1997), 172-178.

D.-J. Feng, Z.-Y. Wen and J. Wu, Some dimensional results for homogenous Moran
sets. Science in China (Series A) 40 (1997) 475-482.

A M. Garsia, Arithmetic properties of Bernoulli convolutions, Trans. Amer. Math.
Soc. 102(1962), 409-432.

—, Entropy and singularity of infinite convolutions, Pacfic J. Math. 13(1963), 1159-
1169.

T.-Y. Hu, The local dimensions of the Bernoulli convolution associated with the
golden number. Trans. Amer. Math. Soc. 349(1997) 2917-2940.

T.-Y Hu and K.-S Lau, The sums of Rademacher functions and Hausdorff dimen-
sion, Math. Proc. Cambridge Philos. Soc. 108(1990), 97-103.

—, Hausdorff dimension of the level sets of Rademacher series, Bull. Polish Acad.
Sci. Math. (1) 41(1993), 11-18.

B. Jessen and A. Wintner, Distribution functions and the Riemann zeta function,
Trans. Amer. Math. Soc. 38(1935), 48-88.

K.-S. Lau, Fractal measures and mean p-variations, J. Funct. anal. 108(1992),
427-457.

K.-S. Lau and S.-M. Ngai, Multifractal measure and a weak separation condition,

Adv. Math., 141(1999), 45-96

—, The L%-dimension of the Bernoulli convolution associated with the golden num-
ber. Studia Math., 131, no. 3, (1998), 225-251.

—, The L4-dimension of the Bernoulli convolution associated with the Pisot number.

Preprint

F. Ledrappier and A. Porzio, A dimension formula for Bernoulli convolutions. J.
Stat. Phys. 76(1994), 1307-1327.

—, On the multifractal analysis of Bernoulli convolutions. I. Large-Deviation Re-
sults, II. Dimensions, J. Statist. Phys. 82(1996) 367-420.

P. Mattila, Geometry of sets and measures in Euclidean spaces. Cambridge Univ.
Press, 1995.

65



[PS]

[PSS]

[SV]

[Wal]

[Win]

R.D. Mauldin and K. Simon, The equvalence of some Bernoulli convolutions to
Lebesgue measure, Proc. Amer. Math. Soc., 126(1998), 2733-2736.

S.-M. Ngai, A dimension result arising from the L?-spectrum of a measure, Proc.
Amer. Math. Soc. 125(1997) 2943-2951.

Y.B. Pesin, Dimension theory in dynamical systems: contemporary views and

applications, The University of Chicago Press, 1997.

M. Pollicott, H. Weiss, The dimensions of some self-affine limit sets in the plane
and hyperbolic sets, J. stat. phys. 77(1994), 841-866.

A. Porzio, On the regularity of the multifractal spectrum of Bernoulli convolutions,

J. Stat. Phys., 91(1998), 17-29.

Y. Peres and B. Solomyak, Absolute continuity of Bernoulli convolution, a simple
proof. Math. Research Letters 3, no 2 (1996), 231-239.

Y. Peres, W. Schlag and B. Solomyak, Sixty years of Bernoulli convolutions.
Preprint

F. Przytycki and M. Urbanski, On the Hausdorff dimension of some fractal sets,
Studia Math. 93(1989), 155-186.

R. Salem, Algebraic numbers and Fourier transformations, Heath Math. Mono-
graphs. Boston, 1962.

B. Solomyak, On the random series Y £A" (an Erdés problem), Ann. Math. 142
(1995), 611-625.

Y. Shiota and T. Sekiguchi, Hausdorff dimension of graphs of some Rademacher
series, Japan J. Appl. Math. 7(1990), 121-129.

N. Sidorov and A. Vershik, Ergodic properties of Erdés measure, the entropy of
the goldenshift and related problems. Monatshefte Math. 126, n3 (1998), 215-261.

P. Walters. An introduction to ergodic theory, Springer-Verlag, New York, 1982.

A. Wintner, on convergent Poisson convolutions, Amer. J. Math. 57(1935), 827-
838.

L.-S Young, Dimension, entropy and Lyapunov exponents. Ergod. Theory & Dy-
nam. systems 2(1982), 109-124.

66



