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Abstract Let M}t 410 fcitazmy) be the collection of homogeneous Moran sets determined by {7} 4>, and
{calim1, where {m,!as is a sequence of positive integers and { ¢, |z 2 sequence of positive numbers. Then the max-
imal and minimal values of Hausdorff dimensions for elements in # are determined. The result is proved that for any
value s between the maximal and minimal values, there exists an element in M { 1,41, {4} 4=1) such that its Haus-
dorff dimension is equal to s. The same results hold for packing dimension. In the meantime, some other properties of
homogeneous Moran sets are discussed.
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1 Homogeneous Moran sets

Let {n,},>; be a sequence of positive integers and {c;},>; be a sequence of positive numbers
satisfying n,=22, 0< ¢, <1, n7¢;<<8 and n4c, <1 (£=>2), where ¢ is a positive number. For
any k2>1, let Dy =1(iy, -, i) 1<<i;<n;, 1<\j<kY, D= kL>JOD,2, where Dy =Q. If ¢ = (o4,

i a)ED, t=(t, 0, TR )ED,, let 6% 7=(061,"", 04, T1s*"*» T ) -

Definition 1.1. Suppose that J is a closed interval of length 8. The collection of closed
subintervals #=1{J,; 6 € D}of J has homogeneous Moran structure, if it satisfies:

(1) ]o:];

(ii) Vk?O,aEDk,],*l,Jﬂz,"‘,]“n“lare subintervals of J,, and},*iﬂ},,j=®(i¢
7), where ;\ denotes the interior of A

(iii) for any £==1 and any 6 € D, {, 1< j<\n,, we have
T
2 AR
where | A| denotes the diameter of A .

Suppose that  is a collection of closed subintervals of J having homogeneous Moran struc-
ture. We call E(% )= Ql yD]a a homogeneous Moran set determined by %, and call %, =1{]J,; o
= [

o

€ D, !} the k-order fundamental intervals of E(% ). J is called the origiﬁal interval of E(% ).
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By the definition above, we can see that for any fixed closed interval J, {n,f,>1, 1¢ale>1s
if the positions of k-order fundamental intervals are different, different homogeneous Moran sets
are obtained. We use #(J, {n,}, {c,!) to denote the collection of homogeneous Moran sets deter-

mined by J, {n,li>1, {citiz1. We use A for the sake of convenience if it does not cause any
confusion.

Homogeneous Moran sets are very important fractal sets. Some special cases have been stud-
ied by Moran!"?. Under the condition infc, >0, Hua'?! and Marion'®! studied the generalized sel-
k

similar set, a special case of homogeneous Moran sets, and obtained the Hausdorf{f dimension. In
ref. [4], Hua and Li obtained the packing dimension. In ref.[5], Feng et al. considered a class
of homogeneous Moran sets, and called them homogeneous Cantor set and obtained their Haus-
dorff dimensions. For all the cases considered above, the positions of k-order fundamental inter-
vals have been determined by the positions of (£ — 1)-order fundamental intervals. None of the
above has considered the case where the positions of fundamental intervals can vary. On the other
hand, as we mentioned above, the construction of a homogeneous Moran set depends tightly an
the relative position of fundamental intervals. Therefore, a natural question is whether the dimen-
sion varies if the relative position of fundamental intervals are different. If it varies, does it vary
“continuously”; i.e. for any value s in the varying scope, does there exist an element of 4 such
that its dimension is equal to s7 In this paper, we will answer these questions. In the meantime,
we will discuss some other dimensional properties of homogeneous Moran sets.

For the definitions and properties of Hausdorff measure, Hausdorf{ dimension, packing
measure, packing dimension and Bouligand dimension, please refer to reference [6].

2 Hausdorff dimensions of homogeneous Moran sets

In order to discuss the dimensions of sets in M#(J, {n,}, {¢c,}), we first consider the maximal
value and minimal value of the dimension of elements in #({n;1,>1, { i} 4>1). By the definition
of dimension, considering the economic covering, the set whose fundamental intervals have homo-
geneous gaps may get the maximal value, and the set of which the total gap of fundamental inter-
vals is minimal may get the minimal value (of course, the two numbers may be equal). For this
reason, we introduce two special homogeneous Moran sets C:= C(J, {n,}, {cx}) and C*
=C*(J,1ngt, cy!), and call them homogeneous Cantor set, partial homogeneous Cantor set,

respectively, with respect to J, 17,1 4>1, 1 ¢4t a1, The definitions are as follows.

Suppose E€ M(J, {nyl, {cpl) and 1€ F, k=1, Let I, I, -+, 1,,,, be the ny.-order

fundamental intervals contained in I which are spaced from left to right.

(i) I the gaps between I, and I;,,(1<Ci< n,,,) are equal, and the left endpoint of I, is
the same as the left endpoint of I, and the right endpoint of I,, , , is the same as the right end-

point of I, then E is called homogeneous Cantor set.

(ii) If the left endpoint of I, is the same as the left endpoint of I, and the left endpoint of
I, . is the same as the right endpoint of I;,,1<Xi<{n, ., — 1 (i.e. the gap between two adjoining

fundamental intervals is equal to zero), then E is called partial homogeneous Cantor set.
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Suppose that C* = C* (J, | n,}, {cxl) is a partial homogeneous Cantor set. For any integer
120, let

Z (np — I)Hcl,

k=1[+1

denote J' = [0, uy] and d, = ——, k=>1. By the definitions of homogeneous Cantor set and par-
Up -1

tial homogeneous Cantor set, we have

Lemma 2.1. Following the above notation, we have
c*(]a {nlz}’ {Ck}) = C(J/’ {nk}’ idki)v
i.e. the partial homogeneous Cantor set in M(], {nyt, Lexl) is the homogeneous Cantor set in

M A ds eh).

Remark 2.1.  Suppose J =[0,1], n,=2,¢,=1/3, k=1. In this case, the homogeneous
Cantor set C is the classical ternary Cantor set, and the partial homogeneous Cantor set satisfies
Cc* ([o,1],12}, 11/31) = C([0,1/2], {2}, {1/3}).

By an easy calculating, we can get
c({o,1], {21, {1/3}) = 2C([0,1/2], {24, {1/3}).
By ref.[6], we have

dimaC([0,11, 121, 11/31) = 125, 5 (C([0,11, 12}, 11/31)) = 1, where s = (253,
therefore
dimyC " ([0, 1], {21, 1/3&)— , #(CH) =27 (C([0,1], {21, 11/31)) = 27,

where dimy and #° ( E) denote the Hausdorff dimension of E and s-dimensional Hausdorff
measure.

Remark 2.1 shows that even if the sets are very regular, their measures (although the di-
mensions are equal) depend tightly on the relative positions of fundamental intervals.

For convenience, let J=[0,1] and

.. logn nyony L lognyn, = n,
si = iminf —————, 5, = lim inf .
k= — logeiearey peo — logeyca cper Mgy

Lemma 2.2. Suppose C, C" are homogeneous Cantor set, partial homogeneous Cantor
set, respectively in M(J, {ny},1cpt). Then

dlmHC = 51 dimHC* = $3.

Proof. By Theorem 2 in ref.[5], we can get dimyC = s;. By this result and Lemma 2.1,
we have

IOngl np:*

- log Z (n; —1)HC

=kl

logn{n, - n,

(D

dimaC" =l il og g dyregy = o int

where d; is defined in Lemma 2.1.
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Since nk>2 ngep<1 (£==1), we have ¢,<<1/2 and

k+1 kt1 k+1

nk+1HC (nk+l—1)HC L(n *UHC \nk+1HCi'
j=k+1 ic1
By (1), we have
1
dimyC”™ = lim inf i SLCLOLC RO = §;.
koo — lOBC1 €2 " " Cpy1 Mp+1
Theorem 2.1. Suppose EE M(J, {nyt, 1cpt). Then we have
S < dlmHE < $1

Therefore sup dimgE = dimyC = s, inf dimyE =dimuyC~ = s,
E€X E€4

Proof. For any k=1, E can be covered by nny - n, intervals of length cy¢,7'¢;. Thus
dimHE<51.

Now we estimate the lower bound of dimension of E. If s, =0, we have nothing to prove.

Suppose s, >0. For any 0< s <s,, suppose that g is the probability measure supported on
E such that for any A€ %,, u(A)=(n,ny - n,) . By the definition of s;, there exists a ¢>
0 such that for any 2221, we have

711712"'ﬂk(C102"'Ck+1nk+1)s2C» (2)
For any closed interval UC [0, 1], | U|<(c¢,, there exists a positive integer & such that

6102"'Ck+1<| U|<cicy- cx. Therefore we have

(i) U intersects at most - 3lul (k + 1)-order fundamental intervals;

1627 Cr+1
(ii) U intersects at most 2 k-order fundamental intervals.
By (2) and inequality min(a, 6)<Ca'™ %' (0<s<{1), we have
p(U)< min( 2 3| U] X

1 )
b
nynp Ny €107 " Cer1 N+ nyny  tNeyy
1 3| U|

ni{ny "Ny (CICZ"'Ck+1nk+1

<

) 21vx < %3:21~:l Uls < %I U|s
Thus dimyE=5s. By the arbitrariness of s, we have dimgE =5, .

Corollary 2.1. All the sets in M(J, { ngl, {c,}) have the same Hausdorff dimension if
and only if s{=s,. Especially, if infc, >0 (noticing that the homogeneous Moran sets in refs.
k

[2,3] satisfy this condition), then s\ =s,.

Theorem 2.2. Suppose s,<s1, 5, < s<s;. Then there exists EE M(J, I ny1, {cpl) such
that dimyE =s.

Proof. Let C=C(J, inyl, {cy!) be the homogeneous Cantor set, and let %, (k==1) be
the k-order fundamental intervals. By Theorem 2.1, we have dimyC = 5;. Since s<s;, #°(C)
=00, By Theorem 4.10 in ref. [6], there exists a compact subset F of C such that dimyF =5s.
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Let ;= |A€F;ANF=01,%" ={A€F;ANF#Q}. Forany AEJ;, let A" be the
partial homogeneous Cantor set A * (A, | ny} =2, ¢ l1>2). Denote by %, the 2-order fundamen-
tal intervals generated by elements of ", and let %, = { A 6?;; ANF=0}1,%"=1{A Eff’é;A N
F#Q!. Forany A€ %, let A* (A, {n,!,>3, {csle>3) be the corresponding partial homoge-

neous Cantor set. In this way, for any /, we can define 7;, 7, and partial homogeneous Cantor

set A" (A, ingle=iv1s {Ckik2l+l)'

By the above construction, we have

i) F=N U A;

Flaeq
(11) V k>1,A€-_U/_k; dlmHA f = $2.
Let F*=FU (kQIALEJyA *). Then F* € M(J, in.}, {c,}). By the o-stability of Hausdorff
= 3
dimension, we have dimyF"* = 5.

Theorem 2.3. Suppose 0L a << f<1. Then there exists | nylp=>1, 1csli>1 such that
dimyC” = a,dimyC = B, where C and C" are the corresponding homogeneous Cantor set, and

partial homogeneous Cantor set, respectively.
Proof. We divide the proof into two cases: a7 £, a = f.
Case 1. a#f. In the following 4 cases, we construct {n,},>; and {¢,},>1. By Lemma
2.2 and Theorem 2.1, we can get the desired result easily.
. 1.1, 8 1
(1) 0<a<ﬁ<1, let ﬂ.1=2, Nyp+1 = [((nl'"nk)n ﬁ)l‘:@]’ k>150k2 n, B;

1
(i) 0=a<B<1, let n1 =2, ny 1= (ny o ny )" ™, k=15, =0, 83

1
(ii) a=0,8=1, let n7 =2, mpey = (ny - me)™ " ", k=156, = n, B, where i1 =

n, n;

% > - .
nk+1’k/1"81 711+1’

n
n1+1

n
Tl1+1

1 B
(iv) 0<a< g=1, let ny==2 such that >a, B = n2=[(n13)1*—lﬁl],ﬂ2=
n ) n
1+1n1; for any k>2, suppose that n, and f, have been defined; let 8.y = nk—'tl’ Ny+q =

11 1_1 1_1 _ay! _1
[(nla Binge B,rrmpa ﬁﬁ)ﬂk(l B ]vck:nk B,

Case 2. a=f.
(i) a=B>0, let my =2, c, =25, k=>1;

(ii) a=B8=0, let n,=2,c,=2"*%, k=>1.
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3 Packing dimensions of homogeneous Moran sets
In this section, we use the same notations as in section 2.

Theorem 3.1. Ler C, C* be the homogeneous Cantor set in M(J, inyt, {cpl), and the
partial homogeneous Cantor set, respectively. Then

logniny tmpyg

dimp € = hr?»iuP ~logcicrrep + logng.y’ (3)
1
dimpC™ = lim supw, (4)
ke - — logcicattcy
where dimp denotes packing dimension .
Proof. By Theorem 1 in ref.[7], we have
k
(1- ﬂk+1Ck+1)HCi '

R i=1

dimgC = infs >0;Zn1'“nk(nk+1—1) npeg — 1 < oo o (5)

k=1

where dimg denotes upper Bouligand dimension.

lognlnz”'nk+1

For any s >1ir{1 sup , there exists e >0, k¢>0, such that for any %

—logcicorrcp T logny +1
=ky, we have

4 = s — logniny ' ngug > e
k — logcicy ey + logng iy )

Np+1

By ny+1cp+ 1l and n,,; ~ 1= , we have

2
k s
Z nl"'nk(nlz+1 - 1)((1 - 7lk+lck+1)HCi(nle+l - 1)_1)
EZkg i=1
'3 s k ak
<2sz nyttt Mg (H il = 232( clme ) < 2522_(”1)5 < %,
L=2N i=1 k2Zko\i=1 k= kg

By (5), we have dimgC<{s. By the arbitrariness of s, we have

lognyny - ny
— logcica ey + lognpeq’

dimpC << lir{) sup (6)
For any 6 >0, let M (&, C) be the minimal numbers of closed intervals of length & needed
to cover C. For any A €%,, we divide it equally into n,.; closed intervals. By the construction

,C)?%nl

C1°tCh

of homogeneous Cantor set, each closed interval intersects C. Therefore M ( .
B+l

“*7,+1- Thus

logning  nyyy

dlmBC = llnkl_»iuP _ logchZ'--ck + lognk+1

(7)

On the other hand, by Corollary 3.9 in ref. [6], we have dimgC = dimpC. By (6) and (7),
we have (3).
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By (3), Lemma 2.1 and the method used for proving Theorem 2.1, we can get (4) easily.

Lemma 3.1. Forany E€ (], {n,}t, 1ct), we have

logn ny rnyyy
dimpE < hm»iuP logeicyrrep + logngsy”
Proof. Suppose that 6 € D, and J, is a k-order fundamental interval. Let J,(1), J,(2),
o, J.(ny+1—1) be ny1 — 1 gaps of the adjoining (% + 1)-order fundamental intervals. By the
concavity of ' (0<<{s<{1), we have

L Taer” (1 - nk+lck+1)]_:[Ci !
O < (mpey = D=7 E ] = Gy = D) B

i=1

Np+y — 1

By Theorem 1 in ref.[7] and the proof of (6) in Theorem 3.1, we can get the desired result.

Lemma 3.2. Forany E€ M(J, {n,}, {cil), we have

lognyny ' n
dimpE = hm sup %z—k—
pat 0gC1Crt
Proof. Let u be a probability measure supported on E, such that for any %-order funda-
mental interval I, #(I)=(n,*-n,) !. Notice that for any € E, the ball B(z, ¢;**'¢;) at
least contains one k-order fundamental interval and intersects at most 3 k-order fundamental in-

tervals. Therefore
(nyoome) ' < p(Blx,ere)) <3(ngm) ™

Thus
logu(B(x,cy ) . logu(B(z,ci"cy))
111}) sup sup o = lim supinf I
—o0 gC1C Cp k>0 ~ x€E 0gcC1Cy Cp
. logn, - ny
h hr?jgup —logcicycy (8)

logn, - n,

Now for any 0<Ca < lim sup—l———‘-_
il OgC1C2°*" Cp

by (8), there exists , } o such that when & is

large enough, we have
logu(B(x,d,))

inf —— og?, >

where 65 =ity Thus for any x € E,
w(B(2,8,)) < 8. (9)
For any subset FCE, denote by N( 81:. , F) the maximal numbers of disjoint balls with center in

F and radius ¢, . Let B;(x;, SZk),xiGF,izl, '“,N(&,k, F) be N(S,ﬁ,F) disjoint ball. Then

{B,-(xi,Zﬁlk)} is a cover of F. Noticing that (B (x, BZk))Z%y(B(x,ZSIk)), by (9), we

have
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9%;’(F)> N(alk, F) x2°% x 81: = N(8lk, F) x 61:

N(SI,F) N(Slk.F)
> D w(Blzn8)) =5 O u(Bi(x,268,)) =5 ulF).

i=1

i=1

Let k—>co. We have %"(F)?‘é—,u(F). Thus

#°(E) = inf

i

S (E,); UE,DE,E, C E;

>inf| > £u(E); UE, DE,E CE

Therefore dimpE=>a. By the arbitrariness of a, we get the desired result.

1
2;-

By Lemmas 3.1 and 3.2, we have

Theorem 3.2. Forany E€ M(J,{n,t,1cpt), we have
lognq n, logn, - nu

— logcica ey + logngq’

lim sup ——
i logcicy ey

By Theorems 2.1 and 3.2, we have

< dimpE << dimgE << lirP sup

Corollary 3.1. (i) Forany E, FE€ M(J, {n,},{cy!), we have dimyE< dimpF.

logn - n, logni - np41

= lim su , then

p
_]OgCICZ'”Ck+17lk+1 | ) —logclcz“'ck+lognk+1

dimyE = dimpE = dimgE.

(i) If lirg_l.il’lf

By ref.[8], we know that if ?°(E) = co, then there exists a compact subset F of E such
that dimpF = 5. By the same methods used in Theorems 2.2 and 2.3, we have

Theorem 3.3. Suppose s satisfies

lognl"'nk lOngl"'nk+1
—_ e e < i .
SO T ogeica o + logngas

Then there exists EE€ M(], {ny}, {cil) such that dimpE =s.

lim su
| ] P - IOgCICZ"'Ck

Theorem 3.4.  Suppose 0 a << B<C1. There exist | nyl,>y and {cply=1 such that
dimpC* = a, dimpC =, where Cand C” are the corresponding homogeneous Cantor set, and

the partial homogeneous Cantor set, respectively.

References
1 Moran, P. A., Additive functions of intervals and Hausdorff measure, Proc. Camb. Phil. Soc., 1946, 12: 15.
2 Hua Su, Dimensions for generalized similar sets, Acta Math. Appl. Sinica, 1994, 17(4): 551.
3  Marion, J., Mesures de Hausdorff d’ensembles fractals, Ann. Sci. Math . Quebec, 1987, 11(1); 111.
4 Hua Su, Li Wenxia, Packing dimensions of generalized Moran sets, Progress in Natural Science (in Chinese), 1996, 6(2): 148.
5 Feng Dejun, Rao Hui, Wu Jun, The net measure properties for symmetric Cantor sets and their applications, Progress in Nat-

-ural Science (in Chinese), 1996, 6(6): 673.

Falconer, K., Fractal Geometry: Mathematical Foundation and Applications, Chichester: John Wiley, 1990.
Tricot, C., Douze définitions de la densité logarithmique, C. R. Acad. Sc. Paris, 1981, 293;: 549.

8 Joyce,H., Preiss,D., On the existence of subsets of finite positive packing measure, Mathematika, 1995, 42: 15.

~ o



