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Abstract Let A( 1 ? I ,  1 hal, i ck / hal) be the collection of homogeneous Moran sets determined by 1 n, 1 kal and 

1 ck 1 ha,, where i n, 1 is a sequence of positive integers and 1 ck I *a1 a sequence of positive numbers. Then the max- 
imal and minimal values of Hausdorff dimensions for elements in 1 are determined. The result is proved that for any 
value s between the maximal and minimal values, there exists an element in A( I nk I ha1. 1 c, I such that its Haus- 
dorff dimension is equal to s . The same results hold for packing dimension. In the meantime, some other properties of 

homogeneous Moran sets are discussed. 

Keywords: homogeneous Moran set, homogeneous Cantor set, partial homogeneous Cantor set, Hausdorff di- 
mension, packing dimension. 

1 Homogeneous Moran sets 

Let 1 nk 1 be a sequence of positive integers and 1 ck 1 k>l  be a sequence of positive numbers 
satisfying n k 3 2 ,  O <  ck < 1,  n 1 c l <  6 and nkck <l ( k >2) ,  where 6 is a positive number. For 

any k 3 1 ,  let D k =  l ( i l , - " ,  i k ) ; l < i j < n , , l < j < k ~ ,  D =  U Dk,  where D o = @ .  If a = ( a l ,  
k > O  

....ak)EDR, r = ( r l , . - . ,  r m ) E D m ,  let a +  r = ( a l , - . . , a k , r l ; . . , r m ) .  

Definition 1 . 1 .  Suppose that J  is a closed interval of length 6. The collection of closed 

subintervals 9= 1 J ,  ; o E D } of J  has homogeneous Moran structure, if it satisfies: 

0 

(ii) V k>O, u E D ~ , J ~ * I ~ J ~ * ~ , " . , J ~ * ~ ~ + ~  aresubintervalsof I,, a n d j , . . n ~ , . , = @ ( i i  

j ) ,  where A denotes the interior of A ; 

(iii) for any k 3 1  and any a E Dk - 1, l< j< nk , we have 

where I A I denotes the diameter of A .  

Suppose that 9 is a collection of closed subintervals of J  having homogeneous Moran struc- 

ture. We call E  (27 ) := n U J ,  a homogeneous Moran set determined by and call ?& = 1 J ,  ; cs 
k > l a E  Dk 

€ DR 1 the k-order fundamental intervals of E ( 3  ). J  is called the original interval of E ( 9  ) 
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By the definition above, we can see that for any fixed closed interval J ,  1 nk 1 k 2 1 r  ck 1 k ~ 1 ,  
if the positions of k-order fundamental intervals are different, different homogeneous Moran sets 

are obtained. We use A( J ,  1 nk 1 ,  1 ck / ) to denote the collection of homogeneous Moran sets deter- 

mined by J , { nk 1 k > l ,  { ck } k ~ 1 .  We use Jll for the sake of convenience if it does not cause any 

confusion. 

Homogeneous Moran sets are very important fractal sets. Some special cases have been stud- 

ied by  ora an"]. Under the condition infck >0,  ~ u a ' ~ '  and ~ a r i o n ' ~ ]  studied the generalized self- 

similar set, a special case of homogeneous Moran sets, and obtained the Hausdorff dimension. In 

ref. [4 ] ,  Hua and Li obtained the packing dimension. In ref. [ 5 ] ,  Feng et a1 . considered a class 

of homogeneous Moran sets, and called them homogeneous Cantor set and obtained their Haus- 

dorff dimensions. For all the cases considered above, the positions of k-order fundamental inter- 

vals have been determined by the positions of ( k  - 1)-order fundamental intervals. None of the 

above has considered the case where the positions of fundamental intervals can vary. On the other 

hand, as we mentioned above, the construction of a homogeneous Moran set depends tightly an 

the relative position of fundamental intervals. Therefore, a natural question is whether the dimen- 

sion varies if the relative position of fundamental intervals are different. If it varies, does it vary 

"continuously"; i. e .  for any value s in the varying scope, does there exist an element of A such 

that its dimension is equal to s?  In this paper, we will answer these questions. In the meantime, 

we will discuss some other dimensional properties of homogeneous Moran sets. 

For the definitions and properties of Hausdorff measure, Hausdorff dimension, packing 

measure, packing dimension and Bouligand dimension, please refer to reference [6] .  

2 Hausdorff dimensions of homogeneous Moran sets 

In order to discuss the dimensions of sets in A( J ,  1 nk 1 , { ck / ), we first consider the maximal 

value and minimal value of the dimension of elements in A( nk 1 k> l ,  1 ck 1 ) . By the definition 

of dimension, considering the economic covering, the set whose fundamental intervals have homo- 

geneous gaps may get the maximal value, and the set of which the total gap of fundamental inter- 

vals is minimal may get the minimal value (of course, the two numbers may be equal). For this 

reason, we introduce two special homogeneous Moran sets C : = C ( J ,  1 nk / , 1 ck 1 ) and C 

= C * (J .  1 nk 1, 1 ck 1 ), and call them homogeneous Cantor set, partial homogeneous Cantor set, 

respectively, with respect to J ,  1 nk / k>lr { ck 1 k > l  . The definitions are as follows. 

Suppose E E A ( J ,  I n k } ,  { c k / )  and I € % ,  k > l .  Let 11, 12, ..., Ink+1 be the nk+I-order 

fundamental intervals contained in I which are spaced from left to right. 

( i )  If the gaps between Ii and I, + ( l< i < nk + ) are equal, and the left endpoint of Il is 

the same as the left endpoint of I, and'the right endpoint of Ink+* is the same as the right end- 

point of I, then E is called homogeneous Cantor set. 

(ii) If the left endpoint of Il is the same as the left endpoint of I ,  and the left endpoint of 

I, + is the same as the right endpoint of I , ,  l < i < n k  - 1 (i .  e.  the gap between two adjoining 

fundamental intervals is equal to zero), then E is called partial homogeneous Cantor set. 
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Suppose that C * := C * ( J ,  nk ( , ck 1 ) is a partial homogeneous Cantor set. For any integer 

12-0, let 

denote J' = [O, uo ]  and dk = - Uk , k > l .  By the definitions of homogeneous Cantor set and par- 
*k - 1 

tial homogeneous Cantor set, we have 

Lemma 2.1 .  Following the above notation, zte have 

~ * ( J I  { n k i ,  i c k \ >  = c ( J ' ?  1nk1, i d & ] ) ,  

i . e . the partial  homogeneous Cantor set in A( J ,  1 nk 1 , 1 ck } ) is the homogeneous Cantor set in 

A ( J ' ,  Ink19 lck l ) .  

Remark 2 . 1 .  Suppose J = [O, 1 1, nk = 2, ck = 1/3, k 2 1 .  In this case, the homogeneous 

Cantor set C is the classical ternary Cantor set, and the partial homogeneous Cantor set satisfies 

C *  ([0,11,121,  11/31 ) =  C ( [ 0 , 1 / 2 1 ,  121, 11 /31) .  
By an easy calculating, we can get 

C ( [ O , l I ,  121, 11/31 ) =  2 C ( [ 0 , 1 / 2 1 ,  121, 11/31 ) .  
By ref. [ 6 ] ,  we have 

d i r n ~ C ( [ O , l ] ,  121, 11/31 ) =  g, %'(C( [O , l ] ,  121, 11/31 ) =  1, where s = !&. log3 ' 
therefore 

dim,C*([O,l] ,  121. 11/31 ) = g, 2 " ~ " )  = 2 ~ s ~ s ( ~ ( [ ~ , 1 ] ,  121 ,  11/31 ) ) =  2-= ,  

where dimH and fl ( E ) denote the Hausdorff dimension of E and s-dimensional Hausdorff 

measure. 

Remark 2 . 1  shows that even if the sets are very regular, their measures (although the di- 

mensions are equal) depend tightly on the relative positions of fundamental intervals. 

For convenience, let J = [ O ,  11 and 

logn n2..- nk lognl n2." nk 
s l  = lim inf , s2 = lim inf 

k-m - ~ o ~ c ~ c ~ " ' c ~  k'm - ~ o ~ c ~ c ~ " ' c ~ + ~  n&+l ' 

Lemma 2 .2 .  Suppose C ,  C * are homogeneous Cantor set, partial  homogeneous Cantor 

set, respectively in Jll( 1, 1 nk 1 , 1 ck 1 ) . Then 

Proof. By Theorem 2 in ref. [ 5 ] ,  we can get dimHC = s l .  By this result and Lemma 2 .1 ,  

we have 

lognl n2.-.  nk logn1n2:-enk 
dimHC * = lim inf = lim inf co 

k-m - 1ogdld2...dk k-m 
(1)  

,= h + l  I = 1  

where d i  is defined in Lemma 2 .1  
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Since n k 3 2 ,  nkck<l ( k 3 1 ) ,  we have ck<1/2 and 

By ( I ) ,  we have 

lognI n2 ' - '  nk - 
dimH C * = lim inf - s2 .  

k - W  - l ~ g c ~ ~ ~ . ' . ~ k + l  nk+l 

Theorem 2 . 1 .  Suppose E E A(J ,  1 n,\ , { ck 1 ) . Then we have 

s2 < dimHE < s l .  

Therefore sup dimHE = dimH C = sl , inf dimHE = dimHC * = 3-2. 
E E  .Y EE.Y 

Proof. Forany k 2 1 ,  E canbecoveredby 711n~~~-nkintervalsoflength clc2'..ck. Thus 

dimHE<sl.  

Now we estimate the lower bound of dimension of E .  If s2 = 0,  we have nothing to prove. 

Suppose s2 > 0  For any 0 < s < s2, suppose that p is the probability measure supported on 

E such that for any A E s k ,  p ( A )  = ( n l  n2 . . .nk) - '  . By the definition of s2, there exists a c > 
0 such that for any k > l ,  we have 

For any closed interval U C [ 0, 1 1,  I U / < c l ,  there exists a positive integer k such that 

c ~ c ~ " ' c ~ + ~ <  I U 1 < c ~ c ~ . " c ~ .  Therefore we have 

( i )  U intersects at most ( k + 1 )-order fundamental intervals; 
clC2"'ck+ 1 

(ii) U intersects at most 2 k-order fundamental intervals. 

By (2 )  and inequality min(a ,  b )<a l -%YO<s< l ) ,  we have 

Thus dimHE>s.  By the arbitrariness of s ,  we have dimHE>,s2. 

Corollary 2 .1 .  All the sets in A(], { nk 1 , { ck 1 ) have the same Hausdorff dimension if 

and  only if sl = s2. Especially, if infck > O  ( noticing that the homogeneous Moran sets in refs. 
k  

[2 ,3 ]  satisfy this condition), then s l  = s2 .  

Theorem 2 . 2 .  Suppose s2 < s l  , s2 < s < s Then there exists E E A(J ,  1 nk 1 , 1 ck > such 

that dimHE = s . 

Proof. Let C = C ( J  , nk 1 , { ck 1 ) be the homogeneous Cantor set, and let & ( k 2 1  ) be 

the k- order fundamental intervals. By Theorem 2 .1 ,  we have dimHC = s l  . Since s < sl , 3(PS ( C )  

= m. By Theorem 4 .10  in ref. [6] ,  there exists a compact subset F of C such that dimHF = s . 
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L e t q =  ~ A € % ; A ~ ~ F = @ \ , Y ~ *  = i A E % ; A n F # @ j .  For any A E q ,  let A '  be the 

partial homogeneous Cantor set A * ( A ,  1 nk 1 k32, 1 ck 1 k > 2 ) .  Denote by & the 2-order fundamen- 

tal intervals generated by elements of $* , and let % = 1 A €k2 ; A n F = @ 1 ,4* = { A E & ; A n 
Ff @ 1 . For any A E %, let A * ( A ,  1 nk 1 k>3, 1 ck / k 3 3  ) be the corresponding partial homoge- 

neous Cantor set. In this way, for any 1 ,  we can define 3, z* and partial homogeneous Cantor 

set A *  ( A ,  i n k t k > L + l ,  i ~ k / k > l + l ) .  

By the above construction, we have 

(ii) V k > 1 , A E % ;  dirnHA* = s 2 .  

Let F * = F U ( U  U A * ) .  T h e n F * E A ( J ,  i n k / ,  1 ~ ~ 1 ) .  By thea-stabilityofHausdorff h>lAEYk 

dimension, we have dimHF * = s . 

Theorem 2 . 3 .  Suppose 0 < a < P < 1 .  Then there exists 1 nk / { ck 1 k > l  such that 

dimH C * = a ,  dimH C = P, where C and  C * are the corresponding homogeneous Cantor set, and 

partial homogeneous Cantor set, respectively. 

Proof. We divide the proof into two cases: a #  PI a = P .  

Case 1. a #/3. In the following 4 cases, we construct 1 nk 1~21 and 1 ck 1 k2l.  By Lemma 

2 . 2  and Theorem 2 .1 ,  we can get the desired result easily. 

1 1 - - 
- [ ( ( n l . - . n k ) y - L  ( i )  O < a < P < l ,  let 7 ~ 1 ~ 2 ,  q + l -  p)1-PI ,  k> l ; ck=  nk P ;  

1 - - 
(ii) O = a < p < l ,  let n l = 2 ,  n k + l = ( n l " ' n k ) n l " ' n k ,  k > l ; c k = n k  P ;  

1 --  
(iii) a = O , p = l ,  let n l = 2 ,  n k + l =  (n l . . .nk)" l" '  " k ,  k > 1 ;  ck = nk P ~ ,  where P k + l  = 

n 1 n 1 1 PI (iv) O<a < /3= 1,  let n l > 2  such that - n l  + 1 > a '  P I =  - 
n l +  1 712 = [ (  n1i)l-p11, p2 = 

n 1 -. nk , for any k 2 2 ,  suppose that nk and Pk have been defined; let Pk+l  = - 
1 +  n l  nk + 1 9  * k + l  = 

1 1  1 1  --- 1 1 -- 
[ ( n l i ~ n 2 i - ~ . . . n k =  j k ) P k ( 1 4 ) 1 ] ,  c k =  nk pk. 

Cuse2. a = / 3 .  

1 
( i )  a = p > O ,  let n k = 2 ,  C ~ = ~ - P ,  k>1;  

(ii) a = p = O ,  let n k = 2 , c k = 2 k , k > l .  
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3 Packing dimensions of homogeneous Moran sets 

In this section, we use the same notations as in section 2. 

Theorem 3 .1 .  Let C ,  C * be the homogeneous Cantor set in d(J, 1 nk 1 , 1 ck 1 ) , and the 

partial homogeneous Cantor set, respectively. Then 

lognl n2...nki 
dimp C = lirn sup 

b - m  - 10gclc2'..ck + lognk+l' 

lognl n2'" nk 
dimp C = lirn sup - 

k - W  10gc c2"' ck ' 
where dimp denotes packing dimension. 

Proof. By Theorem 1 in ref. [7 ] ,  we have 

where dimB denotes upper Bouligand dimension. 

lognl n2... nk + 

For any '>lim sup-logclc2.. .ck + lognk+l  , there exists E >0,  ko >0,  such that for any k 
k - a  

>ko,  we have 

nk+l  
By nk+lck+l<l  and nk1.1- I>,----, we have 2 

By ( 5 ) ,  we have dimBC<s. By the arbitrariness of s, we have 

- lognln2...nk+l 
dimB C < lirn sup 

k+m - ~ o ~ c ~ c ~ ' . ' c ~  + 10gnk+l 

For any 6 >0,  let M ( 6 ,  C ) be the minimal numbers of closed intervals of length 6 needed 

to cover C .  For any A E T k ,  we divide it equally into nk + closed intervals. By the construction 

C 1 " ' C k  
of homogeneous Cantor set, each closed interval intersects C .  Therefore M 

- lognl n2... nk.1 
dimBC 3 lim sup 

k - r n  - ~ o ~ c ~ c ~ " ' C ~  + lognk+l ' 

- 
On the other hand, by Corollary 3 .9  in ref. [6 ] ,  we have dimBC=dimpC. By (6 )  and (7) ,  

we have ( 3 ) .  
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By (3 ) ,  Lemma 2 . 1  and the method used for proving Theorem 2 .1 ,  we can get ( 4 )  easily. 

- lognl n2-. .  nk+1 
dim& < lim sup 

k m  - ~ o ~ c ~ c ~ " ' c ~  + 10gnb+l ' 

Proof.  Suppose that a E Dk and J, is a k- order fundamental interval. Let J, ( 1 ) , J, (2 ) ,  

.-. , J,( nk + 1 - 1 )  be nk + - 1 gaps of the adjoining ( k + 1 )-order fundamental intervals. By the 

concavity of x s ( O G s < l ) ,  we have 

By Theorem 1 in ref. [7 ]  and the proof of (6) in Theorem 3.1 ,  we can get the desired result. 

logn1n2... nk 
dimpE 2 lim sup 

k-m - ~ o ~ c ~ c ~ " ' c ~  

Proof.  Let ,u be a probability measure supported on E ,  such that for any k-order funda- 

mentalinterval I, , u ( I ) = ( n l . . . n k ) -  ' .  Notice that for any x E E ,  the ball B ( x ,  c l . . .ck)  at 

least contains one k-order fundamental interval and intersects at most 3 k- order fundamental in- 

tervals. Therefore 

(n l . . . nk ) - '  G , u ( B ( x ,  cl . . .ck)) G 3(n l* . . nk ) - '  . 
Thus 

log,u(B(z,  cl...ck)) 
lim sup su 

I-m z E g  h-m z E E  10gcl c2".ck 

lognl. . .  nk 
= lim sup 

h-rn - ~ o ~ c ~ c ~ " ' c ~  

lognl... nk 
Now for any OG o < lim sup - loge c2 .. ck , by (81, there exists lk f 03 such that when k is 

a-m 

large enough, we have 

log,u(B(x,  
inf 
.TEE 

> a, 
- 

where alk = clc2". elk . Thus for any .x E E , 

p ( B ( x ,  aLk)) < Gk.  (9)  

For any subset F C E ,  denote by N (  alk, F) the maximal numbers of disjoint balls with center in 

F and radius all. Let B i ( x i , 6 , k ) , x i E F , i = l , . 4 . ,  N ( h k , F )  be N ( a l k , F )  disjoint ball. Then 

i B i ( ~ i . 2 8 ~ ~ ) i  is a cover of F .  Noticing that , u ( B ( x ,  a lk ) )> f  , u ( ~ ( x , 2 6 ~ ~ ) ) ,  by ( 9 ) ,  we 

have 
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1 
Let k + a .  We have % ( F ) > y ( F ) .  Thus 

1 1 
i n  I i 3 p ( E i ) ;  U E i 3 E , E i ~ ~ l > T  

Therefore dimpE>a.  By the arbitrariness of a ,  we get the desired result. 

By Lemmas 3 . 1  and 3 .2 ,  we have 

lognl... nk - lognl... nk+l  
lim sup - < dimpE < dimBE < lim sup 

k - m  ~ o ~ c ~ c ~ " ' c ~  k - m  - l o g ~ ~ ~ 2 " . ~ ~ + l o g n k + l '  

By Theorems 2 . 1  and 3 . 2 ,  we have 

10gn~'"  nk - 10gn~"'  nk+1 
(ii) If lim inf - - then 

k+ m logc1 c2..'ck + 1 nk + 1 liC:_sup - logcl c2"'ck + lognk + 1'  

By ref. [8], we know that if 9" E ) = a, then there exists a compact subset F of E such 

that dimpF = s . By the same methods used in Theorems 2 . 2  and 2 .3 ,  we have 

Theorem 3 .3 .  Suppose s satisfies 

10gn~'"  nk lognl." nk+l 
lim sup < s < lim sup 

k - -  - ~ o ~ c ~ c ~ " ' c ~  k j m  -logclc2-.-ck + lognk+l' 

Then there exists E E A( ] ,  1 nk 1 , 1 c, 1 ) such that dimpE = s . 

Theorem 3.4 .  Suppose 0 < a < /3 < 1. There exist { nk / k 2 l  a nd  1 ck 1 k 2 1  such that 

dimp C * = a ,  dimp C = P ,  where C and  C " are the corresponding homogeneous Cantor set, and  

the partial homogeneous Cantor set, respectively. 
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