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Using the theory of random closed sets, we extend the statistical framework
introduced by Schreiber (11) for inference based on set-valued observations from
the case of finite sample spaces to compact metric spaces with continuous dis-
tributions.
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1. INTRODUCTION

This paper is about a theoretical framework for statistical inference based
on imprecise observations. Let X be a random vector with unknown prob-
ability law m0 corresponding to the cumulative distribution function F
on Rm, and X1, X2,..., Xn an i.i.d. F random sample. If the observations
X1, X2,..., Xn are observable, then the empirical dFn based on this sample
will be a good estimator of m0 (=dF) for sufficiently large n. The inference
problem about m0 becomes more delicate when we can only observe an
i.i.d. random sample S1, S2,..., Sn of a random set S such that Xi ¥ Si,
almost surely, i=1,..., n. A statistical model for such imprecise observa-
tions was developed by Schreiber. (11) He only treated the case of finite
sample spaces, i.e., when X takes values in a finite subset of Rm. In this
work, we shall elaborate and extend his work to continuous random vectors.



Statistical inference based on set-valued observations is best known in
the statistical literature in coarse data situations such as missing data in
multivariate analysis, censoring data in survival analysis, and grouped data
in general. See, e.g., Heitjan and Rubin, (5) Gill et al., (3) and van der Vaart
and Wellner. (14) Though these works were concerned with statistical infer-
ence based on set-valued observations, their focus was on some special
models where only observed data, namely the set-observations, are needed
but not the distribution of the random set model. These models are called
coarsening at random (CAR). The CAR model was introduced by Heitjan
and Rubin (5) to describe a reasonable form of randomly grouped, censored,
or missing data. The CAR assumption is popular, and applications abound.
In the coarsening model that Heitjan and Rubin proposed, observations
are not made in the sample space of the random vector of interest, but
rather in its power set. The following is the definition of CAR (see, e.g.,
Heitjan and Rubin (5) or Gill et al. (3)). Suppose X is a random vector taking
values in a finite set E. Let E denote the set of all subsets of E, and let S
denote a random nonempty subset of E, i.e., S takes values in E0{”}. The
random set S is a coarsening of X if, with probability 1, X ¥ S. Moreover,
a coarsening S of X is called a coarsening at random (CAR) if the condi-
tional distribution of S given X=x satisfies the following coarsened at
random (CAR) assumption:

P(S=A | X ¥ A)=P(S=A |X=x), -A ¥ E0{”}, x ¥ A.

The basic existence result for the CAR model is the following (cf.
Ref. 3): let S be a random nonempty set with distribution f on E0{”}.
Then there exist CAR probabilities p: E0{”}Q [0, 1] and a probability
distribution p on E such that f(A)=p(A) p(A) for any A ¥ E0{”}.
Furthermore, the above p(A) and p(A) are uniquely determined if f(A)
> 0. We remark that these CAR models are proved to exist only in the case
of finite populations.
Another approach for statistical inference based on set-valued obser-

vations relies on the concept of selectors for random sets (see, e.g.,
Molchanov, (7) Scheiber, (11) and Norberg (9)), where a random vector X is
said to be a selector of a random set S if X ¥ S almost surely. Note that S is
a coarsening of X iff X is a selector of the random set S.
Given a random set S, it is important to characterize the class of all its

possible selectors, which corresponds to the class of all the possible distri-
butions of the true outcome of the experiment.
Since the existence result for CAR models has so far only been estab-

lished in the case of finite populations, in order to develop a framework for
inference based on set-valued observations in the continuous case, we must
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elaborate the second approach, which is based on the theory of random
sets developed by Matheron. (6)

Our statistical setup is a generalization of a statistical model in which
the data provide only a sequence of empirical capacity functionals Tn, rather
than a sequence of empirical measures. We shall view the random vector X
as an almost sure selector of a random set S, which gives rise to the obser-
vations S1, S2,..., Sn. To analyze the unknown distribution m0 of X, we
shall study the core of T (n). In the process we shall establish some conver-
gence theorems for T (n), which will permit us in some cases to estimate m0
by a sequence mn ¥ T (n). We shall also provide large deviation and central
limit theorem type results about the rate of convergence of T (n). The reader
may find all the definitions and formulated theorems in Section 3.

2. THE STATISTICAL PROBLEM

The statistical inference problem based on set-valued observations is as
follows.
Let X be a random vector defined on some probability space

(W,A, P) with values in Rm. The probability law m0 of X is the probability
measure PX−1 on B(Rm), the collection of all Borel subsets of Rm.
Let X1, X2,..., Xn be an i.i.d. random sample drawn from X. The

Glivenko–Cantelli theorem asserts that m0 can be estimated consistently by
the empirical measures dFn, where

Fn(x)=
1
n
#{1 [ i [ n : Xi [ x}

is the empirical distribution based on the sample X1, X2,..., Xn, and #
denotes the cardinality. In other words, with probability 1, for any E > 0
for all n sufficiently large, m0 is in the E-neighborhood of dFn defined by the
supremum norm taken over an appropriate subset of the Borel subsets. See
van der Vaart and Wellner (13) for details.
Suppose that we cannot observe the Xi’s directly, but instead, we

observe random sets S1, S2,..., Sn with Xi ¥ Si, i=1, 2,..., n. In this situa-
tion, it is clear that in order to construct an estimator of m0 based on
S1, S2,..., Sn, we must have an appropriate model. Schreiber (11) assumed
that the observed sets S1, S2,..., Sn are an i.i.d. sample from a random set S
and the random vector X is an almost sure selector of S. We are going to
extend Schreiber’s work from finite sample spaces to compact metric spaces
with a continuous distribution. In future work, we shall investigate the
more general case of locally compact spaces like Rd.
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Thus, we consider now a random vector X taking values in a compact
metric space (Y, d), such as [0, 1] with the usual Euclidean metric, i.e.,
X is A–B(Y)-measurable, where B(Y) is the Borel-s-field on Y generated
by the metric d.
By a random set S, we mean a random closed set in Y in the sense of

Matheron. (6) In fact for our statistical situation here, S will be a nonempty
random closed set. Also since Y is compact, S is a compact random set. In
view of Choquet’s theorem (see Matheron (6)) the random evolution of S is
characterized by its capacity functional T.
Recall that the core of T is defined by

core(T)={m ¥M(Y) : mQ T},

where M(Y) is the collection of all Borel probability measures on Y, and
we write mQ T if m(K) [ T(K) for all K ¥K. Here K denotes the collec-
tion of all nonempty compact subsets of Y. In Section 3 the reader may
find some examples of capacity functionals and their cores.
It is well known that core(T) ]” if Y is compact metric space (see,

e.g., p. 102 of Molchanov (7)). Combining this with a result of Norberg (9)

(see Proposition 6.1), we know that for every random set S, there exists a
random vector X such that P(X ¥ S)=1. This X is said to be an almost
sure selector of S. Let us elaborate a little more on this. Probabilistic
models are proposed to model observed data when uncertainty is present.
Depending on the type of observed data, statistical procedures are derived
in order to make inference about the random phenomenon under study. In
the foreword to the pioneering work on random sets of G. Matheron, (6)

G. Watson wrote ‘‘Modern statistics might well be defined as the applica-
tion of computers and mathematics to data analysis. It must grow as new
types of data are considered and as computing technology advances.’’ Set-
valued observations are an example of a new type of data, generalizing
point-valued observations in standard statistical applications. They arise
in several different contexts. Traditionally, statistics of random sets was
investigated to study random patterns of objects such as the Boolean model
(Matheron, (6) Molchanov (8)). Here, random closed sets in Euclidean spaces
are used to model observed sets (as a generalization of point processes),
and the associated statistics is concerned with the inference about various
parameters of the random patterns under study such as the expected area,
the expected perimeter, and the distribution of the random set model. Note
that random set data can arise even in the standard framework of multi-
variate statistics. This is exemplified by the problem of probability density
estimation using Hartigan’s excess mass approach (Hartigan, (4) Polonik (10)),
where random sets are used to estimate a-level sets of the unknown density
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function. In Biostatistics, set-valued observations arise as coarse data
(Heitjan and Rubin (5) and Gill et al. (3)). Here, the random vector of interest
X is not observable, but instead, one observes the values of some random
set S containing X almost surely. From a modeling point of view, X is an
almost sure selector of S, i.e., P(X ¥ S)=1. In the above cited works in
Biostatistics, the emphasis is on models of S which make inference about
X feasible. This is the essence of the CAR model. In a related direction,
Schreiber (11) set out to investigate a general framework for inference with
set-valued observations. His result were for the case when the random
vector of interest X takes a finite number of values. Our present work is an
extension of Schreiber’s framework to the continuous case. As in Schreiber’s
work, our emphasis is on models based upon the capacity functional T of
the observed random set S. In Section 3, we shall give some examples illus-
trating capacity functionals and their cores.
Now, back to our general framework, the empirical capacity func-

tional T (n) based on the i.i.d. random set sample S1, S2,..., Sn is defined
onK

T (n)(K)=
1
n
#{1 [ i [ n : Si 5K ]”}.

Clearly by the strong law of large numbers, T (n)(K)Q T(K) almost surely
as nQ. for any K ¥K. Note that dFn ¥ core(T(n)) a.s. for any n.
The counterpart of the empirical measure dFn is the core(T (n)), which

is a subset of M(Y). Since m0 ¥ core(T) our basic result concerning the
estimation of m0 based on S1, S2,..., Sn relies on the approximation of
core(T) by core(T (n)). We shall show that the rate of convergence of
core(T (n)) to core(T) is exponential.
For statistical considerations, we assume, as in Schreiber, (11) that the

unknown m0 belongs to an a priori known class X of probability measures
on B(Y). In the special case when X 5 core(T)={m0}, our analysis of the
approximation of core(T) by core(Tn) will lead to a consistent estimator
of m0.

3. NOTATIONS AND MAIN RESULTS

Let (Y, d) be a compact metric space. For any E > 0 and E … Y, let
BE(E) denote the E-neighborhood of E in Y. That is,

BE(E) :={y ¥ Y : ,x ¥ E with d(x, y) < E}.

For simplicity, we denote BE(y)=BE({y}) for y ¥ Y.
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Let K :=K(Y) be the collection of all nonempty compact subsets
of Y. EndowK with the Hausdorff metric rd defined by

rd(E, F)=inf{E \ 0 : BE(F) ı E, BE(E) ı F}, -E, F ¥K.

By Blaschke selection theorem, (K, rd) is also a compact metric space (see,
e.g., Falconer, (2) Theorem 3.16). Let B(Y) and B(K) denote the collec-
tions of Borel sets in (Y, d) and (K, rd), respectively.
Let M(Y) be the collection of all Borel probability measures on Y,

and C(Y) the space of all continuous real functions on Y endowed with the
uniform topology. Since Y is compact, there exists a sequence {fi} of con-
tinuous real functions dense in C(Y). Define a metric D onM(Y) by

D(m, n)=C
.

i=1

|> fi dm− > fi dn|
2 i ||fi ||

, (3.1)

where ||f|| :=maxy ¥ Y |f(y)|. It is well known that the metric D on M(Y)
gives the weak-star topology, and (M(Y), D) is a compact space (see, e.g.,
Walters, (15) Theorems 6.4 and 6.5).
Let K(M(Y)) be the collection of all nonempty compact subsets of

M(Y). EndowK(M(Y)) with the Hausdorff metric rD. ( The definition of
rD is analogous to that of rd.) Again, (K(M(Y)), rD) is a compact metric
space. Similarly we use B(K(M(Y))) denote the collection of all Borel sets
inK(M(Y)).
Denote byA(Y) the class of all nonempty sets E … Y such that

{K ¥K : K 5 E ]”} ¥B(K).

We shall see that the class A(Y) contains all the nonempty compact sets
and open sets in (Y, d) (see Lemma 4.1). However, we don’t know if
A(Y) `B(Y) in this general setting.
A random set S is a map defined on a probability space (W,F, P)

taking values in K, and measurable with respect to F–B(K). The capa-
city functional of S, denoted as Ts or simply T, is defined by

T(E)=P{w ¥ W : S(w) 5 E ]”}, -E ¥A(Y).

The core of T is defined as

core(T)={m ¥M(Y) : mQ T},

where we write mQ T if m(K) [ T(K) for all K ¥K. The concept of capa-
city functional is a natural generalization of probability measures. Taking S
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to be singleton-valued, we know that every probability measure on Y is just
a capacity functional, whose core just consists of the measure itself.
Let us first give two examples illustrating the capacity functionals and

their cores.

Example 3.1. Take Y={0, 1}. Let S be a random set with the dis-
tribution

P(S={0})=P(S={1})=P(S={0, 1})=1
3 .

Let T be the capacity functional of S. Then we can check that

T({0})=2/3; T({1})=2/3; and T({0, 1})=1.

The core of T is given by

core(T)={m: 1/3 [ m({0}) [ 2/3, m({1})=1−m({0})}.

Example 3.2. Take Y=[0, M], where M is a fixed positive number.
Let X and V be two independent random vectors taking values in Y.
Define a random set S by

S=˛[0, V], if X [ V

[V, M], otherwise.

This is a simple version of the model studied in van der Vaart and
Wellner. (14) Now let T be the capacity functional of S, and mX, mV be the
distributions of X, V, i.e., mX=PX−1 and mV=PV−1. For any nonempty
compact set E … Y, we have

T(E)=P(S 5 E ]”)

=P(S 5 E ]”, X [ V)+P(S 5 E ]”, X > V)

=P([0, V] 5 E ]”, X [ V)+P([V, M] 5 E ]”, X > V)

=P(min E [ V, X [ V)+P(max E \ V, X > V)

=F
M

min E
mX([0, t]) dmV(t) + F

max E

0
mX((t, M]) dmV(t).

It is interesting to see that T(E) depends only on min E and max E. The
core of T, is just

core(T)=3m ¥M(Y) :
m([a, b]) [ >Ma mX([0, t]) dmV(t)

+>b0 mX((t, M]) dmV(t), -[a, b] … Y
4 .

On a Statistical Framework for Estimation from Random Set Observations 91



Especially we have mX ¥ core(T). To see this, we have for all
[a, b] ı [0, M],

F
M

a
mX([0, t]) dmV(t)+F

b

0
mX((t, M]) dmV(t)

=F
a

0
mX((t, M]) dmV(t)+F

b

a
1 dmV(t)+F

M

b
mX([0, t]) dmV(t)

\ mX([a, b]).

It is well known that in our general setting, core(T) is a nonempty
compact subset of M(Y). In this paper we shall focus on the study of the
perturbation property of core(T). We first define a pseudo-metric on the
space of all capacity functionals on A(Y). Then we prove that core(T)
depends continuously upon T. This result has some applications. Espe-
cially, we can use it to prove a convergence property of the empirical
capacity functional, which generalizes a result of Schreiber. (11)

Now let us first define a pseudo-metric on the space of all capacity
functionals on A(Y). A set E … Y is called a E-spanning set of Y if
BE(E)=Y. By the compactness of Y, for each E > 0 there exists a
E-spanning set consisting of finitely many points. For n \ 1, we choose a
1
n-spanning set Hn of Y such that Hn is a finite set. Define

On={B1n(E): E …Hn}, n \ 1. (3.2)

For two capacity functionals T and T −, define

L(T, T −)=C
n \ 1
2−n−#Hn C

W ¥ On

|T(W)−T −(W)|. (3.3)

It is easy to show that L is a pseudo-metric. Furthermore we can show (see
Proposition 4.5).

L(T, T −)=0. T(K)=T −(K), -K ¥K.

This means that L is a metric restricted onK.

Remark. As we have previously mentioned, any probability measure
on Y can be viewed as a capacity functional. Restricted to M(Y), (3.3)
becomes

L(m, m −)=C
n \ 1
2−n−#Hn C

W ¥ On

|m(W)−m −(W)|.
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It is not hard to check that if L(mk, m)Q 0, then rD(mk, m)Q 0; but the
converse is not true.
Now, we can formulate one of our main results:

Theorem 3.3. Suppose Y is an arbitrary compact space. Let T1 and T2
be two capacity functionals onA(Y). Then for any n \ 1,

rD(core(T1), core(T2))

[ #Hn · 4#Hn ·max
W ¥ On

|T1(W)−T2(W)|+2 C
.

i=1

Cfi (
6
n)

2 i ||fi ||
, (3.4)

where On is defined as in (3.2), the sequence {fi} is given as in (3.1), and
Cf(E)=sup{|f(x)−f(y)|: d(x, y) [ E}.

The proof of the above theorem will be given in Section 6. As a direct
corollary, we have

Corollary 3.4. Suppose Y is an arbitrary compact space. Let
Tk (k=1, 2,...) and T be capacity functionals on A(Y) satisfying
lim kQ. L(Tk, T)=0. Then

lim
kQ.
rD(core(Tk), core(T))=0.

Remark. Under the condition of Corollary 3.4, we deduce from the
definition of the Hausdorff metric that, for any m ¥ core(T), there exists a
sequence mk ¥ core(Tk) such that D(mk, m)Q 0 and thus mk converges to m
in the weak-star topology.
The above results have an important application in the analysis of the

convergence property of empirical capacity functionals.
Now suppose T is the capacity functional on A(Y) of a random set

S: WQK. Let {Si} be a sequence of i.i.d. random sets with the same dis-
tribution as S. For each w ¥ W, define a sequence of set functions qi(w, · )
onA(Y) by

qi(w, E)=˛
1, if Si(w) 5 E ]”,

0, otherwise.
-E ¥A(Y), (3.5)

and define T (n)w (n ¥N) onA(Y) by

T (n)w (E)=
1
n

C
n

i=1
qi(w, E)=

1
n
#{1 [ i [ n, Si(w) 5 E ]”}. (3.6)
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T (n)w is called the nth empirical capacity functional based on {Si}. In fact,
for each w, T (n)w is really the capacity functional of a random set. To see
this, define a probability space (Wn, 2Wn, Pn) by Wn={1, 2,..., n} and

Pn(E)=
#E
n
, -E … Wn.

The random set Vw: Wn QK is defined by Vw(i)=Si(w), -i ¥ Wn. One may
check that

T (n)w (E)=Pn{i: Vw(i) 5 E ]”}, -E ¥A(Y).

That is, T (n)w is the capacity functional of Vw. The following result gives
a natural relation between empirical measures and empirical capacity
functions.

Theorem 3.5. Suppose T is the capacity functional on A(Y) of a
random set S: WQK. Let X be a random vector satisfying P(X ¥ S)=1.
Let {Sn} be a sequence of i.i.d. random sets with the same distribution
as S, and Xi a sequence of i.i.d. random vectors with the same distribution
as X satisfying P(Xi ¥ Si)=1. Let m

(n)
w denote the empirical measure based

on X1(w),..., Xn(w), and T
(n)
w the empirical capacity functional based on

S1(w),..., Sn(w). Then

m (n)w ¥ core(T (n)w ), a.s. w.

Proof. Let (Wn, 2Wn, Pn) and Vw defined as in the last paragraph. It is
clear that

m (n)w =
1
n

C
n

i=1
dxi(w),

where dy denotes the Dirac measure at y. Set

vw(i)=Xi(w), -i ¥ Wn.

Then vw is a random variable on Wn which has the distribution m
(n)
w . Note

that vw ¥ Vw for a.s. w. We have

m (n)w ¥ core(T (n)w ), a.s. w.

This finishes the proof of the theorem. i
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In the following theorem we give a rate estimate of the convergence of
empirical capacity functionals.

Theorem 3.6. Suppose Y is an arbitrary compact metric space, T is
the capacity functional on A(Y) of a random set S: WQK, and {T (n)w }n \ 1
is a sequence of empirical capacity functionals generated by a sequence
of i.i.d. random sets {Sn}n \ 1 (with the same distribution as S). Then
lim n rD(core(T

(n)
w ), core(T))=0 almost surely. Moreover, for any E > 0,

there exist nE and LE > 0 such that

P{w ¥ W : rD(core(T
(n)
w ), core(T)) > E} [ e

−nLE

for all n \ nE.

The proof of Theorem 3.6 will be given in Section 7. We remark that
under the conditions of this theorem, for any m0 ¥ core(T) and for almost
all w ¥ W, there exists a sequence mn(w) ¥ core(T

(n)
w ), n \ 1, such that mn(w)

converges to m in the weak-star topology. Moreover, the above mn(w) can
clearly be constructed using the steps in the proofs of Lemmas 6.3 and 6.4.
Let X be a nonempty subset ofM(Y) considered as a statistical model

in Schreiber. (11) For any capacity functional T onA(Y), define

D1(T |X)=inf{D(m, n): m ¥ core(T), n ¥ X}.

For two capacity functionals T1 and T2, it is easy to check that

|D1(T1 |X)−D1(T2 |X)| [ rD(core(T1), core(T2)).

Thus we have

Corollary 3.7. Under the conditions of Theorem 3.6, we have for any
” ] X …M(Y), lim n D1(T

(n)
w |X)=D1(T |X) almost surely. Moreover, for

any E > 0, there exist nE and LE > 0 such that

P(w ¥ W : |D1(T (n)w |X)−D1(T |X)| > E) [ e
−nLE

for all n \ nE.

We remark that Corollary 3.7 has been proved by Schreiber (11) in the
case that Y consists of finitely many points. This result could be used
to test certain assumptions about the coarsening mechanism, when we
consider the random set S as a coarsening of some random vector X with
P(X ¥ S)=1. For example, if we have a modelX …M(Y) for the distribution
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of X, then under this model assumption we must have for the capacity
functional T of S

D1(T |X)=0.

Then we could use Corollary 3.7 to test this hypothesis.
As suggested by one of the referees, the central limit theorem can be

used to give a further characterization of the convergence rate of empirical
capacity functionals. LetM(Y) denote the dual of C(Y). The metric rD can
be passed over toM(Y) by

rD(G1, G2)=C
.

i=1

|(G1−G2)(fi)|
2 i ||fi ||

,

where fi is given as in (3.1). This metric generates the weak-star topology
on M(Y). The measure space M(Y) is just a convex subspace of M(Y).
Combining the central limit theorem and Theorem 3.5, we have

Theorem 3.8. Under the conditions of Theorem 3.6, for every m ¥
core(T) and every E > 0, there exist N and n0 such that with probability
greater than 1− E, for every n > n0 we can find mn ¥ core(T

(n)
w ) with

rD(`n(mn−m), 0) < N.

The proof of this theorem will be given in Section 7. As a direct
corollary we have

Corollary 3.9. Under the conditions of Theorem 3.6, for every m ¥
core(T), every a < 1/2, every E > 0 and every d > 0, there exist n0 such that
with probability greater than 1− E, for every n > n0 we can find mn ¥
core(T (n)w ) with

rD(na(mn−m), 0) < d.

4. SOME PROPERTIES OF CAPACITY FUNCTIONALS

In this section, we present some necessary properties of A(Y) and
capacity functionals. Most of them are already known.

Lemma 4.1.

(i) If {En} is an increasing sequence of sets in A(Y), then
lim n En ¥A(Y).
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(ii) E ¥A(Y) for any E ¥K.

(iii) E ¥A(Y) for each open subset E of Y.

Proof. Note that if {En} is an increasing sequence of sets in A(Y),
then

{K ¥K : K 5 lim
n
En ]”}=lim

n
{K ¥K : K 5 En ]”}, (4.1)

from which (i) follows. For (ii) and (iii), see Sections 1.1, 1.2, and 2.1 of
Matheron. (6) i

Now suppose T is the capacity functional of a random set S. We begin
with an elementary lemma.

Lemma 4.2.

(i) If {En} is an increasing sequence of sets in A(Y), then
T(lim n En)=lim n T(En).

(ii) If {En} is a decreasing sequence of sets in K, then T(lim n En)
=lim n T(En).

Proof. To see (i), note that if {En} is an increasing sequence of sets in
A(Y),

T(lim
n
En)=P(S−1({K ¥K : K 5 lim

n
En ]”}))

=P 10
n
S−1({K ¥K : K 5 En ]”})2

=lim
n
P(S−1({K ¥K : K 5 En ]”}))

=lim
n
T(En).

For (ii), see Sections 1.1 and 1.2 of Molchanov. (7)

As a corollary of Lemma 4.2, we have

Corollary 4.3. For any E ¥K, we have

lim
EQ 0
T(BE(E))=lim

EQ 0
T(BE(E))=T(E),

where BE(E) denotes the closure of BE(E).
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Proof. It suffices to show lim nQ. T(B1n(E))=T(E). To see this,
note that {B1

n
(E)} is a decreasing sequence of compact sets in Y with

lim n B1n(E)=E. It follows from Lemma 4.2 that lim n T(B1n(E))=T(E).
This completes the proof. i

The following fact should be mentioned.

Proposition 4.4. If m ¥ core(T), then for any E ¥B(Y), there exists
F ı E with F ¥A(Y) such that m(E) [ T(F).

Proof. Since Y is compact, m is a Radon measure. Thus for any
E ¥B(Y), there exists an increasing sequence of compact sets Kn … E with
m(E)=lim n m(Kn)=m(lim n Kn). Denote by K=lim n Kn. By Lemma 4.1,
we have K ¥A(Y). By Lemma 4.2, we have

T(K)=lim
n
T(Kn) \ lim

n
m(Kn)=m(E). i

Proposition 4.5. L(T, T −)=0. T(K)=T −(K), -K ¥K.

Proof. First we prove ‘‘1.’’ Assume T(K)=T −(K) for all K ¥K.
For any W ¥ On, there exists an increasing sequence of sets Ki ¥K such
thatW=lim i Ki. By Lemma 4.2,

T(W)=lim
i
T(Ki)=lim

i
T −(Ki)=T −(W),

from which L(T, T −)=0 follows.

Now we prove ‘‘2.’’ Assume L(T, T −)=0, that is, T(W)=T −(W)
for any n and W ¥ On. For any K ¥K define En=B1n(K) 5Hn and Wn=
B1
n
(En). It can be checked that Wn ¥ On and Wn ‡K. Moreover the sequen-

ces {Wn} and {Wn} are decreasing and they converge to K. Therefore

T(K)=lim
n
T(Wn)=lim

n
T(W)=lim

n
T −(W)=lim

n
T −(Wn)=T −(K).

This finishes the proof. i

5. A USEFUL PROPOSITION

The main result of this section is the following proposition.

Proposition 5.1. Suppose (W,A, P) is a probability space, and
S: WQK, y: WQ Y are A–B(K) and A–B(Y) measurable respectively.
Assume there exists E > 0 such that

d(y(w), S(w)) < E, -w ¥ W.
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Then there exists aA–B(Y) measurable map x from W to Y such that

x(w) ¥ S(w) and d(x(w), y(w)) < 6E, -w ¥ W.

We shall develop a technical tool to prove the above result. This tool
will also be applied later in the proof of Theorem 3.3. Also, at the end of
this section we shall use it to provide a new proof of the non-emptiness of
core(T).
Let us first introduce some notations. For any n \ 1, let Hn be the

finite 1n-spanning set of Y defined as in Section 3. Define pn: 2
YQ 2Hn by

pn(E)=3x ¥Hn : ,y ¥ E with d(x, y) <
1
n
4 , -E … Y. (5.1)

The set pn(E) may be considered as the projection of E onto Hn. Since Hn
is a finite set, there exists a map hn from 2Hn (the class of all subsets of Hn)
to Hn such that hn(E) ¥ E for any” ] E …Hn.

Lemma 5.2. For each n \ 1,

(i) pn |K (the restriction of pn onK) is measurable fromK to Hn.

(ii) hn is continuous from 2Hn to Hn.

(iii) For any E …Hn and E > 0, the set {x ¥ Y : pn(BE(x))=E} is a
measurable subset of Y.

Proof. To see part (i), note that for each nonempty subset E …Hn,

pn |K(K)=E. d(x, K) <
1
n

for any x ¥ E and

d(y, K) \
1
n

for any y ¥Hn 0E.

Therefore

(pn |K)−1 (E)=13
x ¥ E

3K ¥K : d(x, K) <
1
n
42

5 1 3
y ¥Hn 0E

3K ¥K : d(y, K) \
1
n
42 .

Note that for each x ¥Hn, the set {K ¥K : d(x, K) < 1n} is an open set
in K, while {K ¥K : d(x, K) \ 1

n} is closed in K. Thus (pn |K)−1 (E) is
B(K) measurable.
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Part(ii) is obvious. The proof of part (iii) is similar to that of part (i).
To be more precise, note that

{x ¥ Y : pn(BE(x))=E}

=13
y ¥ E

3x ¥ Y : d(y, BE(x)) <
1
n
42 5 1 3

z ¥Hn 0E

3x ¥ Y : d(z, BE(x)) \
1
n
42 .

Observing that {x ¥ Y : d(y, BE(x)) <
1
n} is open in Y and {x ¥ Y :

d(z, BE(x)) \
1
n} are closed in Y, we obtain the desired result. i

Proof of Proposition 5.1. Let k0 be the integer so that E [ 2−k0 < 2E.
We construct a sequence of maps {qk}k \ k0 from W to Y by

qk0 (w)=y(w),

qk0+1(w)=h2k0+1(p2k0+1(S(w) 5 p2k0+1(B2 −k0(qk0 (w)))),

and

qk(w)=h2k(p2k(S(w) 5 p2k(B2 −(k−1)(qk−1(w))))

for any k \ k0+1. It can be checked that

d(qk+1(w), qk(w)) [ 3 · 2−(k+1), d(qk(w), S(w)) [ 2−k (5.2)

for any k \ k0.
Take q(w)=lim k qk(w). By (5.2), q(w) ¥ S(w) and

d(q(w), y(w)) [ C
k \ k0

d(qk+1(w), qk(w)) [ 3 · 2−k0 < 6E.

By Lemma 5.2, qk isA–B(Y) measurable for any k \ 1, which implies that
q isA–B(Y) measurable. i

By using Lemma 5.2 we give a short proof of the following known
result (see, Molchanov, (7) p. 102):

Proposition 5.3. Let Y be an arbitrary compact metric space. Then

(i) there exists a map q:KQ Y such that q is B(K)–B(Y) measur-
able and

q(K) ¥K, -K ¥K;

(ii) core(T) is a nonempty compact convex subset of M(Y) for each
capacity functional T onA(Y).
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Proof. Define a sequence of maps qk:KQ Y by

qk(K)=h2k(p2k(K) 5 p2k(B2 −(k−1)(qk−1(K)))), k \ 2.

Letting q=lim kQ. qk, we obtain (i). The proof of part (ii) is divided into
the following two steps:

Step 1. We prove that core(T) is compact and convex. The con-
vexity is trivial. To see the compactness, suppose mn ¥ core(T) and mn con-
verges to m. It suffices to show m ¥ core(T). Note that for each K ¥K and
E > 0

m(K) [ m(BE(K)) [ lim sup
n

mn(BE(K)) [ lim sup
n

mn(BE(K)) [ T(BE(K)).

Letting E a 0, by Corollary 4.3 we have m(K) [ T(K). Thus m ¥ core(T).

Step 2. We prove that core(T) is nonempty. Let q be defined as in
part (i). Then q(S(w)) is a random vector taking values in Y. Denote by m
the distribution of q(S(w)) on Y, that is

m(E)=P(w: q(S(w)) ¥ E), -E ¥B(Y).

By the definition of T one can check directly that m ¥ core(T). i

6. PERTURBATION PROPERTIES OF core(T )

Let us begin with a result of Norberg. (9)

Proposition 6.1 (Theorem 4.6 of Ref. 9). Let T be the capacity func-
tional of a random set S: WQK. Then m ¥ core(T) if and only if there
exists a probability space (W1, S1, P1), a random set S1: W1 QK and a
random vector x1: W1 Q Y such that S1 has the same distribution of S,
x1 has the distribution m and moreover x1 ¥ S1 almost surely.

Using this result we can give a complete characterization of core(T)
whenever Y is a finite set.

Proposition 6.2. Suppose Y is a finite set and T is the capacity func-
tional of a random set S: WQ 2Y0{”}. Denote by

f(E) := C
F ı E
(−1)#(E0F) (1−T(Y0F)), -E ¥ 2Y0{”}. (6.1)

On a Statistical Framework for Estimation from Random Set Observations 101



Then m ¥ core(T) if only if there is a map p: 2Y0{”}×YQ R+ satisfying:

(i) p(E, x)=0 if x ¨ E;

(ii) ;x ¥ E p(E, x)=1 for any E ¥ 2Y0{”}. such that

m({x})=C
E ¦ x
p(E, x) f(E), -x ¥ Y.

Proof. It is not hard to check that f(E)=P({w: S(w)=E}) for any
E ¥ 2Y0{”}. We divide the proof into the following two steps.

Step 1. Sufficiency. Construct a probability space (2Y0{”}×Y,
22
Y
0{”}×Y, n) by

n((E, x))=f(E) p(E, x).

Define Z: 2Y0{”}×YQ 2Y0{”} and z: 2Y0{”}×YQ Y by

Z(E, x)=E and z(E, x)=x, -(E, x) ¥ 2Y0{”}×Y.

One can check directly that the random set Z has the same distribution
as S, and z has the distribution m. Moreover z ¥ Z almost surely. Thus
m ¥ core(T).

Step 2. Necessity. Suppose m ¥ core(T). By Proposition 6.1, there
exists a probability space (W1, S1, P1), a random set S1: W1 QK, and a
random vector x1: W1 Q Y such that S1 has the same distribution as S,
x1 has the distribution m and moreover x1 ¥ S1 almost surely. Define a map
p: 2Y0{”}×YQ R+ in the following way: set p(E, x)=0 if x ¨ E; other-
wise if x ¥ E and f(E) > 0, define

p(E, x)=
1
f(E)

P1({w1: S1(w1)=E, x1(w1)=x})

and if f(E)=0, we define p(E, x)= 1
#E for x ¥ E. It is clear that p satisfies

(i), (ii) and moreover m({x})=;E ¦ x p(E, x) f(E) for any x ¥ Y. i

Now we need to study the perturbation of core(T), i.e., the way in
which the core(T) depends on T, in the finite case.

Lemma 6.3. Suppose Y is a finite set. Let T1 and T2 be two capacity
functionals on 2Y. Assume

|T1(E)−T2(E)| < d, -E … Y. (6.2)
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Then

rD(core(T1), core(T2)) < #Y·4#Y ·d.

Proof. Define

fi(E)= C
F ı E
(−1)#(E0F) (1−Ti(Y0F)), -E ¥ 2Y0{”}, i=1, 2.

By (6.2),

|f1(E)−f2(E)| < #(2E) ·d [ #(2Y) ·d=2#Y ·d.

Let m1 ¥ core(T1). By Proposition 6.2, there is a map p: 2Y0{”}×YQ R+

satisfying

(i) p(E, x)=0 if x ¨ E;

(ii) ;x ¥ E p(E, x)=1 for any E ¥ 2Y0{”}, such that

m1({x})=C
E ¦ x
p(E, x) f1(E), -x ¥ Y.

Now define a probability measure m2 on Y by

m2({x})=C
E ¦ x
p(E, x) f2(E), -x ¥ Y.

Using Proposition 6.2 again, we know that m2 ¥ core(T2). Furthermore for
any x ¥ Y,

|m1({x})−m2({x})| [ C
E ¦ x
|f1(E)−f2(E)| [ 2#Y · 2#Y ·d=4#Yd.

By (3.1),

D(m1, m2) [ C
x ¥ Y
|m1({x})−m2({x})| [ #Y·4#Y ·d.

This implies that

core(T1) … BE(core(T2)),

where E=#Y·4#Y ·d. In a similar way, we can prove

core(T2) … BE(core(T1)).

Therefore we have rD(core(T1), core(T2)) < #Y·4#Y ·d. i
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To study the perturbation of core(T) in the case where Y is an arbi-
trary compact space, we use a technique to approximate core(T) in the
following way.
Suppose Y is an arbitrary compact space. T is the capacity functional

of a random set S: WQK. Let Hn, pn, and hn be defined as in the first part
of Section 5. Define a capacity Gn(T) on 2Hn as follows:

Gn(T)(E)=P{w ¥ W : pn(S(w)) 5 E ]”}, -E ¥Hn. (6.3)

It is clear that

Gn(T)(E)=T(B1n(E)), -E ¥Hn. (6.4)

As we know, Gn(T) is the capacity functional of the random set pnS,
taking values in the finite collection of all subsets of Hn, and core(Gn(T))
is a set of probability measures on Hn. Since every probability measure
on Hn can be viewed as a Borel probability measure on Y, core(Gn(T)) can
be treated as a compact subset of M(Y). In the following we consider the
distance between core(Gn(T)) and core(T) in the Hausdorff metric rD.

Lemma 6.4. Suppose Y is an arbitrary compact space. Let {fi} be
defined as in (3.1). T and Gn(T) are given as above. Then

rD(core(Gn(T)), core(T)) [ C
.

i=1

Cfi (
6
n)

2 i ||fi ||
, (6.5)

where Cf(E)=sup{|f(x)−f(y)|: d(x, y) [ E}.

Proof. The proof will be divided into two steps.

Step 1. core(T) … Bd(core(Gn(T))) with d=;.

i=1

Cfi
( 6n)

2i ||fi||
.

To show this, pick any m ¥ core(T). By Proposition 6.1 there exists
a probability space (W1, S1, P1), a random set S1: W1 QK and a random
vector x1: W1 Q Y such that S1 has the same distribution as S, x1 has
the distribution m and moreover x1 ¥ S1 almost surely. Now define
S2: W1 Q 2Hn and x2: W1 QHn by

S2(w1)=pn(S1(w1)) and x2(w1)=hn(pn(x1(w1)).

Let m2 denote the distribution of x2. Since Gn(T) is the capacity functional
of S2 and x2 ¥ S2 almost surely, m2 ¥ core(Gn(T)). By (3.1), we have
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D(m2, m)=C
.

i=1

|> fi(x2(w1)) dP1(w1)− > fi(x1(w1)) dP1(w1)|
2 i ||fi ||

[ C
.

i=1

> |fi(x2(w1))−fi(x1(w1))| dP1(w1)
2 i ||fi ||

[ C
.

i=1

Cfi (
1
n)

2 i ||fi ||
,

from which we get the desired result.

Step 2. core(Gn(T)) … Bd(core(T)) with d=;.

i=1

Cfi
( 1n)

2i ||fi||
.

To show this, assume m ¥ core(Gn(T))). Define f by

f(E)=P{w ¥ W : pn(S(w))=E}, -E …Hn.

By Proposition 6.2, there exists a map p: 2Hn 0{”}×Hn Q R+ satisfying

(i) p(E, x)=0 if x ¨ E;

(ii) ;x ¥ E p(E, x)=1 for any E ¥ 2Hn 0{”}, such that

m({x})=C
E ¦ x
p(E, x) f(E), -x ¥Hn.

For any” ] E …Hn, define

WE={w ¥ W : pn(S(w))=E}.

By Lemma 5.2, WE ¥F. Construct

W1= 0
” ] E …Hn

WE×{(E, x): x ¥ E}.

Define a s-algebra S1 such that each element of S1 is the finite union of
elements of following form:

AE×{(E, x)}, E …Hn, x ¥ E, AE … WE, AE ¥F.

By Kolmogorov’s consistency theorem, there is a unique probability
measure on the measurable space (W1, S1) such that

P1(AE×{(E, x)})=P(AE) p(E, x), E …Hn, x ¥ E, AE … WE, AE ¥F.
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Define S1: W1 QK, S2: W1 Q 2Hn, and x2: W1 QHn respectively by

S1(w, E, x)=S(w), S2(w, E, x)=E, x2(w, E, x)=x.

One can check that S1 has the same distribution as S, S2 has the same dis-
tribution as pnS and that S2 induces the capacity Gn(T). Furthermore,
x2 has the distribution m. Moreover for each (w, E, x) ¥ W1,

x ¥ E=pn(S(w)),

hence d(x2(w, E, x), S1(w, E, x)) [
1
n . By Proposition 5.1, there exists a

S1–B(Y) measurable map y: W1 Q Y such that

y(w, E, x) ¥ S1(w, E, x), d(y(w, E, x), x2(w, E, x)) [
6
n

for any (w, E, x) ¥ W1. Let m1 denote the distribution of y, then m1 ¥
core(T). Furthermore

D(m1, m)=C
.

i=1

|> fi(x2(w, E, x)) dP1− > fi(y(w, E, x)) dP1 |
2 i ||fi ||

[ C
.

i=1

> |fi(x2(w, E, x))−fi(y(w, E, x))| dP1
2 i ||fi ||

[ C
.

i=1

Cfi (
6
n)

2 i ||fi ||
,

from which we get the desired result.

Proofs of Theorem 3.3. Fix an integer n. Let Gn(T1) and Gn(T2) be
defined as in (6.4). By Lemma 6.4, we have

rD(core(Gn(Tj)), core(Tj)) [ C
.

i=1

Cfi (
6
n)

2 i ||fi ||
, j=1, 2. (6.6)

In Lemma 6.3, replacing Y, T1, T2 respectively by Hn, Gn(T1), and Gn(T2) we
obtain that

rD(core(Gn(T1)), core(Gn(T2))) [ #Hn · 4#Hn ·max
E …Hn

|Gn(T1)(E)−Gn(T2)(E)|

=#Hn · 4#Hn ·max
W ¥ On

|T1(W)−T2(W)|.
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Combining this with (6.6), we have

rD(core(T1), core(T2)) [ C
2

j=1
rD(core(Gn(Tj)), core(Tj))

+rD(core(Gn(T1)), core(Gn(T2)))

[ #Hn · 4#Hn ·max
W ¥ On

|T1(W)−T2(W)|+2 C
.

i=1

Cfi (
6
n)

2 i ||fi ||
.

This finishes the proof. i

7. PROOFS OF THEOREMS 3.6 AND 3.8

We first prove the following lemma using the classical Cramer Prin-
ciple in large deviation theory (cf. Dupuis and Ellis (1)).

Lemma 7.1. Fix an integer m \ 1. For any d > 0, there exists Nd and
Rd > 0 such that

P 3w ¥ W : C
W ¥ Om

|T (n)w (W)−T(W)|
2 > d24 [ e−nRd

for all n \Nd.

Proof. For any i \ 1, let qi(w, W) be defined as in (3.3). Denote by
Yi(w) the #Om dimensional vector (x i(w, W))W ¥ Om

indexed by W ¥ Om. It is
clear that {Yi} is a sequence of i.i.d random vector taking values in R#Om,
with a distribution supported on finitely many points. Note that

1
n

C
n

i=1
Yi(w)=(T

(n)
w (W))W ¥ Om

, E(Y1)=(T(W))W ¥ Om
.

Applying the classical Cramer Principle to the i.i.d random vector {Yi}
(see, e.g., Theorem 3.5.1 of Dupuis and Ellis, (1) p. 87), we get the desired
result. i

Proof of Theorem 3.6. Fix E > 0. Choose a large integer m such that

C
.

i=1

Cfi (
6
m)

2 i ||fi ||
<
E

4
.
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Set d= E

2#Hm4
#Hm
. By Lemma 7.1, there exists nd and Rd > 0 such that

P 3w ¥ W : C
W ¥ Om

|T (n)w (W)−T(W)|
2 > d24 [ e−nRd

for all n \ nd.
By Theorem 3.3,

rD(core(T
(n)
w , core(T)) > E2 max

W ¥ Om

|T (n)w (W)−T(W)| \ d.

Therefore

P{w ¥ W : rD(core(T
(n)
w , core(T)) > E} [ e

−nRd

for all n \ nd. Define nE=Nd and LE=Rd. Then the above fact implies the
desired result. i

Proof of Theorem 3.8. Let m ¥ core(T). By Proposition 6.1, there
exist a probability space (Wa ,Fa , P̄), a random set Sa: Wa QK and a random
vector Xa : Wa Q Y such that Sa has the same distribution of S, Xa has distri-
bution m and P̄(Xa ¥ Sa)=1. Let {Sai} be a sequence of independent copies
of Sa, {Xa i} a sequence of independent copies of Xa with P̄(Xa i ¥ Sai)=1. Let
Ta (n)w̄ be the empirical capacity functional based on {Sai(w̄)}

n
i=1, and m̄

(n)
w̄ be

the empirical measure based on {Xa i(w̄)}
n
i=1 given by

m̄ (n)w̄ (K)=
1
n
#{1 [ i [ n, Xa i(w̄) ¥K}.

By P̄(Xa i ¥ Sai)=1 and Proposition 6.1, we have m̄
(n)
w̄ (K) [ Ta

(n)
w̄ (K) a.s.

for any given K ¥K. Note that Ta (n) has the same distribution as T (n), and
thus the set of probability measures core(Ta (n)) is the same set as core(T (n)).
Therefore we only need to prove the approximation result for`n(m̄(n)w̄ −m).
Now for any f ¥ C(Y), using the central limit theorem to the i.i.d.

random variables f(Xa i(w̄)) we obtain

lim
nQ.
P̄ 1 −z [ ;n

i=1 f(Xa i(w̄))−n > f(Xa) dP̄
`n`> f2(Xa) dP̄−(> f(Xa) dP̄)2

< z2

=
1
2p

F
z

−z
e−x

2/2 dx, -z > 0.
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Denote G (n)w̄ :=`n(m̄
(n)
w̄ −m). Then

C
n

i=1
f(Xa i(w̄))−n F f(Xa) dP̄=`n G (n)w̄ (f).

Since`> f2(Xa) dP̄−(> f(Xa) dP̄)2 [ ||f||, we have

lim
nQ.
P̄(|G (n)w̄ (f )| [ z ||f||) \

1

`2p
F
z

−z
e−x

2/2 dx, -z > 0. (7.1)

For any E > 0, choose an integer k such that 2−k < E/2, and pick a
large N such

1

`2p
F
N

−N
e−x

2/2 dx > 1−
E

2k
.

Let {fi} be given as in (3.1). Then by (7.1),

lim
nQ.
P̄(|G (n)w̄ (fi)| [N ||fi ||) \ 1−

E

2k
, i=1,..., k.

Note that

{w̄: rD(G
(n)
w̄ , 0) > N} … 0

k

i=1
{w̄: |G (n)w̄ (fi)| \N ||fi ||}.

We have

lim
nQ.
P̄(rD(G

(n)
w̄ , 0) > N) [ E.

Thus

lim
nQ.
P̄(rD(G

(n)
w̄ , 0) [N) \ 1− E.

This finishes the proof. i
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