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Abstract

Let ¢ be a Pisot number and m a positive integer. Consider the increasing sequence
0 =P<PI< <Y<

of those real numbers y which have at least one representation of the form

n
Y= Z eid
i=0

with some integer n>0 and coefficients ¢;e€{0, 1, ...,m}. When m>¢q — 1, we will
determine the structure of the difference sequence {yi+1 — Vi, that is, it is the
image of a sequence generated by a substitution over a finite alphabet of symbols.
Then, we also give an algorithm to determine the exact value of infy (Vi1 — yi)-
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1. Introduction

Fix a real number ¢ > 1 and a positive integer m. Consider the increasing
sequence

0=yo<y1<-<pp<-- (1.1)

" The project was supported by the Special Funds for Major State Basic Research Project and
the Project of Tsinghua University.
*Corresponding author.
E-mail addresses: dfeng@math.tsinghua.edu.cn (D.-J. Feng), wenzy@tsinghua.edu.cn
(Z.-Y. Wen).

0022-314X/02/$ - see front matter © 2002 Elsevier Science (USA). All rights reserved.
PII: S0022-314X(02)00013-6



306 D.-J. Feng, Z.-Y. Wen | Journal of Number Theory 97 (2002) 305-316

of those real numbers y which have at least one representation of
the form

n
y= Z Siqi
i=0

with some integer n>>0 and coefficients ¢;€ {0, 1, ..., m}. A question initiated
by Erdos et al. [EJK 1] is to analyze the properties of the difference sequence
k1 = Yitkso-

Erdés and Komornik [EK] distinguished the cases m>¢g—1 and
m<q—1:

Lemma 1.1. Let g > 1 and m be a positive integer. Then we have:

1) If m=q— 1, then y.1 — yr <1 for each k;
(i1) If m<q — 1, then there exists a subsequence {k,}, such that yy, ., —
Yk, tends to infinity.

Remark 1.2. Statement (ii) above is only implied in the proof of Lemma 2.1
in [EK].

To characterize this difference sequence, Bugeaud [B] proved that
lim inf(yry1 — yx)#0 for every integer m=>=1 if and only if ¢ is a Pisot
number. Recall that ¢ >1 is called a Pisot number if ¢ is an algebraic
number and all its conjugates have moduli less than 1 (see [BDGPS,Sa] for
detailed properties of Pisot numbers). In his proof, Bugeaud used some
results of automata in [BF,F]. One may see [EJK2] or [EK] for a different
proof.

As we will prove in Section 2 (see Lemma 2.2), for a Pisot number
g with m>=q—1 the difference sequence {yi+1 —Vkjrs>o can take
only finitely many distinct values. It is then natural to ask how to
describe the structure of this sequence. The first aim of this paper is
to prove by a concrete construction that this difference sequence can be
generated by a substitution over a finite alphabet (see Theorem 2.1).
Sequences generated by substitutions have many interesting properties. In
particular, it is related closely to number theory (see [Al] or [Sh] for a
survey).

After Erdos et al. [EJK 1], several authors [EJJ,KLP] determined the exact
value of infy(yry1 — yx) for some special Pisot numbers ¢ and integers m
(=q — 1) (see Section 3 for details). The method, which they used, depends
on the choice of ¢. They asked whether one can determine infz(yrr1 — i)
for the general case. The second aim of this paper is to give an algorithm for
the general case. At the end of this paper, we will also give some examples
and computation results.
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2. Structure of the sequence of {yi 1 — V)i

In this section, we will prove that the sequence {yi+1 — yk}r>1 can be
generated by a substitution over a finite alphabet. For this purpose, we recall
first some definitions.

Let .o/ be a finite nonempty set. The set .7 is also called an alphabet and
its elements letters. The free monoid generated by .o is denoted by .o7*; it
contains all finite words, i.e., finite strings of symbols from .¢Z, including the
empty word. The length of a word w, denoted by |w|, is defined as the
number of letters of w. The operation which makes .«/* a monoid is the
concatenation of words.

A substitution on .o/* is a map ¢ : .o/* —.o/*, such that, for any two words
u and v, one has o(uv) = o(u)a(v). The substitution ¢ is determined by the
image of the elements of .o/. We say o is of constant length if the length of
each word o(a) is equal to a constant for ae.o7.

Denote by .«7" the collection of all infinite words over .«Z. A substitution ¢
on ./* can be uniquely extended to a map (denoted also by ¢) on .z" in a
natural way. A sequence ye.oZ" is called a fixed point of the substitution o if
a(y) = y. If for some letter ae.«Z, the word o(a) begins at @ and has length at
least 2, then the sequence of words ¢"(a) converges to a fixed point
o (a)e.N.

Let # be an alphabet. A sequence x = Xox|---Xp: - e is called
substitutive if there exists a fixed point o = wyw;- @, e/N of a
substitution ¢ over an alphabet .o/ and a map h:.o/ —>% such that
x; = h(w;), i=0, i.e., x is the image of w under Ah. In this case, we also
say that the sequence x is generated by the substitution ¢. The reader is
referred to Allouche [Al] and Queffélec [Q] for further properties of
substitutions.

Now we can formulate our result as follows.

Theorem 2.1. Fix a Pisot number q > 1 and a positive integer m. Let {yi} i~
be the sequence defined as in (1.1). If m=q — 1, the difference sequence
{Vk+1 — Vit k>0 is the image of a substitution sequence over a finite alphabet of
symbols. If m<q — 1, lim sup(yr+1 — yx) = 0.

The above theorem generalizes a result of Bugeaud [Bl1], who
considered the case m =1 and obtained the corresponding sub-
stitution property for a special sequence of Pisot numbers in (1,2) (see
Remark 2.6 for details). The proof of Theorem 2.1 is based on the following
lemmas.

Lemma 2.2. Let g be a Pisot number and m a positive integer so that
mz=q — 1. Then the sequence {yi+1 — Yitr=o only takes a finite number of
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values, and this finite number is not greater than

)1
#, @D
[T= (= lol)
where d is the degree of q and o, ...,04_1 are the algebraic conjugates of q.

Remark 2.3. The finiteness of the number of distinct values of (yi+1 — yk)
was proved by Bugeaud [B] for Pisot numbers 1 <g<?2.

Proof of Lemma 2.2. Since ¢ is a Pisot number, a classic result of
algebraic number theory by Garsia (see [G, Lemma 1.51]) states that, if A(x)
is a polynomial with integer coefficients and height M for which A(g)#0,
then

g
gz = C TP (.2)

Now assume that our lemma is not true, that is, the sequence {yry1 — Vi}
takes at least N distinct values, where N is strictly greater than

Cm) =TI (1= o).

Since yry1 — yx <1 for any k by Lemma 1.1(i), we see that either

1
0<yry1 — yk<ﬁ

for some k, or, by Pigeon-hole Principle,
1
0<Ow+1 = yi) = i1 = Yur) S5

for some k" and k”. However due to (2.2) this cannot hold since yj.1 — yx or
w1 — yr) — krp1 — Yir) 1s equal to B(g) for some polynomial B(x) with
integer coefficients and height not exceeding 2m. [

Proof of Theorem 2.1. Let ¢ > 1 be a Pisot number and m a positive integer.
By Lemma 1.1, limsup(yxy1 —yx) = oo whenever m<g— 1. In the
following we assume that ¢ is not an integer and m > ¢ — 1 (the case where
¢ is an integer is trivial, since the sequence (yx.1 — yx) takes the constant
value 1 when m > g — 1). For each positive integer n, let

0=zyo<zn1<- - <zpg,

be all the distinct elements of the set

n—1
5, = {Z &g 1e€{0,1, ...,m}}
=0

mq"
g-1

and denote z,,+1 = Zy, + ﬁ =
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For each ie{0,1, ..., s,}, the segment [z,;, z,;+1] Is termed as an nth net
interval, for which we construct a set y,,; by

.. m
Tni = {Zn,/ _Zn,i:0<]<l+ I,Zn,/' — ZpiZ= _—([_ 1}

We term y,; as the nth color of the segment [z,;,z,,.1]. In particular, we
denote

||Vn,i|| = Zni+1 — Zn,is (23)

that is, |[7,|| represents the length of [z, Zniv1].
Let .« be the collection of all the sets y,;, that is,

o ={y,in=1, i€{0,1, 8,0}

Using an argument similar to the proof of Lemma 2.2, we can show that .o/
has only finitely many elements. To see this, suppose that ¢ is of degree d
and oy, ..., 04— are its algebraic conjugates. If z,,; — z, 7 #0 for some »n and

j?jle {Oa la "-asﬂ}’ by (22)7

oz o>
|n,j n,/’|/ m"’*l

>

thus each set y,; consists of at most Ny = + 2 elements. On

md
@D, (-lab
the other hand, the cardinality of the following set:

m .,
{|Zn,f - Zn,j’|: |Zl‘l,j - Zn,j’|<ﬁa n>09 ]’j/e{oa 1? "-5Sl’l}}

m_ Cm)T!
17741

= 1., -l

not exceed N Név '. Now, take an nth net interval J = [a, b] arbitrarily, and

denote gJ = [qa, gb]. It is clear that the endpoints of ¢J are contained in the

does not exceed N, = . Therefore, the cardinality of .o does

set Hp v {”{’]qfwll}, and thus ¢J is the union of some (n + 1)th net intervals.
Thatis, 3{j,j+ 1,....j+1—1}<{0,1, ...,5,.1}, such that

!
a7 = 7. (2.4)
k=1

where Ji = [Zj41j4k—1, Znr1j4k). Let & be the (n+ 1)th color of Ji, k =
l,....0. As a word in o7* =2, /", &+~ is determined completely by
the nth color, say &, of J. To see this, let & = {¢,1,...,¢,}, where ¢, ..., 1,
are in the increasing order. Then by the definition of the nth color,

[all,b> NnE,={a+1t,..,a+t,_1}, b—a=t,.
q_
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Since Z,41 = U~y (¢&, + i), a direct check shows that
m
——qb | NnE,
[qa panil )ﬂ “

= {qa+qtj+i:qtj+ie [—%,qt,),léjgr— 1,1<i<m} 2.5)

and

[qa, qb)mEn—H
={qa+qti+iq;+iel0,q1,), 1<j<r — 1, 1<i<mj. (2.6)

By (2.6), the number of (n + 1)th net intervals contained in ¢/, denoted by /
in (2.4), is equal to the cardinality of the set

{qt/—i— i qti+ie [_Ll’ql’)’ I<j<r—1, 1<i<m}.
A q—

Thus / only depends on ¢. Now for any integer 1 <k </, the (n + 1)th color
& of Ji = [Zug1j4k—1, Znt1,+4k] can be written as

m —
W= Zniljtk-1" WE qafﬁ,qb NEnit,

m
—F< W = Znt1j+k—1 <0

UAZnt 1k — Zng1jrk—1}-

By (2.5) and (2.6), the differences w — z,41+1—1 are independent of a, thus
&, only depends upon ¢. By the above process, we get a map o : .of — .o7*
defined by a(&) = & ---;, where [ varies depending on &. In other words, we
get a substitution ¢ on 7.

One can check that [0, 1] is a Ist interval with the 1st color 8 = {0, 1}, and
0(0) = 0105041 (here and in the following formula we use [x] to denote
the integral part of the number x), where

0i:{a,-,a,-+1,...,0,1}, ai:max{—i—i—l,—%]}
for 1<i<[q]
0[‘1]+1 = {b5b+ 1’ "'303q7 [LI]}’ b= maX{*[q]’i[ﬁ]}

Since 0 = 0, the infinite word w = lim,,_, o, ¢"(0) is one fix point of the map .
Define a map h: .o/ >R by £e.o/ —||€||, where || - || is defined as in (2.3).
Forn>=0,let I1, I, ..., I, denote all the nth net intervals contained in the

interval [0, ¢"] in increasing order, and &, &, ..., &, denote the correspond-

ing nth colors of [i,1,...,I). Then by our construction, the word

&85 &y s just ¢”(0). Since the word ¢"(0) is always a prefix of ¢"*”(0)

for each m>1, it follows that for any integer m0, =,.,,n[0,4"] = &,N

[0,4"]. Denoted by k, the greatest number k such that y;€[0,4"), then
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{Vke1 — YiYo<k<k, 18 just the image of the word ¢”(0) under the map /. This
proves Theorem 2.1. [

Remark 2.4. The substitution ¢ we constructed in the above proof is not of
constant length whenever ¢ is not an integer. To see this, we note that
lo(0)] = [¢] + 1 > ¢; and |6"(0)| is equal to the number of nth net intervals
contained in [0,¢"], which implies that C~'¢"<|¢"(0)|<Cq" for some
constant C > 0. Thus |¢"(0)|#([¢] + 1)" for some n > 0, which implies that ¢
is not of constant length. However, we do not know in general whether
{Vk+1 — YiYo<k<k, can be an image of a substitution of constant length.

Example 2.5. Take g = (\ﬁ+ 1)/2 and m = 1. In this case, by a simple
calculation, the color set is o7 = {a,b, c,d}, where
a:{oal}’ b:{_1909q_1}? C:{l_q30?1}9 d:{_laoal}

and
a—ab, b-—c, c¢—db, d—cb.

The above substitution can be reduced to the substitution o(a) = ab, o(b) =
a, which is usually called the Substitution of Fibonacci. The infinite sequence

w = lim ¢"(a) = abaababaabaababaababa---

is the unique fixed point of ¢ on AV. Define /:.o/ >R by h(a) = 1 and
h(b) = q — 1. Then the difference sequence {yi+1 — Vi}i>o 1S just the image
of w under the map A.

Furthermore, let m = 1, let />3 be an integer and ¢ = ¢, > 1 the positive

root of the polynomial ¢ —¢’~' — --- —g—1. In this case, by some
calculations, we get a substitution as follows: the color set .« = {1,2, ...,/},
the substitution rule ¢ is defined by

112, 21513, ..., (/= D> 17, i1,

this substitution is called the Rauzy Substitution over I letters.

Define 4 by h(1) = 1 and h(i) = ¢! — Zj';g ¢ for 2<i</. The difference
sequence {yi+1 — Vkjiso 1S just the image of the substitution sequence
lim,,_, o, ¢”(1) under the map 4.

Remark 2.6. It was pointed out by the referee that Bugeaud had obtained
the results in the above example in his dissertation [B1, Théoréme 4, p. 130],
by using a different method.

3. An algorithm to determine inf; (yr1 — yi)

Before giving our algorithm, we would like to recall some known results
about the determination of infy (yxy1 — yi).
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Theorem 3.1 (Erdés et al. [EJ]]). Given an integer r > 1, let g be the unique
positive root of the polynomial ¢ —q~' — --- —q—1. Let m=1. Then
inf ies1 — ye) = 1/q.

Theorem 3.2 (Komornik et al. [KLP]). (i) Let ¢~ 1.466 be the root of the
polynomial ¢* — ¢*> — 1 and m = 1, then inf; (i1 — Vi) = ¢° — 1.

(i) Let ¢ = (/5 + 1)/2 be the golden ratio. Fix a positive integer m. Let ¢
be the integer defined by ¢’ > <m<q’~"', then

ir;f Oks1 = yi) = |Frq — Frial,

where {Fi};~¢ is the Fibonacci sequence 0,1,1,2,3, ..., which satisfies the
recurrence relation F; = F;_; + Fi_, with the initial condition Fy =0 and
F =1

The proof of Theorem 2.1 contains an algorithm to determine all the
possible distinct values of (yx.1 — yx) whenever ¢ is a Pisot number and
m=q— 1.

To see this, let ¢ be the substitution over ./ introduced as in the above
proof and 0 be the color of the 1st net interval [0, 1]. An element ¢ in o/ is
said to be relative to 0 if there exists n such that £ is a letter in the word ¢”(6).
Since we have had an easy algorithm to determine the word a(y) for ne.oZ,
we can determine the set Z of all the elements relative to 6 in a finite number
of steps. The set of all the possible distinct values of (yx+1 — yx) is nothing
but the set {||¢]|: £ %}.

However, the above algorithm consists of a large amount of computations
when ¢ is of high degree. In this section, we will give another much faster
algorithm. Set for each integer n>0,

E, = {Zsiqi: ge{-m,—m+1,...,0, ...,m}}
i=0

and A, = E,n[0,m/(q — 1)]. Define E =J,>¢ E, and A =J,-, 4,. Our

algorithm is based on the following simple lemma:

Lemma 3.1. If g is a Pisot number and m>=q — 1, then

(1) A, <A,y for every integer n=0;
(i) infx (Vg1 — yk) = min{z#0: zeA};
(iil) if Apy+1 = Ay, for some integer ng, then A = Ap,.

Proof. Statement (i) is trivial, it suffices to prove statements (ii) and (iii).
The inequality “>"" in statement (ii) is clear, since yx.; — yr € A for each

k=0 by Lemma 1.1. To see the opposite inequality “<”, note that every

zed, with z#0 can be written as > r &g — > ¢, éq’, where
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¢i,6€4{0,1,...,m} for 0<i<n. That is, z =y, — y, for some integers s>
t=0, thus z=infyx (g1 — yi)-
To prove statement (iii), it suffices to establish the following relation:

An+1=< Lmj (J_rqAn+i)>n[0,%} ¥n>0. 3.1)

i=—m

To see the above equality, pick any zeA,,; and suppose z = Zf’iol &iq'

where g;e {—m,—m + 1, ...,m} for 0<i<n+ 1. Since ze€[0,m/(qg — 1)],

Z— & - & i
= § &iv14q eE‘n
q =0

and
Iz — e0)/gl<(z+m)/q<(m/(qg — 1) +m)/qg =m/[(q — ).

That means |(z — &))/q| € A,, therefore “ =’ holds in (3.1). One can check the
relation “>” easily. Thus we complete the proof of statement (iii). [

By the above lemma, to determine infy (yx+1 — yi), it suffices to determine
the set A. In the following, we give a recursive algorithm to determine A.
For each real number z, denote by 7'(z) the set
{+qz+iie{-m—m+1,..,m}}n[0,m/(qg—1)]

Note that Ay = {0, 1, ...,7} with / = min{m,[m/(q — 1)]}, here [m/(q — 1)]
denotes the integral part of m/(g — 1). By (3.1), we can determine A, by
Ay = Uze/lo T(z).

Suppose we have determined the set A,, with A,,# A,,_1, then we obtain the
set A,.1 by

An+1 = A,V ( U T(Z)> .
ze A\

Since as in the proof of Theorem 2.1, the cardinality of A does not exceed

)
Ny = m dElm) ,
=TT (4 —Jo)
where d is the degree of g and «;, ..., ;| the algebraic conjugates of ¢, there

exists ngp <N, such that A, = A,,—; and thus 4 = A4,,.
Example 3.2. Given reN, m = 1. Let ¢ denote the unique positive real
solution of the equation
qr :qrfl +qr72_|_ e 1.
This implies

1 1 1 ,
=1+ and —=¢ '—¢ % -1
' q
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By a simple calculation, we get
Ag=1{0,1}, TM)={g—1}, T’ =T(¢-D={g—q—1}, ...
and
. 1
Trfl(l) _ T(qr72 _q173 o 1) _ {qu _ qr72 e 1 = _}'
q
Notice that 77(1) = T(}]) ={0,1}, A, = A,_;, we get therefore by Theorem
3.3(iii), 4 = A,_q, and

inf (vt = i) = inf(A\{0}) = 1/g,
this is exactly the conclusion of Theorem 3.1.

Using the above algorithm, by computation experiments we can easily
determine infy (yx.1 — yx) for Pisot numbers ¢ of small degree and small
integer m. In the following Tables 1-3 we give some results by computation
experiments.

Table 1
infy (¥k+1 — yx) corresponding to the first nine smallest Pisot number ¢ and m = 1
Polynomial for ¢ Numer. infy (Vg1 — Vi) Numer.
est. of ¢ est. of
infi k1 — yi)
X —x—-1 1.324717 34> + ¢+ 4 0.06008495
43— 1 1.380277 3 —44* +5 0.00899345
X =xt—x -1 1.443268 44> —3q—4 0.00229284
X —x2 -1 1465571 2 —2 0.14789903
LN B R | 1.501594 —¢5 — 2¢* +4¢° + 34> — 3¢+ 2 0.00034913
X=X —-xr—x-1 1.534157 —2¢* 4+ 34> — ¢* + 3¢ —2 0.00215591
T X0 =X+ ¥ -1 1.545215 —3¢° +2¢° + 8¢* — 2¢° — 8¢% +2¢ + 1 0.00004243
X2 4 xt X2 x—1 1561752 =545 + 8¢ + ¢ — 3¢ + 6g—7 0.00022195
Syt -1 1.570147 ¢* — 24> —2q +2 0.00699287
Table 2
q~1.46557123 be the real root of x> — x> —1=0and 1<m<10
m infy (Vee1 — yk) Numer. est. of
inf (Ve — y)
1 ¢ -2 0.14789903
2 -3¢*+g+5 0.02187412
3 ¢ +49-8 0.01018396
4 —8¢% +9g + 4 0.00694880
5 9> — 5¢ — 12 0.00323516
6 94> — 5¢ — 12 0.00323516
7 —5¢* — Tq+21 0.00150619
8 —5¢> — 1+ 21 0.00150619
9 21g* —26q —7 0.00102772
10 21¢% —26q — 7 0.00102772
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Table 3
g~ 1.32471795 be the real root of x> —x — 1 =0 and 1<m<10
m infy Vre1 — i) Numer. est. of
infg (V1 — yi)
1 =3¢*+q+4 0.06008495
2 ~7¢* +4q+7 0.1472816
3 —4qg* - 3q+ 11 0.00633546
4 104> — 14 + 1 0.00272526
5 ¢ +10g—15 0.00205723
6 —15¢* +¢q+25 0.00155296
7 254 — 15 — 24 0.00117229
8 9¢> —24¢ + 16 0.00066802
9 9¢* — 24g + 16 0.00066802
10 164% 4+ 9¢ — 40 0.00050427
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