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Let CC be the classical middle-third Cantor set and let � be the CantorCC

measure. Set s � log 2�log 3. We will determine by an explicit formula for every
� sŽ . s Ž .point x � CC the upper and lower s-densities � � , x , �� � , x of theCC CC

Cantor measure at the point x, in terms of the 3-adic expansion of x. We show that
Ž � sŽ ..�1 � s Ž s Žthere exists a countable set F � CC such that 9 � � , x � �� � ,CC CC

..�1 � s � sŽ .x � 16 holds for x � CC � F. Furthermore, for � almost all x, � � , xC CC
�s s Ž . �s� 2 � 4 and �� � , x � 4 . As an application, we will show that the s-dimen-CC

sional packing measure of the middle-third Cantor set CC is 4 s. � 2000 Academic

Press
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1. INTRODUCTION

In this paper, we adopt the following terminologies and notations:
Let 0 	 t � � and let � be a measure on � n. The upper and lower

t-densities of � at a � � n are defined respectively by

�t� t� � , a � lim sup 2 r � B a, r ,Ž . Ž . Ž .Ž .
r �0

�tt�� � , a � lim inf 2 r � B a, r ,Ž . Ž . Ž .Ž .
r �0

Ž .where B a, r denotes the closed ball with diameter 2 r and center a.
�We denote by CC the middle-third Cantor set. That is, CC � x �

� �i 4 t tÝ x 3 : � i 
 1, x � 0 or 2 . Let HH and PP denote respectively thei�1 i i
t-dimensional Hausdorff measure and packing measure; dim E andH
dim E denote respectively the Hausdorff and packing dimension of E.P

It is known that dim CC � dim CC � s where s � log 2�log 3. In whatH P
follows, we always assume s � log 2�log 3.

� �For the above definitions and related properties, we refer to 3 .
Ž .Now consider similarity contractions � , � : � � � defined by � x0 1 0

x 2 xŽ . � �� and � x � � . By 4 there exists a unique Borel probability13 3 3

measure � such thatCC

1 1�1 �1� A � � � A � � � A �Ž . Ž . Ž . Ž .Ž . Ž .CC CC 0 C 12 2

for all Borel set A.
The measure � is a self-similar measure which we call a CantorCC

measure.
We summarize some properties of the Cantor measure � used laterCC

� �which can be found in Falconer 4 .
� Ž . Ž .1 . The support of � is CC, � CC 
 � CC � CC.CC 0 1
� sŽ . sŽ .2 . 1 � HH CC 	 PP CC � �.
� s � s �3 . � � HH , where HH is the restriction of the HausdorffCC CCCC

s Ž s � Ž . sŽ .measure HH over the set CC defined by HH A � HH A � CC for allCC

.A � � .
4�. There exist 0 � d� � d� 	 1 such that for � -almost all x � CC,CC

��s � , x � d� and �� s � , x � d� .Ž . Ž .CC CC

� Ž Ž .. Ž . sNotice that d� � d means that the ratio � B x, r � 2 r oscillatesCC

between d� and d� when r is small. It is natural to try and describe this
oscillation: the size of this oscillation, in particular, the exact value of these



FENG, HUA, AND WEN694

densities. Even if for the Cantor measure, the simplest self-similar mea-
sure, to our knowledge, the above questions are still open.

� �Bedford and Fisher 2 introduced another way, the average densities of
a measure, to describe the oscillation by an average number; as an

� �particular case, � was studied by Bedford and Fisher 2 , Patzschke andCC

� � � � � � � �Zahle 10 , and Falconer 5 . Graf 7 and Krieg and Moerters 8 dealt with¨
generalizations of average density approach.

Another type of density of � , maximum density, was introduced andCC

� � � �studied by Strichartz et al. 11 and Ayer and Strichartz 1 .
� s Ž .In this paper, we will determine d�, d , and the values of �� � , x ,CC

� sŽ .� � , x for any x � CC. As an application, we will prove that theCC

s-dimensional packing measure of CC is equal to 4 s.
� �i Ž .For x � CC, let x � Ý x 3 x � 0 or 2 be the 3-adic decimali�1 i i

expansion of x. We say that x is a finite 3-adic decimal if x � 0 or x � 2i i
Ž . � �i Ž .for all large enough i. Define 	 x � lim inf Ý x 3 and 	 x �ˆ k �� i�1 i�k

� Ž . Ž .4min 	 x , 	 1 � x . Then we can formulate our results as follows:ˆ ˆ
Ž .THEOREM 1.1. i For any x � CC,

�ss�� � , x � 4 � 6	 x .Ž . Ž .Ž .CC

Ž .ii For any x � CC

2�s if x is a finite 3-adic decimal,�
�s� s � 4 � 2	 xŽ .� � , x �Ž .CC otherwise�ž /3

Ž .iii If x � CC is not a finite 3-adic decimal, then

�1�s �1�s� s s9 � � , x � �� � , x � 16.Ž . Ž .Ž .Ž .
Ž . � � sŽ . s Ž . 4 �siv sup � � , x � �� � , x : x � CC � 4 � 0.41701, whereCC CC

� Ž . 4 � � sŽ .the supremum can be attained at x � CC : 	 x � 0 , and inf � � , x �CC
3 5s �s �sŽ . 4 Ž . Ž .�� � , x : x � CC � � � 0.21333, where the infimum can beCC 2 2

� Ž . 4attained at x � CC : 	 x � 1�4 .
Ž .v For � -almost all x � CC,CC

��s � , x � 4�s , �� s � , x � 2 � 4�s .Ž . Ž .CC CC

sŽ . sTHEOREM 1.2. PP CC � 4 .

We should point out that our method can be used to determine the
Župper and lower densities of the center Cantor-type measure � 0 � 
 �


. � �1�3 at every point x � 0, 1 , where � satisfies the equation


1 1�1 �1 � �� A � � � A � � � A , �A � 0, 1 ,Ž . Ž . Ž .Ž . Ž .
 
 0, 
 
 1, 
2 2
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Ž . Ž .where � , � : � � � are defined by � x � 
 x, and � x � 
 x0, 
 1, 
 0, 
 1, 


Ž .� 1 � 
 .

2. PROOF OF THEOREM 1.1

At first we prove some lemmas.

Ž . � 4LEMMA 2.1. For any Borel set A � �1, 2 , and i , . . . , i � 0, 1 , we1 k
ha�e

� � � ��� �� A � 2�k� A ,Ž . Ž .Ž .CC i i CC1 k

where � , � , � are defined as in Section 1:CC 0 1

�1 2 1 4Ž . Ž . Ž . Ž . Ž . Ž .Proof. Since A � �1, 2 , � A � , , � A � , . So � A0 1 03 3 3 3
Ž . Ž . Ž . �1Ž Ž ..� � CC � � and � A � � CC � �. Therefore � � A � CC � �1 1 0 1 0

�1Ž Ž .. Ž .and � � A � CC � �. By � , we see that0 1

1 1�1� � A � � A � � � � A � � A ,Ž . Ž . Ž . Ž .Ž . Ž .Ž .Ž .CC 0 CC CC 1 0 CC2 2

1 1�1� � A � � A � � � � A � � A ;Ž . Ž . Ž . Ž .Ž . Ž .Ž .Ž .CC 1 CC CC 0 1 CC2 2

then by induction, we get the conclusion of the lemma.
1 sŽ� �.LEMMA 2.2. For any 0 	 t 	 1, we ha�e � 0, t 
 t .CC 2

1 1 1Ž . Ž . Ž� �.Proof. 1 By � , � 0, � ; thus if 1 
 t 
 , thenCC 3 2 3

1 1 1 s� �� 0, t 
 � 0, � 
 t .Ž . Ž .CC CC 3 2 2

1 �k�1 �k kŽ . � �2 If 0 � t � , take k � � such that 3 	 t � 3 ; then 0, 3 t3
Ž . kŽ� k �. � � Ž� �.� �1, 2 . Notice that � 0, 3 t � 0, t ; by Lemma 2.1, � 0, t �0 CC

1�k k kŽ� �. Ž .2 � 0, 3 t . We get thus, from 1 and the fact that 3 t 
 ,CC 3

s 1�k k �k�1 k s� � � �� 0, t � 2 � 0, 3 t 
 2 3 t � t .Ž .Ž . Ž .CC CC 2

Ž� �. sLEMMA 2.3. For any 0 	 t 	 1, � 0, t 	 t .CC

Proof. Since � is supported by CC, we only need to prove the aboveCC
� � 4inequality holds for t � CC. In fact, if t � CC, let t � sup x � CC, x 	 t .

� Ž� �. Ž� � �. � s sThen t � CC; thus � 0, t � � 0, t 	 t � t .CC CC

Let t � CC ; take k � � such that 3�k�1 	 t � 3�k .

Ž . �k�1 Ž� �. s1 If t � 3 , by a simple calculation, we have � 0, t � t .CC
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Now assume 3�k�1 � t � 3�k ; by the construction of CC, t 
 2 � 3�k�1.
We have thus

� � � �k�1 � � �k�1 �� 0, t � � 0, 3 � � 2 � 3 , tŽ . Ž . Ž .CC CC CC

� �k�1 � � �k�1 �� � 0, 3 � � 0, t � 2 � 3Ž . Ž .CC CC

Ž�k�1. s � �k�1 �� 3 � � 0, t � 2 � 3 .Ž .CC

Ž�k�1. s Ž�k�1. s Ž Ž�k�1.. s ŽLet t � t � 2 � 3 ; we have t 
 3 � t � 2 � 3 in gen-1
Ž . s s s . s Ž� �.eral, if x 
 y � 0, then 2 x � y 
 x � y holds ; thus t � � 0, t 
CC

s Ž� �.t � � 0, t .1 CC 1

Ž . �k 1�1 �k12 Since t � CC, t � CC. Take k � � such that 3 	 t � 3 .1 1 1
Clearly k � k.1

Ž . �k 1�1By the same discussion as in 1 , we see that, if t � 3 , then1
Ž� �. s s Ž� �. �k 1�1� 0, t � t and in this case t � � 0, t � 0. If t � 3 , letCC 1 1 1 CC 1 1

t � t � 2 � 3�k 1�1 ; then2 1

s � � s � � s � �t � � 0, t 
 t � � 0, t 
 t � � 0, t .Ž . Ž . Ž .CC 1 CC 1 2 CC 2

Ž . s Ž� �.3 Repeat the above discussions. We see that either t � � 0, tCC


 0 or, for any m � �,

s � � s � � � �t � � 0, t 
 t � � 0, t 
 �� 0, t .Ž . Ž . Ž .CC m CC m CC m

Ž� �. s Ž� �.Since t � 0, � 0, t � 0 when m � �, we get finally t � � 0, tm CC m CC


 0.
1� �LEMMA 2.4. For any x � 0, and a � 0, define3

1 s� at2
f t � .Ž . sx , a 2 � x � tŽ .3

Then
1Ž . � � Ž .1 On the inter�al 0, , the function f t attains its minimum atx, a3

1 �sŽ .t � 0 or t � . In particular, f t attains its minimum at t � 0 if a 
 2 .x, a3
1Ž . Ž . � �2 If a � 1, the function f t increases strictly on the inter�al 0, .x, a 3

1Ž . Ž .3 If x � 0 and a 
 , the function f t increases strictly on thex, a2
1� �inter�al 0, .3

Proof. The conclusions of the lemma can be obtained by an elementary
discussion.
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� � Ž� �. �s sLEMMA 2.5. For any r � 0, 1 , � 0, r 
 2 r .CC

1 2 1 1Ž . Ž� �. Ž� �.Proof. 1 If 	 r 	 , � 0, r � � 0, � ; consequentlyCC CC3 3 3 2

�s� �� 0, r 1 2Ž .CC �s
 � 2 .s ž /r 2 3
2 2 1Ž .2 If � r 	 1, let t � r � ; then 0 	 t 	 . Thus3 3 3

1 2 2� �� 0, r � 0, � � , � tŽ . Ž . Ž .CC CC CC3 3 3� ss 2r � tŽ .3

1 � �� 0, � � 0, tŽ .Ž .CC CC3� .s2 � tŽ .3

Ž .By Lemmas 2.2 and 2.4 3 , we have
�s1 1 s� �� 0, r � t 1 2Ž .CC 2 2 �s
 
 � 2 .ss 2 ž /r 2 3� tŽ .3

Ž . �k�1 �k3 If 3 	 r 	 3 holds for some positive integer k, then by
Lemma 2.1, we have

� � � k �� 0, r � 0, 3 rŽ . Ž .CC CC� ,ss kr 3 rŽ .
Ž . Ž .thus by 1 , 2 , we get

� �� 0, rŽ .CC �s
 2 .sr

1� � � 4LEMMA 2.6. Let x � 0, 1�3 ; then for any r with max x, � x 	 r 	 13

� x, we ha�e

� �� x � r , x � rŽ .CC �s
 4 � 6 x ,Ž .s
2 rŽ .

2where the equality holds at r � � x.3

1 2 1Ž . � 4 � � � �Proof. 1 If max x, � x 	 r 	 � x, then 0, � x � r, x � r �3 3 3
2 2 1 1� � Ž� �. Ž� �.� , , so � x � r, x � r � � 0, � ; henceCC CC3 3 3 2

� �� x � r , x � r 1Ž .CC �s �s �s� 2 r � 6 r 
 4 � 6 x ,Ž . Ž . Ž .s 22 rŽ .
2where the equality holds at r � � x.3
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2 2 1Ž . Ž .2 If � x � r 	 1 � x, let r � � x ; then 0 � t 	 . By Lem-3 3 3
Ž .mas 2.5 and 2.4 1 , we have

1� � � �� x � r , x � r � � 0, tŽ . Ž .CC CC2�s s2s2 rŽ . 2 � x � tŽ .3

1 1�s s� 2 t �s2 2
 � � 4 � 6 x .Ž .s s2 2s s2 � x � t 2 � xŽ . Ž .3 3

DEFINITION 2.7. Define T : CC � CC by

13 x if 0 	 x 	 3
T x �Ž . 2½ 3 x � 2 if 	 x 	 1.3

Ž . kŽ . � Ž . ŽFor any x � CC, define 	 x � lim inf T x and 	 � min 	 x , 	 1 �ˆ ˆ ˆk ��

.4 kx , where T is the k th iteration of T.
� �i ŽRemark 2.8. Since any x � CC can be written as x � Ý x 3 xi�1 i i

. Ž .� 0 or 2 , it follows that under the above definition, we have T x �
Ý� x 3�i.i�1 i�1

Ž . Ž .PROPOSITION 2.9. For any x � CC, 0 	 	 x 	 1�4, and 	 y � 1�4 for
y � V, where

�
�iV � x � x 3 � CC : � l 
 0, x � 0, x � 2 for any k 
 0 .Ý i l�2 k l�2 k�1½ 5

i�1

Ž .Proof. By the definition of T and a direct check, 	 y � 1�4 for
y � V.

� �i Ž .If x � Ý x 3 � V x � 0 or 2 , then there exist finitely many blocksi�1 i i
Ž .00 or 22 in the sequence x . Suppose that x , x � 0 for some j � 1; byi j j�1

Remark 2.8,

� �
j�1 �i �iT x � x 3 	 2 � 3 � 1�9.Ž . Ý Ýi� j�1

i�1 i�3

j�1Ž .Similarly, T 1 � x 	 1�9 if x , x � 2 for some j � 1. Therefore,j j�1
Ž .	 x 	 1�9 when x � V.

Ž .PROPOSITION 2.10. For � -almost all x � CC, 	 x � 0.CC

We remark that this proposition follows easily by using the law of large
numbers. In the following we will prove it in another direct way.
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� 4Proof. Let l 
 2 be an integer. For any i , . . . , i � 0, 1 , denote S1 l i � � � i1 l

� � � ��� �� . It is clear that S is a contracting similarity with ratioi i i � � � i1 l 1 l

3�l. Moreover, these 2 l contracting similarities satisfy the open set condi-
Ž .tion in fact, they generate the Cantor set CC .

Set
�

�iB � x � x 3 � CC : �m 
 0, x ��� x 	 0 ��� 0 ;Ýl i ml�1 Žm�1. l½ 5���
i�1 l

then B � CC is the self-similar set generated by 2 l � 1 contracting similari-l
� �ties S : i ��� i 	 0 ��� 0. Thus, by 3 , the Hausdorff dimension of thei � � � i 1 l1 l

set B isl

log 2 l � 1 log 2Ž .
dim B � � � s,H l l log 3log 3Ž .

sŽ . Ž . sŽ .from which it follows that HH B � 0. Thus � B � HH B � CC � 0;l CC l l
Ž .consequently � � B � 0. On the other hand, for any x �CC l 
1 l

kŽ . Ž .CC �� B , x � CC, it is ready to verify lim inf T x � 0; thus 	 x �l
1 l k ��

0. We thus finish the proof of the proposition.
1Ž .Proof of Theorem 1.1 i . Given x � CC and 0 � r � , then there exists3

� 4a sequence i taking the values 0 and 1 such thatk k 
1

� �x � lim � � ��� �� 0, 1 .Ž .i i1 kk��

� �Choose the positive integer k such that x � r, x � r contains the
Ž� �.interval � � ��� �� 0, 1 , but does not contain the interval � � ��� �i i i1 k 1

Ž� �. Ž .�1Ž� �.� 0, 1 . Thus � � ��� �� x � r, x � r contains the intervali i ik� 1 1 k�1

Ž� �. � �� 0, 1 , but does not contain 0, 1 ; thereforei k

�1 � �� � ��� �� x � r , x � r � �1, 2 .Ž .Ž .Ž .i i1 k�1

Ž .�1Ž . k�1Ž .Let y � � � ��� �� x ; then by the definition of T , y � T x .i i1 k�1

Let r
 � 3k�1r ; then 0 � r
 � 1. Moreover
�1 
 
� � � �� � ��� �� x � r , x � r � y � r , y � r .Ž .Ž .i i1 k�1

Ž� �. �Ž k�1. s Ž� 
 
 �.By Lemma 2.1, � x � r, x � r � 3 � y � r , y � r ; conse-CC CC

quently

� � � 
 
 �� x � r , x � r � y � r , y � rŽ . Ž .CC CC� . 1Ž .s s
2 r 2 rŽ . Ž .
1 
 
Ž . � � � � Ž� �.1 If y � 0, , then the interval y � r , y � r contains � 0, 1i3 k1 1 
� � � � � 4� 0, , but does not contain 0, 1 , so max y, � y 	 r 	 1 � y. By3 3
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Lemma 2.6, we have

� 
 
 �� y � r , y � rŽ .CC �s
 4 � 6 y , 2Ž . Ž .s
2 rŽ .

 2where the equality holds if r � � y.3

2Ž . � �2 If y � , 1 , by the symmetry of CC, we have always3

� 
 
 � � 
 
 �� y � r , y � r � � 1 � y � r , 1 � y � r ;Ž . Ž .CC CC

Ž .thus by the inequality 2 , we have

� 
 
 �� y � r , y � rŽ . �sCC 
 4 � 6 1 � y , 3Ž . Ž .Ž .s
2 rŽ .

 2 Ž .where the equality holds if r � � 1 � y .3
Ž . Ž . k�1Ž . k�1ŽNotice that in both cases 1 and 2 , y � T x and 1 � y � T 1

. Ž . Ž . Ž .� x ; thus from 1 , 2 , and 3 ,

� �� x � r , x � rŽ .CC
lim inf s

r�0 2 rŽ .
�s

k k
 4 � 6 min lim inf T x , lim inf T 1 � xŽ . Ž .½ 5ž /k�� k��

�s� 4 � 6	 x .Ž .Ž .
Ž . Ž .Since the equalities can hold in 2 and 3 , we get finally

� �� x � r , x � rŽ . �sCC
lim inf � 4 � 6	 x ,Ž .Ž .s

r�0 2 rŽ .

Ž .which implies immediately the conclusion of Theorem 1.1 i .

Ž .Now we are going to prove Theorem 1.1 ii . We first prove some
lemmas.

1 1� � � � 4 �LEMMA 2.11. Gi�en x � 0, , then on the inter�al max x, � x , 1 � x ,3 3

Ž� �.Ž .�sthe function � x � r, x � r 2 r attains its maximum either at r �CC
1� 4max x, � x or at r � 1 � x. Moreo�er, the maximum is3

1 1
max , .s sss½ 52 1 � x� 42 max 3 x , 1 � 3 x Ž .Ž .

1 2Ž . � 4 Ž� �.Proof. 1 If max x, � x 	 r 	 � x, we have � x � r, x � rCC3 3
1 1 �sŽ� �. Ž� �.Ž .� � 0, � ; thus the function � x � r, x � r 2 r decreasesCC CC3 2
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1 2� � 4 �strictly on the interval max x, � x , � x , so the function attains its3 3
1 s s �1� 4 Ž Ž � 4. .maximum at r � max x, � x with maximum 2 max 3 x, 1 � 3 x .3

2 2 1Ž . Ž .2 If � x � r 	 1 � x, let t � r � � x ; then 0 � t 	 . By3 3 3

Lemma 2.3, we have

1 1 s� � � �� x � r , x � r � � 0, � � 0, t 	 � t ;Ž . Ž .Ž .CC CC CC3 2

Ž .thus by Lemma 2.4 2 , we have

1 1s �s� �� x � r , x � r � t � 3Ž .CC 2 2	 	s s s2 2 1s s2 rŽ . 2 � x � t 2 � x �Ž . Ž .3 3 3

1
� ,ss2 1 � xŽ .

where the equality holds at r � 1 � x.

Ž . Ž .From 1 and 2 , we get the lemma.

DEFINITION 2.12. We define the function p: CC � � by

1 1
p x � max ,Ž . s ss s½ 5� 4 � 42 max 3 x , 1 � 3 x 2 max x , 1 � xŽ . Ž .

2� � Ž . Ž . � �if x � 0, 1�3 , and p x � p 1 � x if x � , 1 .3

� sŽ . Ž k .LEMMA 2.13. For any x � CC, � � , x � lim sup p T x .CC k ��

1 �Proof. Given x � CC and 0 � r � , choose k � � such that x � r, x3
� Ž� �.� r contains an interval � � ��� �� 0, 1 , but does not contain the in-i i1 k

Ž� �. Ž .�1Ž� �.terval � � ��� �� 0, 1 . Then � � ��� �� x � r, x � r con-i i i i1 k�1 1 k�1

Ž� �. � �tains � 0, 1 and does not contain 0, 1 , which implies thati k

�1 � �� � ��� �� x � r , x � r � �1, 2 .Ž .Ž .Ž .i i1 k�1

Ž .�1Ž . 
 k�1 k�1Ž .Let y � � � ��� �� x and r � 3 r ; then y � T x and 0 �i i1 k�1

r
 � 1. By Lemma 2.1 and a direct calculation, we have

� � � 
 
 �� x � r , x � r � y � r , y � rŽ . Ž .CC CC� .s s
2 r 2 rŽ . Ž .
1 
 
 1Ž . � � � � Ž� �. � �1 If y � 0, , then y � r , y � r contains � 0, 1 � 0, , buti3 3k

1 
� � � 4does not contain 0, 1 , so max y, � y 	 r 	 1 � y. By Lemma 2.11 and3
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Ž .the definition of the function p � , we have

� 
 
 �� y � r , y � rŽ .CC 	 p y , 4Ž . Ž .s
2 rŽ .

 1� 4where the equality holds for r � max y, � y or 1 � y.3

2Ž . � �2 If y � , 1 , by the symmetry of CC, we have always3

� 
 
 � � 
 
 �� y � r , y � r � � 1 � y � r , 1 � y � r ;Ž . Ž .CC CC

Ž .thus by the inequality 4 , we have

� 
 
 �� y � r , y � rŽ .CC 	 p 1 � y � p y , 5Ž . Ž . Ž .s
2 rŽ .

 1� Ž .4where the equality holds at r � max 1 � y, � 1 � y or y.3

Ž . Ž . kŽ .From 1 , 2 , and the fact that y � T x we get the conclusion of the
lemma.

Ž . Ž .Proof of Theorem 1.1 ii . 1 If x � CC is a finite 3-adic decimal, then
kŽ .there exists l � � such that T x � 0 or 1 when k 
 l; consequently

Ž kŽ .. �s � sŽ . �sp T x � 2 when k 
 l, so by Lemma 2.13, we have � � , x � 2 .CC

Ž .2 In the other case, there exist infinitely many k � � such that
kŽ . � � lŽ . � �T x � 0, 1�3 , and infinitely many l � � such that T x � 2�3, 1 .

Ž .From the definition of p x , we have

1
klim sup p T x � lim supŽ .Ž . ss k k2 max T x , T 1 � x� 4Ž . Ž .k�� k�� Ž .

�s
�s k k� 2 lim inf max T x , T 1 � x .� 4Ž . Ž .ž /

k��

Let

1 2k k� � k � � : T x � 0, , � � k � � : T x � , 1 ;Ž . Ž .� 4 � 41 23 3

then

lim inf max T k x , T k 1 � x� 4Ž . Ž .
k��

� min lim inf T k 1 � x , lim inf T k x .Ž . Ž .½ 5
k�� , k�� k�� , k��1 2
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2 1 2k k�1 kŽ . Ž . Ž .Notice that T 1 � x � � T 1 � x if k � � , and T x �13 3 3
1 k�1Ž .� T x if k � � ; thus23

1 2k k�1lim inf T 1 � x � lim inf T 1 � x �Ž . Ž .3 3ž /
k�� , k�� k�� , k��1 1

1 2k� lim inf T 1 � x � .Ž .3 3ž /
k��

By the same way, we have

1 2k klim inf T x � lim inf T x � .Ž . Ž .3 3ž /
k�� , k�� k��2

We get therefore

min lim inf T k 1 � x , lim inf T k xŽ . Ž .½ 5
k�� , k�� k�� , k��1 2

1 2k k� min lim inf T x , lim inf T 1 � x �Ž . Ž .½ 53 3
k�� k��

1 2 1 2� min 	 x , 	 1 � x � � 	 x � .� 4Ž . Ž . Ž .ˆ ˆ3 3 3 3

By the above discussions, we get

�s �s
	 x � 2 2	 x � 4Ž . Ž .

k �slim sup p T x � 2 � ,Ž .Ž ž / ž /3 3k��

which yields finally from Lemma 2.13

�s
4 � 2	 xŽ .

� s� � , x � .Ž .CC ž /3

Ž . Ž . Ž . Ž .Proof of Theorem 1.1 iii , iv , v . It is clear that part iii of Theorem
Ž . Ž . Ž .1.1 is the direct corollary of the parts i and ii , and part iv is the

Ž . Ž . Ž .corollary of Proposition 2.9, parts i and ii ; part v is the corollary of
Ž . Ž .Proposition 2.10, parts i and ii .

3. PROOF OF THEOREM 1.2

LEMMA 3.1. For any Borel set A � �, we ha�e

s � sPP A � PP CC � A .Ž . Ž . Ž .CC CC
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� s � Ž . sŽ . Ž .4Proof. Let AA � Borel set A � CC : PP A � PP CC � A . FromCC CC
s s Ž nthe scaling property of PP and HH that is, for any 
 � 0 and E � � ,

sŽ . s sŽ . sŽ . s sŽ .. s �PP 
E � 
 PP E , HH 
E � 
 HH E , and the facts � � HH ,CCCC

Ž . � 4� CC � 1, it is easy to prove that for any k � � and i , . . . , i � 0, 1 ,CC 1 k

� �� � ��� �� 0, 1 � CC � AA.Ž .i i1 k

Now set

� 4EE � � 
 the finite union of sets of form�
� �� � ��� �� 0, 1 � CC : k � � .Ž . 4i i1 k

Then EE has finite intersection property; that is, A, B � EE � A � B � EE.
Ž .Moreover, the least �-algebra generated by EE, denoted by � EE , contains

all Borel subsets of CC.
ŽOn the other hand, it is easy to verify that AA is a 
-class i.e., A, B � AA,

.B � A � A� B � AA, and A � AA, A � A or A � A � A � AA . Thus fromi i i
Ž � �. Ž .the monotone class theorem see, for example, Feller 6 , A � � EE .

Ž . Ž .Since � EE � AA, we get AA � � EE , which contains all Borel subsets of CC.

� � n tŽ .LEMMA 3.2 9 . Let A � � be a Borel set. If PP A � �, then for
t � n t Ž t � .PP -almost all x � � , we ha�e �� PP , x � 1.A A

Proof of Theorem 1.2. From Lemma 3.1, for any x � CC,

s s � s s�� PP , x � PP CC �� � , x ;Ž . Ž . Ž .CC CC

Ž .thus from Theorem 1.1 v , for � -almost all x � �, we haveCC

s s � �s s�� PP , x � 4 PP CC .Ž . Ž .CC

s �Consequently for PP -almost all x � �,CC

s s � �s s�� PP , x � 4 PP CC .Ž . Ž .CC

sŽ .On the other hand, since PP CC � �, by Lemma 3.2, we have for
s � s Ž s � . �s sŽ .PP -almost all x � �, �� PP , x � 1; thus 4 PP CC � 1, which yieldsCC CC

the conclusion of the theorem.
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