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Let (Σ
A
,T ) be a topologically mixing subshift of finite type on an alphabet consisting of m symbols and

let Φ :Σ
A
MNRd be a continuous function. Denote by σΦ(x) the ergodic limit lim

n!¢ n−"3n−"
j=!

Φ(T jx)
when the limit exists. Possible ergodic limits are just mean values !Φdµ for all T-invariant measures. For
any possible ergodic limit α, the following variational formula is proved:

h
top

(²x `Σ
A
:σΦ(x)¯α´)¯ sup(hµ :&Φdµ¯α*

where hµ denotes the entropy of µ and h
top

denotes topological entropy. It is also proved that unless all
points have the same ergodic limit, then the set of points whose ergodic limit does not exist has the same
topological entropy as the whole space Σ

A
.

1. Introduction

Let T be the shift map on Σ¯²0, 1,… ,m®1´N (m& 2 an integer). Given an m¬m

matrix A with entries 0 or 1, we consider the subshift of finite type (Σ
A
,T ) [4]. We

shall always assume that A is primitive. That means the dynamical system (Σ
A
,T ) is

topologically mixing. Now let Φ be a continuous function defined on Σ
A

taking values

in Rd. We consider the ergodic limit, when it exists,

σΦ(x)¯ lim
n!¢

1

n
3
n−"

j=!

Φ(T jx).

The quantity σΦ(x) is regarded as the recurrence of x relative to Φ (the term

‘recurrence’ takes its usual sense when Φ¯ (1
B
"

,… , 1
Bd

) where 1
B

denotes the

characteristic function of a set B).

Let LΦ be the set of α such that α¯σΦ(x) for some x `Σ
A
. As a consequence of

the Birkhoff ergodic theorem, LΦ is a non-empty compact convex set. In this paper,

we investigate the sizes of the sets with given recurrences :

EΦ(α)¯²x `Σ
A
:σΦ(x)¯α´ (α `LΦ).

We also investigate the size of the set of points such that the limit defining σΦ(x) does

not exist. The size of the sets in σ
A

will be measured by their topological entropy.

Notice that h
top

is well-defined for non-compact invariant sets using Bowen’s

definition [3].

Let -
inv

be the set of all T-invariant Borel probability measures concentrated on

Σ
A
. The function Φ :Σ

A
MNRd induces a map Φk :-

inv
MNRd, called the projection

map, given by

Φn(µ)¯&
Σ
A

Φdµ (µ `-
inv

).

We notice that LΦ ¯Φk(-
inv

) (thus LΦ is non-empty, convex and compact). For

α `LΦ, let
&Φ(α)¯²µ `-

inv
:Φk(µ)¯α´.

We call &Φ(α) the fibre of projection α.
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The main results of the present paper are the following two theorems.

T A. Suppose that Φ :Σ
A
MNRd is a continuous function. For any α `LΦ,

we ha�e the �ariational formula

h
top

(EΦ(α))¯ max
µ`&Φ(α)

hµ

where hµ is the entropy of µ. Moreo�er, h
top

(EΦ(α)) is an upper semi-continuous function

of α.

T B. Suppose that Φ :Σ
A
MNRd is a continuous function. Then the set of

points x such that the limit defining σΦ(x) does not exist is of the same topological

entropy as that of Σ
A

unless all points x `Σ
A

ha�e the same ergodic limit.

The techniques we use in proving our two theorems are inspired by dimension

theory. Recall that Σ is a metric space where a metric is defined by d(x, y)¯m−n for

x¯ (x
j
)
j&"

and y¯ (y
j
)&

"
where n is the largest value such that x

j
¯ y

j
(1% j% n).

Different notions of dimensions are then defined on Σ. We shall talk about the

Hausdorff dimension dim
H
, the packing dimension dim

P
and the upper box

dimension dim
B

(see [8, 15, 17] for a general account of dimensions). We will exploit

the fact that, in our purely symbolic setting, topological entropy is related to

dimension by

1

logm
h
top

(EΦ(α))¯dim
H
(EΦ(α))¯dim

P
(EΦ(α)).

Theorem A is a variational principle, but it does not follow from the well-known

variational principle of Walters [22], since the invariant set EΦ(α) is not compact. We

emphasize that Theorem A holds for any continuous function Φ. If Φ has some

regularity like Ho$ lder continuity or summable variation, the result of Theorem A is

part of the folklore in multifractal analysis (the thermodynamical formalism is used

there but it does not work in our case because there is a lack of differentiability of

pressure function and a lack of Gibbs property). Even for these regular functions,

discussions of EΦ(α) for boundary points α of LΦ are scarce, which is actually a subtle

problem.

The invariant set studied by Theorem B may be called the divergence set. The

Birkhoff ergodic theorem says that the divergence set is of zero measure with respect

to any invariant measure. Theorem B states that it is either empty or large in the sense

that it has full topological entropy. The result of full topological entropy was

obtained for Ho$ lder functions by Barreira and Schmeling [1] (see also [5, 18]). They

used the thermodynamical formalism which does not work for merely continuous

functions.

The variational formula in Theorem A for those Φ depending only on finitely

many coordinates was simplified in [10].

The key points in our proof are : the entropy hµ is upper semi-continuous and can

be approximated by the conditional entropies of µ ; each conditional entropy is the

entropy of a Markov measure; the recurrent set EΦ(α) can be approximated by

homogeneous Moran sets.

The paper is organized as follows. §2 is devoted to preliminaries. The variational

formula is proved in §3 and the divergence set is studied in §4. Finally §5 contains

some remarks.
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2. Preliminaries

Most of the material in this section is known. We recall it here for convenience,

at the same time introducing notation.

For k& 1, Σ
A,k

denotes the set of finite sequences ω¯ (x
"
,… ,x

k
) such that

a
xi,xi+"

¯ 1 for all 1% i!k. These sequences ω are called (admissible) words of length

rωr (¯k). For ω¯ (a
"
,… , a

k
) `Σ

A,k
, the k-cylinder [ω] is defined by ²x `Σ

A
:x

"
¯

a
"
,… ,x

k
¯ a

k
´. There is a one-to-one correspondence between Σ

A,k
and the set of

k-cylinders, so sometimes we shall use Σ
A,k

to denote the set of all k-cylinders. The

prefix of length n of a point x `Σ will be written as xr
n
.

Let ξ
!
be the partition consisting of all 1-cylinders [0], [1],…, [m®1]. Let ξ

n
be the

join of the partitions T−jξ
!

(0% j% n). Since ξ
!

is a generator, the entropy hµ of an

invariant measure µ `-
inv

can be expressed as [22]

hµ ¯ lim
n!¢

Hµ(ξn
)

n
where Hµ(ξn

)¯® 3
A`ξ

n

µ(A) logµ(A).

The nth conditional entropy of µ, denoted by h(n)
µ , is defined by

h(!)
µ ¯Hµ(ξ

!
), h(n)

µ ¯Hµ(ξn
)®Hµ(ξn−"

) (c n& 1).

Using elementary properties of the conditional entropy [22, p. 80], the following

proposition may be proved.

P 1. For each µ `-
inv

, we ha�e

hµ ¯ lim
n!¢

h(n)
µ ¯ inf

n

h(n)
µ .

The entropy hµ is an upper semi-continuous functional defined on -
inv

with respect to

the weak* topology.

Markov measures on the full shift space were discussed in [7]. We present them

here for subshifts of finite type. Markov measures form a special class of invariant

measures and they are dense in -
inv

. A Borel probability measure µ on Σ
A

is uniquely

determined by its values on cylinders. On the other hand, any set function µ defined

on cylinders satisfying the following conditions : for all a `Σ
A,n

, all n& 1

3
a`Σ

A,n

µ([a])¯ 1, 3
ε

µ([a, ε])¯µ([a])

may be uniquely extended to a Borel probability measure on Σ
A
. Such a measure µ

is invariant if and only if for all a `Σ
A,n

, all n& 1

3
ε

µ([ε, a])¯µ([a]).

These three conditions may be referred to as the normalization condition, the

consistency condition and the invariance condition. Let F& 1 be an integer. By a

Marko� measure of order F or simply F-Marko� measure, we mean a measure µ `-
inv

having the Markov property

µ([ε
"
,… , ε

n
])¯µ([ε

"
,… , ε

n−"
])

µ([ε
n−F,…, ε

n
])

µ([ε
n−F,… , ε

n−"
])

(n" F).
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The proof of the following proposition is straightforward.

P 2. Suppose that µ `-
inv

is an F-Marko� measure. The entropy of µ

is

hµ ¯® 3
ε
"
,…,εF+"

µ([ε
"
,… , εF+"

]) log
µ([ε

"
,… , εF+"

])

µ([ε
"
,… , εF])

.

Moreo�er, h(n)
µ ¯ hµ for n& F­1.

For n& 1, denote by ∆
n

the set of probability vectors p defined on Σ
A,n

satisfying

3
ε

p(ε, ε
"
,… , ε

n−"
)¯3

ε

p(ε
"
,… , ε

n−"
, ε).

The Markov property is equivalent to

µ([ε
"
,… , ε

n+F])¯µ([ε
"
,…, εF+"

])0
n

j=#

µ([ε
j
,… , ε

j+F])

µ([ε
j
,… , ε

j+F−"
])

(n& 1).

It follows that an F-Markov measure is uniquely determined by the function p defined

on Σ
A,F+"

by

p(x
"
,… ,xF+"

)¯µ([x
"
,… ,xF+"

])

which belongs to ∆F+"
. Conversely, given p `∆

k
, we define for n"k

µ([a
"
,… , a

n
])¯ p(a

"
,… , a

k
) 0
n−k+"

j=#

p(a
j
,… , a

j+k−"
)

3ε p(a
j
,… , a

j+k−#
, ε)

.

This set function µ can be uniquely extended to a (k®1)-Markov measure. In this

way, we get a one-to-one correspondence between ∆
k
and the set of all (k®1)-Markov

measures.

Let p `∆
k
(k& 1). If p(x)" 0 for x `Σ

A,k
, we write p `∆+

k
. From the last expression

of µ([a
"
,… , a

n
]) we get the following (see [4] for the definition of Gibbs measures).

P 3. Suppose that p `∆+

k
. Then the (k®1)-Marko� measure

corresponding to p is the Gibbs measure associated to the potential

ψ(x)¯ log p(x
"
,… ,x

k
)®log3

ε

p(x
"
,… ,x

k−"
, ε).

Let us summarize. Given µ `-
inv

, we have a sequence of Markov measures ²µ
k
´

which correspond to the functions ²p
k
`∆

k
´ induced from µ by

p
k
(a

"
,… , a

k
)¯µ([a

"
,… , a

k
]).

These Markov measures approach µ in the following sense (Propositions 1 and 2) :

µ¯w*® lim
k!¢

µ
k
, hµ ¯ lim

k!¢

hµ
k

.

We call µ
k
the kth Marko� approximation of µ. If the support of µ is the whole space

Σ
A
, its Markov approximations are all Gibbs measures then ergodic (Proposition 3).

In our proof of Theorem A, we need to construct a kind of Cantor set, called a

homogeneous Moran set. It is helpful to think of Σ as the interval [0, 1] and cylinders
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as subintervals. Let ²n
k
´
k&

"
be a sequence of positive integers and ²c

k
´
k&

"
be a sequence

of positive numbers satisfying n
k
& 2, 0! c

k
! 1, n

"
c
"
% δ and n

k
c
k
% 1 (k& 2),

where δ is some positive number. Let

D¯ 5
k&

!

D
k

with D
!
¯²W´,D

k
¯²(i

"
,… , i

k
) ; 1% i

j
% n

j
, 1% j%k´.

If σ¯ (σ
"
,…,σ

k
) `D

k
, τ¯ (τ

"
,…, τ

m
) `D

m
, we define σ n τ¯ (σ

"
,…,σ

k
, τ

"
,…, τ

m
).

Suppose that J is an interval of length δ. A collection &¯²Jσ :σ `D´ of subintervals

of J is said to have a homogeneous Moran structure if it satisfies :

(1) JW ¯ J.

(2) For any k& 0 and σ `D
k
, Jσn

"
, Jσn

#
,… , Jσnnk+"

are subintervals of Jσ and

Jσni
4 Jσnj

¯W (i1 j ).

(3) For any k& 1 and any σ `D
k−"

, 1% j% n
k
, we have

rJσnj
r

rJσr
¯ c

k

where rAr denotes the length of A.

If & is such a collection, EB4
k&

"
5σ`Dk

Jσ is called a homogeneous Moran set

determined by &.

P 4 [11, 12]. For the homogeneous Moran set defined abo�e, we ha�e

dim
H

E& lim inf
n!¢

log n
"
n
#
…n

k

®log c
"
c
#
…c

k+"
n
k+"

.

To end this section, we point out that the topological entropy of a subshift Σ
A

is,

up to a multiplicative factor logm, equal to the Hausdorff dimension (and its packing)

dimension.

3. Proof of Theorem A

Although the theorem is stated in terms of entropy, it will be more convenient

to use dimension during the proof. Actually, we will prove that

dim
H

EΦ(α)¯dim
P
EΦ(α)¯

1

logm
max
µ`&Φ(α)

hµ.

First we prove a formal formula of dimension. The matrix A being primitive, there

is an integer M& 1 such that all the entries of AM are strictly positive. Then for any

ω¯ (x
j
)n
j="

`Σ
A,n

and any 0% z%m®1, there are 0% y
"
,… , y

M−"
%m®1 such that

(x
"
,… ,x

n
, y

"
,… , y

M−"
, z) `Σ

A,n+M
.

We call ωa ¯ (x
"
,… ,x

n
, y

"
,… , y

M−"
) an extension of ω joining z.

Let α `Rd, n& 1 and ε" 0. Denote by F(α, n, ε) the set of all n-cylinders each of

which contains at least a point x such that

)1n 3
n−"

j=!

Φ(T jx)®α)! ε.

Let f(α, n, ε) be the cardinality of F(α, n, ε).

We shall use S
n
(Φ,x) to denote the partial sum 3n−"

j=!
Φ(T jx) and use A

n
(Φ,x) to

denote the average n−"S
n
(Φ,x). We shall write V

n
(Φ)¯3n

j="
var

j
(Φ) where var

j
(Φ)¯

sup
xr

n=yr
n

rΦ(x)®Φ(y)r (r[r denoting the Euclidean norm).
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P 5. For α `LΦ, we ha�e

lim
ε!

!

lim inf
n!¢

log f(α, n, ε)

logmn
¯ lim

ε!
!

lim sup
n!¢

log f(α, n, ε)

logmn
(¯ :ΛΦ(α)).

The function ΛΦ :LΦ MN [0, 1] is conca�e and upper semi-continuous.

Proof. Without loss of generality, assume that rΦ(x)r% 1 (for all x) where r[r
denotes the Euclidean norm. We want to show that log f(α, n, ε), as a sequence of n,

has a kind of subadditivity. More precisely, for any ε" 0, there is an N such that

[ f(α, n, ε)]p % f(α, (n­M ) p, 2ε) (c n&N,c p& 1).

In fact, suppose that ²ω
"
,…,ω

p
´ZF(α, n, ε). Let ω¯ωa

"
…ωa

p
where ωa

k
is an

extension of ω
k
joining the leading alphabet of ω

k+"
(with convention ω

p+"
¯ω

"
). Let

x
k
` [ω

k
] (1%k% p) be a point such that

)3n−"

j=!

Φ(T jx
k
)®nα)! nε.

Let x be a point in [ω]. We have

S
(n+M)p

(Φ,x)®(n­M ) pα¯ 3
p−"

k=!

3
n+M−"

j=!

(Φ(T jz
k
)®α)

where z
k
is a point in Σ

A
with z

k
r
n+M

¯ωa
k
so that z

k
` [ωa

k
]Z [ω

k
]. The above inner sum

over j is bounded by

) 3
n+M−"

j=!

(Φ(T jx
k
)®α))­ 3

n+M−"

j=!

rΦ(T jz
k
)®Φ(T jx

k
)r% nε­2M­V

n
(Φ)­2M.

It follows that

rA
n+M

(Φ,x)®αr%
n

n­M
ε­

4M

n­M
­

V
n
(Φ)

n­M
.

Since Φ is continuous, n−"V
n
(Φ) tends to zero as n!¢. Therefore rA

n+M
(Φ,x)®αr%

2ε for sufficiently large n&N and for all p& 1. Then [ω], which contains x, is in

F(α, (n­M ) p, 2ε). Notice that different choices ²ω
"
,…,ω

p
´ give rise to different ω.

Thus we get the desired subadditivity. By using this subadditivity, it is easy to get

lim sup
n!¢

log f(α, n, ε)

logmn
% lim inf

n!¢

log f(α, n, 2ε)

logmn

from which the equality of the two limits follows.

It is evident that 0%ΛΦ(α)% 1. Let α, β `LΦ. Let p, q be two positive integers. By

subadditivity, for large n we have

[ f(α, n, ε)p [ f(β, n, ε)]q% f(α, (n­M ) p, 2ε) f(β, (n­M ) q, 2ε).

Let u `F(α, (n­M ) p, 2ε) and � `F(β, (n­M ) q, 2ε). Take a point x ` [uw�] where w `
Σ

A,M−"
such that uw is an extension of u joining the leading alphabet of �. As above,

we can get

rS
(p+q) (n+M)+M

(Φ,x)®(n­M ) pα®(n­M ) qβ r

% 2ε(n­M ) (p­q)­V
(n+M)p

(Φ)­V
(n+M)q

(Φ)­M.
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It follows that if n is sufficiently large, uw� `F((pα­qβ )}(p­q), (n­M ) (p­q)­
M, 3ε). Consequently, for large n we have

f(α, np, 2ε) f(β, nq, 2ε)% f 0pα­qβ

p­q
, n(p­q), 3ε1 .

By the equality of the two limits that we have already proved, we can get

p

p­q
ΛΦ(α)­

q

p­q
ΛΦ(β )%ΛΦ 0 p

p­q
α­

q

p­q
β1 .

This gives the rational concavity of the (bounded) function ΛΦ. However, the

concavity of ΛΦ is a consequence of its rational concavity and its upper semi-

continuity that we prove below.

Given α `LΦ. For any η" 0, there is ε" 0 such that

lim inf
n!¢

log f(α, n, ε)

logmn
!ΛΦ(α)­η.

As above, it can be proved that for β `LΦ with rβ®αr! ε}3 we have

F(β, n, ε}3)ZF(α, n, ε)

when n is sufficiently large. It follows that f(β, n, ε}3)% f(α, n, ε). Therefore

ΛΦ(β )% lim inf
n!¢

log f(β, n, ε}3)

logmn
% lim inf

n!¢

log f(α, n, ε)

logmn
%ΛΦ(α)­η.

This establishes the upper semi-continuity of ΛΦ at α. *

P 6. For α `LΦ, we ha�e

dim
H

EΦ(α)¯dim
P
EΦ(α)¯ΛΦ(α).

Proof. Step 1: For α `LΦ, we have dim
P
EΦ(α)%ΛΦ(α).

Let

G(α,k, ε)¯ 4
¢

n=k

²x `Σ : rA
n
(Φ,x)®αr! ε´.

It is clear that for any ε" 0,

EΦ(α)Z 5
¢

k="

G(α,k, ε).

Notice that if n&k, G(α,k, ε) is covered by the union of all cylinders [ω] with ω `
F(α, n, ε) whose total number is f(α, n, ε). Therefore we have the following estimate

dim
B
G(α,k, ε)% lim sup

n!¢

log f(α, n, ε)

logmn
(c ε" 0,ck& 1).

On the other hand, by using the σ-stability of the packing dimension, we have

dim
P
EΦ(α)%dim

P 05
¢

k="

G(α,k, ε)1% sup
k

dim
P
G(α,k, ε)% sup

k

dim
B
G(α,k, ε).

This, together with Proposition 5, leads to the desired result.
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Step 2: For α `LΦ, we have dim
H

EΦ(α)&ΛΦ(α).

Given δ" 0. By Proposition 5, there are F
j
W¢ and ε

j
X 0 such that

f(α, F
j
, ε

j
)"mF

j(
ΛΦ(α)−δ/#).

Write simply FF
j

¯F(α, F
j
, ε

j
) and fF

j

¯ f(α, F
j
, ε

j
). Define a new sequence ²F$

j
´ in the

following manner

knlnm
F
"
,…, F

"
;

N
"

knnlnnm
F
#
,… , F

#
;… ;

N
#

knlnm
F
j
,… , F

j
;

Nj

…

where N
j
is defined recursively by

N
j
¯ 2F

j+"
+Nj−" ( j& 2) ; N

"
¯ 1.

Denote n
j
¯ fF$

j

and c
j
¯m−F$

j . Define

Θ*¯0
¢

j="

FF$
j

.

Observe that Θ* is a homogeneous Moran set in Σ. More precisely Θ* is constructed

as follows. At level 0, we have only the initial cylinder Σ. In step j, cut a cylinder of

level j®1 into mF$
j cylinders and pick up n

j
ones. By Proposition 4, we have

dim
H

Θ*& lim inf
k!¢

log(n
"
…n

k
)

®log(c
"
…c

k
c
k+"

n
k+"

)

& lim inf
k!¢

log( fF$
"

…fF$
k

)

log(2F$
"
+…+F$

k+
F$
k+")

¯ lim inf
k!¢

log( fF$
"

…fF$
k

)

log(2F$
"
+…+F$

k)

&ΛΦ(α)®δ.

However Θ* is a set in Σ, not necessarily in Σ
A
. Based on Θ*, we are going to construct

a set Θ** which is not only in Σ
A

but also in EΦ(α), and which is of the same Hausdorff

dimension as Θ*.

We extend words in FF$
j

in the following manner. Let

A¯²a :x¯xrF$
j −"

a,x `FF$
j

´, B¯²b¯xr
"
,x `FF$

j+"

´.

That is, A is the set of the last alphabets of the words in FF$
j

and B is the set of the

first alphabets of the words in FF$
j+"

. For each pair (a, b) `A¬B, take one (and only

one) word w `Σ
A,M

such that awb is admissible. We call w a bridge word. For y¯
u
"
u
#
…`Θ*, define

y*¯ u
"
w
"
u
#
w
#
…u

j
w

j
u
j+"

w
j+"

…

where w
j
is the bridge word as defined above. We define Θ** as the set of sequences

y*. By considering the map sending y to y* which is nearly bi-Lipschitz, we have

dim
H

Θ**¯dim
H

Θ*. On the other hand, Θ**ZEΦ(α). In fact, let F$$
j

¯ F$
j
­M. For

large n (" F
"
), there is a unique integer J(n) such that

3
j(n)

i="

F$$
i

% n! 3
J(n)+"

i="

F$$
i

.
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The choice of N
j
implies that F

k+"
¯ o(N

k
). It follows that

lim
n!¢

3J(n)

i="
F$$
i

3J(n)+"
i="

F$$
i

¯ 1.

Let x¯ (x
n
) `Θ**. Let Λ

j
be the set of integers between F$$

"
­…­F$$

j−"
­1 and

F$$

"
­…­F$$

j
. We have

S
n
(Φ,x)¯ 3

J(n)

j="

3
k`Λ

j

Φ(Tkx)­O(F$$
J(n)+"

)

¯ 3
J(n)

j="

F$$
j

(α­o(1))­o(n)

¯αn­o(n).

It follows that x `EΦ(α). *

We now prove the lower estimate

dim
H

EΦ(α)& sup
µ`&Φ(α)

hµ

logm
.

Since the entropy hµ is upper semi-continuous as a function of µ (see Proposition 1)

and &Φ(α) is compact, the above supremum is attained. Let µ
!
be a measure in &Φ(α)

which attains the supremum. Take an invariant measure ν with support Σ
A
. For

any ε" 0, consider µε ¯ (1®ε)µ
!
­εhν as an approximation of µ

!
. Let αε ¯!Φdµε. We

have
rαε®αr% 2εsΦs

where sΦs¯ sup
x
rΦ(x)r. Since the support of the invariant measure µε is the whole

space Σ
A
, we can find a sequence of ergodic Markov measures µ(k)

ε such that µ(k)
ε tends

to µε in the weak* topology and hµ(k)ε
tends to hµε

as k!¢ (see Propositions 2 and 3).

Let α(k)
ε ¯!Φdµ(k)

ε . We have

rα(k)
ε ®αεr% ε (k&k(ε)).

Since ΛΦ([) is upper semi-continuous (Proposition 5), for any η, when ε is sufficiently

small and k is sufficiently large, we have

ΛΦ(α)&ΛΦ(α(k)
ε )®η&

hµ(k)ε

logm
®η

where for the second inequality we used the fact that ΛΦ(α)& hµ}logm for any

ergodic measure µ `&Φ(α). In fact, the ergodicity implies that µ(EΦ(α))¯ 1. It follows

that dim
H

µ%dim
H

EΦ(α). However dimµ¯ hµ}logm by the Shannon–McMillan–

Breiman theorem [19, p. 261] (see [9] for dim
H

µ). Letting k!¢ gives

ΛΦ(α)&
hµε

logm
®η¯

(1®ε) hµ
!

­εhν

logm
®η.

Now let ε! 0 and then η! 0. We get ΛΦ(α)& hµ
!

}logm.

We now prove the upper estimate

dim
P
EΦ(α)% sup

µ`&Φ(α)

hµ

logm
.
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Given any ε" 0. If k& 1 is sufficient large, we can find a function Φ
k
depending only

on the first k coordinates of x `Σ
A

such that

rΦ
k
(x)®Φ(x)r!

ε

2
(cx).

Thus, for x `EΦ(α) we have

lim sup
n!¢

)1nS
n
(Φ

k
,x)®α)! ε.

It follows that

EΦ(α)Z5
¢

j="

4
¢

n=j

B(n,k, ε) (ck¯k(ε) large and ε" 0)

where

B(n,k, ε)¯²x `Σ : rn−"S
n
(Φ

k
,x)®αr! ε´.

In the following, we will show that for each j `N

dim
B
4
¢

n=j

B(n,k, ε)% sup
rΦk(µ)−αr!

$
ε

hµ

logm
.

Take all cylinders of the form [x
"
,… ,x

n+k−"
] which intersect B(n,k, ε). They

constitute a cover of (n­k®1)-cylinders of B(n,k, ε). Denote by T(n,k, ε) the number

of cylinders contained in this cover. We are going to estimate this number.

For ω `Σ
A,n+k−"

, denote by Nω(ε
"
,…, ε

k
) the number of words of the form ε

"
…ε

k

appearing in ω. The family ²Nω(ε
"
,… , ε

k
)´ with varying ε

"
,…, ε

k
will be called the

k-distribution of ω. Let D¯²n(ε
"
,… , ε

k
)´ be the k-distribution of some ω such that

[ω] intersects B(n,k, ε). This means that

n(ε
"
,…, ε

k
)¯Nω(ε

"
,… , ε

k
)

)1n 3
ε
"
,…,εk

n(ε
"
,…, ε

k
)Φ

k
(ε

"
,… , ε

k
)®α)! ε.

We denote by 4(D) the collection of all such cylinders [ω] and by Γ(D) its cardinality.

Let 0
k

be the set of all possible such distributions D. The cover is then decomposed

into disjoint families 4(D) with D `0
k
. It is clear that the cardinality of 0

k
, the

number of families, is at most nm
k. Then we have

T(n,k, ε)¯ 3
D`0

k

Γ(D)% nm
k max

D`0
k

Γ(D).

Thus

logT(n,k, ε)

logmn
%max

D`0
k

logΓ(D)

logmn
­O 0log n

n 1 .
(The constant in ‘O ’ depends upon k.)

Since n(ε
"
,… , ε

k
)¯Nω(ε

"
,… , ε

k
), ²n(ε

"
,… , ε

k
)}n´ defines a probability vector. For

any η" 0, there is a number N¯N(η) such that when n"N we can find p `∆+

k
such

that (see [10, Lemma 3])

)n(ε
"
,… , ε

k
)

n
®p(ε

"
,… , ε

k
))! η, p(ε

"
,… , ε

k
)"

η

mk+"

.
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Consider the Markov measure ν
p

corresponding to p. For any cylinder [ω] `4(D)

with ω¯ (x
i
)n+k−"
i="

, we have Nω(ε
"
,…, ε

k
)¯ n(ε

"
,… , ε

k
), so we have

ν
p
([ω]¯

p(x
"
,… ,x

k
)

t(x
"
,… ,x

k
)

0
ε
"
,…,εk

t(ε
"
,… , ε

k
)n(ε

"
,…,εk)

&
η

mk+"

0
ε
"
,…,εk

t(ε
"
,… , ε

k
)n(ε

"
,…,εk)

where

t(a
"
,… , a

k
)¯

p(a
"
,… , a

k
)

3ε p(a
"
,… , a

k−"
, ε)

.

Let a¯ a(D) denote the right-hand side of the above inequality. Then

aΓ(D)% ν
p 0 5

[ω]`4(D)

[ω]1% 1.

Combining the last two expressions gives

Γ(D)%
1

a
%

mk+"

η
0

ε
"
,…,εk

t(ε
"
,… , ε

k
)−n(ε

"
,…,εk).

Then

logΓ(D)

logmn
%O 0rlog ηr

n 1® 3
ε
"
,…,εk

n(ε
"
,… , ε

k
)

n
log

m
t(ε

"
,… , ε

k
)

%O 0rlog ηr
n 1® 3

ε
"
,…,εk

p(ε
"
,… , ε

k
) log

m
t(ε

"
,… , ε

k
)­O(ηrlog ηr).

Note that Φk(ν
p
) is near α in the sense that

rΦk(ν
p
)®αr% ) 3

ε
"
,…,εk

p(ε
"
,… , ε

k
)Φ

k
(ε

"
,… , ε

k
)®α)­ε

% ) 3
ε
"
,…,εk

n(ε
"
,… , ε

k
)

n
Φ

k
(ε

"
,… , ε

k
)®α)­mkηsΦ

k
s­ε

%mkηsΦ
k
s­2ε.

Now we can conclude that

logΓ(D)

logmn
%O 0rlog ηr

n 1­O(ηrlog ηr)­ sup
µ`∆

k,
rΦk(µ)−αr!m

kηsΦ
k
s+#ε

hµ

logm
.

Since the right-hand side is independent of D, we get

logT(n,k, ε)

logmn
%O 0rlog ηr­log n

n 1­O(ηrlog ηr)­ sup
rΦk(µ)−αr!m

kηsΦ
k
s+#ε

hµ

logm
.

Let n!¢ then let η! 0, we get

dim
B
4
¢

n=j

B(n,k, ε)% lim sup
n!¢

logT(n,k, ε)

logmn
% sup

rΦk(µ)−αr%
$
ε

hµ

logm
.
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By the σ-stability of the packing dimension and the inequality dim
P
%dim

B
(see [17]),

we have

dim
P
(EΦ(α))%dim

P 05
¢

j="

4
¢

n=j

B(n,k, ε)1
% sup

j

dim
B
4
¢

n=j

B(n,k, ε)% sup
rΦk(µ)−αr%

$
ε

hµ

logm
.

Note that the set of invariant measures µ such that rΦk(µ)®αr% 3ε is compact and

that hµ is upper semi-continuous. For any F& 1, there is an invariant measure µF such

that

hµF
¯ sup

rΦk(µ)−αr%
"/

F

hµ.

We can also assume that µF converges to some measure µ¢. It is clear that µ¢ `&Φ(α).

Thus, by the upper semi-continuity of the entropy,

dim
P
EΦ(α)% lim inf

ε!
!

sup
rΦk(µ)−αr%

$
ε

hµ

logm
¯

hµ¢

logm
. *

4. Proof of Theorem B

As in the proof of Theorem A, we will use Hausdorff dimension instead of

topological entropy.

We first prove the fact that if the limit defining σΦ(x) does not exist for some point

x, it does not exist for points in a set of Hausdorff dimension equal to that of Σ
A
. Such

points are called di�ergent points.

We start with a method to construct new divergent points by using a given

divergent point. Take a subset of words W*ZΣ
A,M−"

such that for any t, s ` ²0, 1,… ,

m®1´ there is one and only one word w `W* such that tws `Σ
A,M+"

(maybe there are

several choices for a given pair (t, s), but we choose only one). Assume that Φ takes

real values. Without loss of generality, we assume that rΦ(x)r% 1 (for all x `Σ
A
).

Denote by σΦ(x) and σa Φ(x) the lim inf and lim sup of n−"3n−"
j=!

Φ(T jx).

Suppose there are two points u, � `Σ
A

(maybe u¯ �) such that σa Φ(u)"σΦ(�). Take

two numbers a, b such that

σa Φ(u)" a" b"σΦ(�).

For any k& 1, there exists F
k
& 1 such that

rΦ(x)®Φ(y)r%
a®b

k
if x

i
¯ y

i
(1% i% F

k
).

Take a rapidly increasing sequence ²n
i
´
i&"

satisfying

1

n
#k−"

3
n
#k−"

−"

j=!

Φ(T j(u))" a,
1

n
#k

3
n
#k−"

j=!

Φ(T j(�))! b,

k¯ o(n
k
), F

k
¯ o(n

k
), 2(M®1)k%3

k

j="

n
j
, 3

k−"

j="

n
j
¯ o(n

k
).

Fix an integer q& 1. Let x¯x
"
x
#
…`Σ

A
. We cut x into words of lengths ²qn

k
´

where ²n
k
´ is as above. This means that

x¯xa
"
xa
#
…xa

k
… with rxa

k
r¯ qn

k
.



,    241

Define ua
k

to be the prefix of u with rua
k
r¯ n

#k−"
and �a

k
to be the prefix of � with

r�a
k
r¯ n

#k
. Denote

B
#k−"

¯ ua
k
, B

#k
¯ �a

k
.

Now construct a new point x* `Σ
A

as follows

x*¯xa
"
W!

"
B
"
W"

"
xa
#
W!

#
B
#
W"

#
…xa

k
W!

k
B

k
W"

k
…

where W!
k

and W"
k

are admissible words in W*.

P 7. Suppose that σa Φ(u)"σΦ(�) for some u, � `Σ
A

(maybe u¯ �). If

σΦ(x)¯σa Φ(x), then σa Φ(x*)"σΦ(x*) where x* is constructed as abo�e from x.

Proof. Notice that the word xa
k
W!

k
B

k
W"

k
is of length

L
k
¯ qn

k
­(M®1)­n

k
­(M®1)¯ (q­1) n

k
­2(M®1).

Let N
k
¯3k

j="
L

j
¯ (q­1)3k

j="
n
j
­2k(M®1) and let M

k
¯ q3k

j="
n
j
. Consider the

partial sum

3
N

#k−"

j=!

Φ(T jx*)¯ 3
N

#k−"
−"

j=!

Φ(T jx*)­ 3
N

#k−"

j=N
#k−"

Φ(T jx*).

The first sum on the right is bounded by N
#k−"

(since 1 is an upper bound of Φ). For

the second sum, we have

3
N

#k−"

j=N
#k−"

Φ(T jx*)¯ 3
L
#k−"

j=!

Φ(T j(xa
#k

W!

#k
B
#k

W"

#k
…))

% 3
M

#k−
F
k−"

j=M
#k−"

Φ(T jx)­(qn
#k

®F
k
) [

a®b

k
­(F

k
­M®1)

­ 3
n
#k−

F
k−"

j=!

Φ(T j�)­(n
#k

®F
k
) [

a®b

k
­(F

k
­M®1)

¯ 3
M

#k−
F
k−"

j=M
#k−"

Φ(T jx)­ 3
n
#k−

F
k−"

j=!

Φ(T j�)

­
(a®b) ((q­1) n

#k
®2F

k
)

k
­2(F

k
­M®1)

:̄A
k
­B

k
­C

k
­D

k

where the inequality is obtained by cutting the sum into four sums: the first

one is taken over the first qn
#k

®F
k

terms whose sum is bounded by

3qn
#k−

F
k+"

j=!

Φ(T jx)­(qn
#k

®F
k
) (a®b)}k ; the second one is taken over the next

F
k
­M®1 terms each of which is controlled by 1; the third sum taken over the

next n
#k

®F
k

terms can be written as

3
n
#k−

F
k−"

j=!

Φ(T j(B
#k

W"

#k
…))

which is bounded by 3n
#k−

F
k−"

j=!
Φ(T j�)­(n

#k
®F

k
)[(a®b)}k ; the last sum can be

estimated like the second sum. Thus we get

1

N
#k

3
N

#k−"

j=!

Φ(T jx*)%
N

#k−"

N
#k

­
A

k

N
#k

­
B

k

N
#k

­
C

k

N
#k

­
D

k

N
#k

.
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By the properties of n
k
, the quantities N

#k−"
, C

k
and D

k
are all o(N

#k
) and

lim
k!¢

A
k

N
#k

¯
q

q­1
σΦ(x), lim inf

k!¢

B
k

N
#k

%
b

q­1
.

It follows that σΦ(x*)% (q}(q­1))σΦ(x)­b}(q­1). In the same way, we can

prove that σa Φ(x*)& (q}(q­1))σΦ(x)­a}(q­1), so that σa Φ(x*)®σΦ(x*)"
(a®b)}(q­1)" 0. *

Let GΦ be the set of (good) points x such that σΦ(x)¯σa Φ(x). When points u and

�, the corresponding sequence ²n
k
´ and the number q& 1 are fixed as above, to any

point x `GΦ we have associated a (unique) point x* in Σ
A

(the uniqueness comes from

the unique choice in the definition of W*). If we have a subset E of GΦ, in this way

we get a (bad) subset E
q
of Σ

A
.

P 8. Keep the same notation as abo�e. For any EZGΦ, we ha�e

dim
H

E
q
&

q

q­2
dim

H
E.

Proof. Consider the bijective map f :EMNE
q
defined by f(x)¯x*. It suffices to

show that f −" is q}(q­2)-Ho$ lder [15, p. 139], or equivalently

ρ( f(x), f(y))& ρ(x, y)"+#/q.

In fact, suppose that ρ(x, y)¯m−r.

(a) If r% qn
"
, we have ρ( f(x), f(y))¯ ρ(x, y).

(b) If q3#k−"
i="

n
i
! r% q3#k

i="
n
i
for some k& 1, we have

ρ( f(x), f(y))¯m−r−3#k−"
i="

ni−#(M−")(#k−") &m−r−(r/q)−(r/q) ¯m−r("+(#/q)).

(c) If q3#k

i="
n
i
! r% q3#k+"

i="
n
i
for some k& 1, we also have

ρ( f(x), f(y))&m−r("+(#/q)). *

To complete the proof of Theorem B we use the fact that dim
H

GΦ ¯dim
H

Σ
A
. To

see this, it suffices to notice that the measure of maximal entropy of (Σ
A
,T ) is the

Parry measure and that GΦ has full Parry measure [22, p. 194]. *

5. Remarks

(1) Let C(Σ
A
) be the set of real-valued continuous functions. Two functions f

"
, f

"
`

C(Σ
A
) are said to be cohomologous if f

"
®f

#
¯ψaT®ψ­c for some ψ `C(Σ

A
) and

some constant c. This is an equivalence relation. Denote by Ch (Σ
A
) the quotient space

relative to this relation. Suppose that Φ¯ (Φ
"
,…,Φ

d
) is of summable variation. It

may be proved that the ergodic limit σΦ(x) is a constant function on Σ
A

if and only

if Φ
j
considered as function in the quotient space are of rank zero. More generally,

it may also be proved that the dimension of LΦ is the rank of ²Φ
j
´
"
%j%d

considered as

elements in the quotient space.

(2) According to Theorem A, the dimension dimEΦ(α) (or equivalently the

topological entropy h
top

(EΦ(α))) is concave and varies upper semi-continuously on LΦ,

then is continuous in the interior of LΦ [20, Section 10]. We wonder if there is always
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continuity on the boundary of LΦ. The thermodynamical formalism shows

differentiability in the interior for a function Φ of summable variation, and analyticity

in the interior for a Ho$ lder function Φ [21].

(3) When Φ is of summable variation, the variational formula (Theorem A),

together with the thermodynamical formalism, implies the relation

P*(α)¯® max
µ`&Φ(α)

hµ

where P*(α) is the Legendre transform of the pressure function P(β ) (that is, the

pressure of the potential ©β,Φª). It follows that

P(β )¯ inf
α`LΦ

9©α, βª­ max
µ`&Φ(α)

hµ: .
Then we might get good information on the pressure function whenever the fibres of

projection are known. Therefore the fibres of projection are worthy of study. Some

related works are by T. Bousch [2], S. Bullett and P. Sentenac [6] and O. Jenkinson

[13, 14] (see also [16]).

(4) Generalization to conformal expanding dynamical systems is easy to guess.

Generalization to other systems is worthy of study and Liapunov exponents would be

involved.
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