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ABSTRACT

Let (X, T) be a topologically mixing subshift of finite type on an alphabet consisting of m symbols and

let ®:X, —R” be a continuous function. Denote by o4(x) the ergodic limit lim,_, n~" Y " &(T’x)

when the limit exists. Possible ergodic limits are just mean values | ®du for all 7-invariant measures. For
any possible ergodic limit «, the following variational formula is proved:

hip(X€X, 10g(x) = a}) = sup{hﬂzjcbdu = oz}

where /1, denotes the entropy of x and h,,, denotes topological entropy. It is also proved that unless all
points have the same ergodic limit, then the set of points whose ergodic limit does not exist has the same
topological entropy as the whole space X ,.

1. Introduction

Let T be the shift map on £ = {0, 1,...,m— 1}~ (m = 2 an integer). Given an m x m
matrix 4 with entries 0 or 1, we consider the subshift of finite type (X,, ') [4]. We
shall always assume that A is primitive. That means the dynamical system (Z ,, T) is
topologically mixing. Now let ® be a continuous function defined on X, taking values
in R%. We consider the ergodic limit, when it exists,

1 n—1

go(x) = lim . Z O(T7x).

The quantity ogg(x) is regarded as the recurrence of x relative to @ (the term
‘recurrence’ takes its usual sense when ® =(I,,....1;) where 1, denotes the
characteristic function of a set B).

Let Ly be the set of o such that o = g4(x) for some xeX,. As a consequence of
the Birkhoff ergodic theorem, L, is a non-empty compact convex set. In this paper,
we investigate the sizes of the sets with given recurrences:

Ey(0) = {x€X,:04(x) =a} (xeLly).

We also investigate the size of the set of points such that the limit defining o4(x) does
not exist. The size of the sets in g, will be measured by their topological entropy.
Notice that A, is well-defined for non-compact invariant sets using Bowen’s
definition [3].

Let ., be the set of all T-invariant Borel probability measures concentrated on
¥ ,. The function ®:%¥, —— R” induces a map ®,,:.#,,,—— R", called the projection
map, given by

top

O( 1) =J Qdp (ne M)

z

A

We notice that Ly, = ®.(A4,,) (thus L, is non-empty, convex and compact). For

aelL,, let
¢ Fol0) = €My ®y(p1) = .
We call Z,(x) the fibre of projection .
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The main results of the present paper are the following two theorems.

THEOREM A. Suppose that ®:X,—— R® is a continuous function. For any o« € Ly,
we have the variational formula
htup(E(D(oc)) = max h;l
HEF ()

where h, is the entropy of u. Moreover, h

of a.

THEOREM B.  Suppose that ®:X ,—— R is a continuous function. Then the set of
points x such that the limit defining c4(x) does not exist is of the same topological
entropy as that of X, unless all points xeX, have the same ergodic limit.

top Eo(®)) s an upper semi-continuous function

The techniques we use in proving our two theorems are inspired by dimension
theory. Recall that X is a metric space where a metric is defined by d(x, y) = m " for
x = (x;);5, and y = (y,),, where n is the largest value such that x, =y, (1 <j < n).
Different notions of dimensions are then defined on X. We shall talk about the
Hausdorft dimension dim,, the packing dimension dim, and the upper box
dimension dimy (see [8, 15, 17] for a general account of dimensions). We will exploit
the fact that, in our purely symbolic setting, topological entropy is related to
dimension by

@hwpw@(a» = dimy,(Ey() = dimp(Ey(20).

Theorem A is a variational principle, but it does not follow from the well-known
variational principle of Walters [22], since the invariant set Eg(o) is not compact. We
emphasize that Theorem A holds for any continuous function ®. If ® has some
regularity like Holder continuity or summable variation, the result of Theorem A is
part of the folklore in multifractal analysis (the thermodynamical formalism is used
there but it does not work in our case because there is a lack of differentiability of
pressure function and a lack of Gibbs property). Even for these regular functions,
discussions of Eg(a) for boundary points o of L, are scarce, which is actually a subtle
problem.

The invariant set studied by Theorem B may be called the divergence set. The
Birkhoff ergodic theorem says that the divergence set is of zero measure with respect
to any invariant measure. Theorem B states that it is either empty or large in the sense
that it has full topological entropy. The result of full topological entropy was
obtained for Holder functions by Barreira and Schmeling [1] (see also [S, 18]). They
used the thermodynamical formalism which does not work for merely continuous
functions.

The variational formula in Theorem A for those ® depending only on finitely
many coordinates was simplified in [10].

The key points in our proof are: the entropy £, is upper semi-continuous and can
be approximated by the conditional entropies of u; each conditional entropy is the
entropy of a Markov measure; the recurrent set E4(o) can be approximated by
homogeneous Moran sets.

The paper is organized as follows. §2 is devoted to preliminaries. The variational
formula is proved in §3 and the divergence set is studied in §4. Finally §5 contains
some remarks.
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2. Preliminaries

Most of the material in this section is known. We recall it here for convenience,
at the same time introducing notation.

For k> 1, X, , denotes the set of finite sequences w = (xy,...,x,) such that
a, .. = lforalll <i<k.Thesesequences w are called (admissible) words of length
lw| (= k). For o = (ay,...,a,)€X, ., the k-cylinder [w] is defined by {xeX, :x, =
ay,...,x, = a,;. There is a one-to-one correspondence between X, , and the set of
k-cylinders, so sometimes we shall use X, , to denote the set of all k-cylinders. The
prefix of length n of a point xeX will be written as x],.

Let &, be the partition consisting of all 1-cylinders [0],[1],...,[m—1]. Let &, be the
join of the partitions 777¢, (0 <j < n). Since &, is a generator, the entropy /4, of an
invariant measure ue.#,,, can be expressed as [22]

“inv

h, = lim @ where H,(£,) = — Y u(A)logu(A).

n— 00 A€,
The nth conditional entropy of u, denoted by A", is defined by
h;(t(]) = H,u(é())’ h;[ﬂ) = H/t(én)_Hlu(énfl) (v}’l > 1)

Using elementary properties of the conditional entropy [22, p. 80], the following
proposition may be proved.

PROPOSITION 1. For each pe M., we have

— | (n) — 4 (n)
h,= lim b = infh{".

n— oo n

The entropy h, is an upper semi-continuous functional defined on ., with respect to

the weak* topology.

Markov measures on the full shift space were discussed in [7]. We present them
here for subshifts of finite type. Markov measures form a special class of invariant
measures and they are dense in .#,,,. A Borel probability measure ¢ on X, is uniquely
determined by its values on cylinders. On the other hand, any set function u defined
on cylinders satisfying the following conditions: for all aeX, ,, all n > 1

Y ula) =1, X u(ae)) = p(lal)

may be uniquely extended to a Borel probability measure on X,. Such a measure u
is invariant if and only if for all aeX, ,, all n > 1

Z (e, a]) = u((a)).

These three conditions may be referred to as the normalization condition, the
consistency condition and the invariance condition. Let Z > 1 be an integer. By a
Markov measure of order £ or simply /-Markov measure, we mean a measure € .4,
having the Markov property

]) Iu([enff’ ctto en])

ey s€u_1]) (n>7).

:u([ela o en]) = lu([eh cre en—l
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The proof of the following proposition is straightforward.

PrOPOSITION 2. Suppose that ue 4,

nv

is an {-Markov measure. The entropy of u
is

h“ - Z 'u([(—jl, cees 6/+1]) IOg ﬂ([el’ v 6(]) '

€15 veesbyrpy

Moreover, h" = h, for n>¢+1.

For n > 1, denote by A, the set of probability vectors p defined on X, , satisfying
Y p(€s€rsens€yy) =Y P(Ersees €,y 1, 6).

The Markov property is equivalent to

e, - €510
JT(CTIITIN) BT NN || [ i B2 Ay )}
' v I l_[ﬂ([ €jr > €jar1])
It follows that an /-Markov measure is uniquely determined by the function p defined
onZX, ., by
P(Xps ooy Xpq) = pl[ Xy, oo s X0
which belongs to A,,,. Conversely, given peA,, we define for n > k
n—k+1

wlay,....a,)) = pla,, ..., a,) H Z p(a > Qg )

LR ]+k 276)

This set function u can be uniquely extended to a (k— 1)-Markov measure. In this
way, we get a one-to-one correspondence between A, and the set of all (k— 1)-Markov
measures.

LetpeA, (k= 1). If p(x) > 0 for xeX, ,, we write pe A;. From the last expression
of u([a,, ..., a,]) we get the following (see [4] for the definition of Gibbs measures).

ProposITION 3. Suppose that peA). Then the (k—1)-Markov measure
corresponding to p is the Gibbs measure associated to the potential

w(x) =logp(x,,...,x,)—log Y p(xy, ..., X, €).

Let us summarize. Given ue.#,,,, we have a sequence of Markov measures {,}

which correspond to the functions {p, €A,} induced from u by

pilay, ..., a) = u(ay, ..., a,]).

These Markov measures approach u in the following sense (Propositions 1 and 2):

p=w*=limuy,, h,=limh,.
k—o0 k— o0
We call g, the kth Markov approximation of u. If the support of u is the whole space
X ., its Markov approximations are all Gibbs measures then ergodic (Proposition 3).
In our proof of Theorem A, we need to construct a kind of Cantor set, called a
homogeneous Moran set. It is helpful to think of X as the interval [0, 1] and cylinders
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as subintervals. Let {#n,}, ., be a sequence of positive integers and {c,}, ., be a sequence
of positive numbers satisfying n, =2, 0 <c¢, <1, n,¢, <6 and n,c, <1 (k= 2),
where ¢ is some positive number. Let
D= U D, with D, ={J}, D, = {(i}, ..., {;); 1 < <n,l <j< k}.
k=0

If ¢ =(gy,...,0,)€D,, T=(1y,...,7,)€ED,,, we define g7 =(0,,...,0,,Tj5...,T,)
Suppose that J is an interval of length J. A collection # = {J :g € D} of subintervals
of J is said to have a homogeneous Moran structure if it satisfies:

() Jy=J.

(2) For any k>0 and geD,, J.,,J.,.-s 4., are subintervals of J and

(3) Forany k> 1 and any g€ D,_,, 1 <j < n,, we have

|‘]r7*j| —

Vi

a

m>

where |A| denotes the length of A.

If 7 is such a collection, E:={),., U
determined by .

ven, I, 18 called a homogeneous Moran set

ProposITION 4 [11, 12].  For the homogeneous Moran set defined above, we have
logn, n,...n,

dim, E > liminf

n—o0

—loge, ¢y €y My

To end this section, we point out that the topological entropy of a subshift X, is,
up to a multiplicative factor log m, equal to the Hausdorff dimension (and its packing)
dimension.

3. Proof of Theorem A

Although the theorem is stated in terms of entropy, it will be more convenient
to use dimension during the proof. Actually, we will prove that

. . 1
dimy; Eg(a) = dim,, Eg(2) = ——— max /h,.
l HEF ()
First we prove a formal formula of dimension. The matrix A4 being primitive, there
is an integer M > 1 such that all the entries of A are strictly positive. Then for any
o= (x),€X, ,and any 0 <z <m—1, there are 0 < y,,...,y,, ; < m—1 such that

(xl’ o ’xn’yl’ ce ’y[Wfl? Z)EZA,rH»:‘W'
We call @ = (x,..., X, V1s---» Va—q) an extension of w joining z.
Let 2eR% n = 1 and ¢ > 0. Denote by F(a, 1, ¢) the set of all n-cylinders each of
which contains at least a point x such that

1 n—1

=Y D(T'x)—oa| <e.
n=

Let f{a, n,¢) be the cardinality of F(«,n,¢).

We shall use S,(®, x) to denote the partial sum ) ' ®(77x) and use 4,(P, x) to
denote the average n~'S,(®, x). We shall write V,(®) = ) 1, var(®) where var(®) =
sup,; _y, |P(x)—@(p)l (|| denoting the Euclidean norm).
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PROPOSITION 5. For o€ Ly, we have

lim lim inf 28/ %29 _ i lim sup
logm”

=0 n—ow c—0 n—owo

logfla,n,e)
W(_ (A g ().

The function Ay: Ly, —[0, 1] is concave and upper semi-continuous.

Proof. Without loss of generality, assume that |[®(x)| < 1 (for all x) where |-|
denotes the Euclidean norm. We want to show that logf(a, n, €), as a sequence of n,
has a kind of subadditivity. More precisely, for any ¢ > 0, there is an N such that

[flo, n, )P < fla,(n+M)p,2¢) ¥Yn=N,Vp=1).

In fact, suppose that {w,,...,»,} = F(a,n,¢). Let o = @,...®, where @, is an
extension of w, joining the leading alphabet of w, ., (with convention w,,,, = w,). Let
x,€lw,] (1 <k < p) be a point such that

n—1
Y. ®(T'x,)—no| < ne.
=0
Let x be a point in [w]. We have
p—1n+M-1 )
S(?L+Dl)p((D’ X)—(m+M)po = Z Z (D(T7z,)— )
k=0 j=0

where z, is a point in £, with z,|,,.,, = @, so that z, €[®,] < [w,]. The above inner sum
over j is bounded by

n+M-—1 n+M-1
Y (@(T'x)—o)|+ Y ([ D(T7z)— D(T'x,)| < ne+2M + V,(®) +2M.
=0 =0

It follows that
n . aM V(D)
n+M  n+M n+M

|An+M((I)a xX)—of <

Since @ is continuous, n~ 'V, (®) tends to zero as n — co. Therefore |4, ,(®, x) — o] <
2¢ for sufficiently large n > N and for all p > 1. Then [w], which contains x, is in
Fo, (n+ M) p,2¢). Notice that different choices {w,,...,w,} give rise to different .
Thus we get the desired subadditivity. By using this subadditivity, it is easy to get

lim sup log/ta,n, ) < lim infw
log m" 10g m"

n—o0 n— o0

from which the equality of the two limits follows.
Itis evident that 0 < Ag(x) < 1. Let o, f€ L. Let p, g be two positive integers. By
subadditivity, for large n we have

Ao, n,€)” B, n,e)) < flew, (n+ M) p,2¢) (B, (n+ M) g, 2¢).

Let ue F(o,(n+ M) p,2¢) and ve F(f,(n+ M) g, 2¢). Take a point x €[uwv] where we
2, 1 such that uw is an extension of « joining the leading alphabet of v. As above,
we can get

IS sy wiany s ar( @5 X) = (n+ M) po— (n+ M) gf|
< 26n+ M) (p+9) + Viian, o @)+ Vs (@) + M.
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It follows that if n is sufficiently large, uwve F((pa+qpf)/(p+¢q), m+ M) (p+q)+
M, 3¢). Consequently, for large n we have

o, 26) /(g 2¢) sf(” “jgﬁ ,n(p+q),3e).

P

By the equality of the two limits that we have already proved, we can get

p q p q
——Ap(@)+——Ax(f) <A (oc—i—ﬂ).
p+q " p+qg "\p+q  ptq
This gives the rational concavity of the (bounded) function Ag,. However, the
concavity of Ay is a consequence of its rational concavity and its upper semi-
continuity that we prove below.
Given a€ Ly For any # > 0, there is ¢ > 0 such that

log f(a, n, €)

A .
logmn < d)(a)+;7

lim inf

As above, it can be proved that for fe L, with |f—a| < ¢/3 we have
F(p,n,e/3) = Fo,n,¢€)
when n is sufficiently large. It follows that f{(f,n,¢/3) < fla, n,¢). Therefore
logf(B,n,¢/3)
logm”

gm

< lim inf 0&/(% ™€)
logm”

n—o0

Ag(f) < liminf

n—o0

< Ag(0) +7.
This establishes the upper semi-continuity of A, at o. O

PROPOSITION 6.  For o€ Ly, we have

dimy, Eg(a) = dimy, Eg() = Ag(a).
Proof. Step 1: For ace Ly, we have dim,, Eg(a) < Ag(2).
Let

G(a,k,e) = [ {xeX:|4,(D, x)—of <e}.

n=k

It is clear that for any ¢ > 0,
Ey(2) = | G(a, k,€).
k=1

Notice that if n > k, G(a, k, ¢) is covered by the union of all cylinders [w] with we
F(o, n, ¢) whose total number is f{«, n,¢). Therefore we have the following estimate

log flo, n, €)

> 1).
g (16> 0.Yk=1)

dim, G(o, k, ¢) < lim sup
On the other hand, by using the o-stability of the packing dimension, we have
dim,, Ey(o) < dimP<U G(a, k, e)) < supdim, G(a, k, €) < supdim,, G(., k, €).

k=1 k k

This, together with Proposition 5, leads to the desired result.
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Step 2: For ae Ly, we have dimy Eg(o0) = Ag(a).

Given J > 0. By Proposition 5, there are #;1 oo and ¢; |, 0 such that
0 ly,6) > il et 0),

Write simply Ej = F(o,?;,¢;) and f/f = flo, /. ¢;). Define a new sequence {/} in the
following manner "

where N, is defined recursively by
Ny =20t (j22); Ny =1,

*
Denote n; = f,» and ¢; = m™’7. Define
J

Observe that ®* is a homogeneous Moran set in X. More precisely ®* is constructed
as follows. At level 0, we have only the initial cylinder X. In step j, cut a cylinder of
level j—1 into m’’ cylinders and pick up n; ones. By Proposition 4, we have

dim, ®* > liminf oglry ... 1)
ko —108(C1 - € Cry M)

lo I
> liminf gff” : /f’/)
i log(2/T R
lo I
 timinf 2212
i log(2/7F 0

> Ag(0) —0.

However ®* is a set in Z, not necessarily in X ,. Based on ®*, we are going to construct
a set ®** which is not only in £, but also in E4(c), and which is of the same Hausdorff
dimension as @*.

We extend words in F}x in the following manner. Let

A={a:x= xl,,;ﬂ_la,xeF/f}, B=1{h= xll,xeF/;ﬂﬂ}.

That is, 4 is the set of the last alphabets of the words in Fyx and B is the set of the
first alphabets of the words in Fx . For each pair (a,b)e 4 x B, take one (and only
one) word weX, ,, such that awb is admissible. We call w a bridge word. For y =
U u,...c@*, define

JUp Wi e

VE =g wiuy wy . upw
where w; is the bridge word as defined above. We define ®** as the set of sequences
y*. By considering the map sending y to y* which is nearly bi-Lipschitz, we have
dim,; @** = dim, ®*. On the other hand, ®** < E(«). In fact, let /}* =/} + M. For
large n (> /,), there is a unique integer J(n) such that

i(m) J(n)+1
YFESn< ) /¥

i=1 i=1
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The choice of N, implies that 7, = o(¥N,). It follows that

Z/(ﬂ)/**
=1
J(n)+1 pik
n—o0 Z /

Let x = (x,)e®** Let A, be the set of integers between /F*+...4+/F%+1 and
[¥F 4. +/F*. We have
J(n)

S,(D,x) = Z Z O(T"x)+ O(Zf:’)ﬂ

J=1 kel

= Jf) (o +o(1)) +o(n)

i=1
= an+o(n).
It follows that x € Eg(x). O

We now prove the lower estimate

dimy; Ey(o) = sup
;16/4,@)

logm

Since the entropy 4, is upper semi-continuous as a function of u (see Proposition 1)
and Z(«) is compact, the above supremum is attained. Let x4, be a measure in F(«)
which attains the supremum. Take an invariant measure v with support X,. For
any ¢ > 0, consider u, = (1 —¢) y, + ¢h, as an approximation of y,. Let o, = fd)d,up We
have
lot, — o] < 2¢| Dl

where ||®| = sup,|®(x)|. Since the support of the invariant measure g, is the whole
space X ,, we can find a sequence of ergodic Markov measures x4 such that 4® tends
to u, in the weak* topology and /,w tends to /1, as k — oo (see Propositions 2 and 3).
Let o® = f(Dd,u(’” We have

lo” —o | < e (k= k(e)).

Since Ag(-) is upper semi-continuous (Proposition 5), for any #, when ¢ is sufficiently
small and k is sufficiently large, we have

hyw
logm

A(b(fx) = Am(“ik))_n = -n

where for the second inequality we used the fact that Ag(x) > h,/logm for any
ergodic measure p € Zy(a). In fact, the ergodicity implies that u(E4(e)) = 1. It follows
that dimy u < dimy, Ey(o). However dimu = h,/logm by the Shannon-McMillan—
Breiman theorem [19, p. 261] (see [9] for dim x). Letting k — oo gives

h, (1—e¢) hﬂ0+€h‘,
logm 1~ logm

Now let ¢ > 0 and then 7 — 0. We get Ay(a) = 4, /logm.
We now prove the upper estimate

dim, Ey(x) < sup

ye/ (o) lOg m
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Given any ¢ > 0. If k£ > 1 is sufficient large, we can find a function ®, depending only
on the first k coordinates of xeX, such that
€

()@ <5

(V¥ x).
Thus, for xe Ey (o) we have

<eE.

lim sup ’% S, (D, x)—o

It follows that

Ey(a) = | ﬂ B(n,k,e) (Vk = k(e) large and ¢ > 0)
j=1n=j
where
B(n,k,e) = {xeX:|n 'S, (D, x)—a| < e}

In the following, we will show that for each je N

= h
dim, () B(n,k,e) < sup CE
"’ n=j \<I>*<ﬂ>—:z\<3610gm

Take all cylinders of the form [x,,...,x,,,_,] which intersect B(n, k,e¢). They
constitute a cover of (n+k — 1)-cylinders of B(n, k, ¢). Denote by T{(n, k, ¢) the number
of cylinders contained in this cover. We are going to estimate this number.

For weX, ,,, |, denote by N (¢, ...,¢,) the number of words of the form e, ...¢,
appearing in . The family {N (¢, ...,¢,)} with varying ¢,,...,¢, will be called the
k-distribution of w. Let D = {n(e,,...,¢,)} be the k-distribution of some  such that
[w] intersects B(n, k,¢). This means that

€y, ... r€) = N (€1, ...,€;)

1

. Yo a6y, .., 6) Duleg,... 6)—o| <e.

€1y eves €

We denote by .77 (D) the collection of all such cylinders [w] and by I'(D) its cardinality.
Let 2 be the set of all possible such distributions D. The cover is then decomposed
into disjoint families 7 (D) with De#. It is clear that the cardinality of £, the
number of families, is at most 7" Then we have

T(n,k,e) = Y. T(D) < n™ max [ (D).

De%, De,

Thus

log T(n, k,¢) - maxlOgF(D)—i—O logn
logm" =~ ., logm" n )

(The constant in ‘O’ depends upon k.)

Since n(ey, ..., €,) = N (€, ..., €,), {n(e, ..., ¢,)/n} defines a probability vector. For
any 7 > 0, there is a number N = N(#) such that when n > N we can find pe A; such
that (see [10, Lemma 3])

I
n

n
—p(€rsn€)| <1, plers-.es€p) >W.
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Consider the Markov measure v, corresponding to p. For any cylinder [w]€ 7 (D)

with o = (x,)/}t, we have N (e, ...,¢,) = n(e;, ..., €,), SO we have

JZC T ( )
V, ([a)]zi l_[ [(6,...,6_)"61’“"616
v (s X)L k

n ) ¢
=>——= || te,....e)
m €1 nn g

where

pay,....q,)
Y p(ays s ys€)

Hay,...,a,) =

Let a = a(D) denote the right-hand side of the above inequality. Then
al'(D) < vp( U [w]) <1

[w]eT (D)
Combining the last two expressions gives

n,lk+1

r(D)<- <

[T #ep....e) v,

[STRETN "

Q=

Then

log,, t(€y, -5 €;)

logF(D)<0(|log;7|)_ y n(ey, ..., €,)
n

log m” n

€1y vens €

lo
<O(TEM) 5 perclog e+ Ot

Note that ®,(v,) is near « in the sense that

|(D*(vp)—<x|< Z p(els'-~,€}c)q))c(€13'-~a€)c)_a +e€
€1y eens€p
n(€y, ..., €,) .
<| ) ﬁ‘bk(ev--w%)_“ +m*n|| @, || +e
€psens€p
< mp|| D, | + 2.
Now we can conclude that
logI'(D lo /
£ (n) < 0(' g;7|>+0(17|logn|)-1- sup LT
logm n EA L, [ () —o) <m0y | +2¢ logm
Since the right-hand side is independent of D, we get
log T(n, k, e 1 1
og (n,nw) - 0(' ognl+ 0gn)+0(l7|10g77|)+ sup h,
logm n [0, () —o] <mF | @, | +2¢ logm

Let n — oo then let 7 — 0, we get

- A . log T(n, k, ¢ h
dim, [ B(n, k,¢) < lim supw < sup £
logm @, (0ol <3 1O 11

n=j n— o0
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By the g-stability of the packing dimension and the inequality dim, < dim,, (see [17]),
we have

8

dim,(Ey(2)) < dim, ( U N Bk, e)>

n

© h
< supdimy, ) B(n,k,e) < sup —
j n=j [0, (-2 <3¢ logm
Note that the set of invariant measures u such that |®,(u)—of < 3¢ is compact and
that 4, is upper semi-continuous. For any / > 1, there is an invariant measure u, such
that
h,= sup h

Hy nw
@y () <1/0
We can also assume that p, converges to some measure u . It is clear that u € Zy(x).
Thus, by the upper semi-continuity of the entropy,
h

h 7
dim, Eg(2) < liminf  sup N -
o 0 [0,0-o<sc 108 logm

4. Proof of Theorem B

As in the proof of Theorem A, we will use Hausdorff dimension instead of
topological entropy.

We first prove the fact that if the limit defining g,(x) does not exist for some point
x, it does not exist for points in a set of Hausdorff dimension equal to that of X ,. Such
points are called divergent points.

We start with a method to construct new divergent points by using a given
divergent point. Take a subset of words W* < X, ,, , such that for any 7,5€{0,1,...,
m— 1} there is one and only one word we W* such that twseX, ,,,, (maybe there are
several choices for a given pair (z,s), but we choose only one). Assume that ®@ takes
real values. Without loss of generality, we assume that |®(x)| < 1 (for all xeX)).
Denote by g4(x) and G4(x) the liminf and limsup of n' ) "' ®(T7x).

Suppose there are two points u,v€ X, (maybe u = v) such that G4(u) > g,(v). Take
two numbers «, b such that

Go(U) > a > b > gy(v).
For any k > 1, there exists 7, > 1 such that

a—>b

k

|D(x) —P(p)] < ifx; =y, (I<i</)).

Take a rapidly increasing sequence {n,},., satisfying

Nop—~1 1 ny—1
Y, (Tw) >a, — Y (T'(v) <b,
nZIC—l Jj=0 n‘Z}C j=0

k—1

k
k=o(mn), ¢,=o(n), 2(M—-1)k<} n, n, = o(n,).
j=1

1

Fix an integer ¢ > 1. Let x = x, x,...€X,. We cut x into words of lengths {¢gn,}
where {n,} is as above. This means that

X=X, X,...X,... with |X,| = gn,.
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Define i, to be the prefix of u with |i,| =n,, , and 7, to be the prefix of v with
|D,| = n,,. Denote
By oy = tty, By =1

Now construct a new point x*eX , as follows
x*=x, W/ B, WX, W, B,W, ...x, W, B, W/ ...
where W, and W, are admissible words in W*.
PROPOSITION 7. Suppose that G4(u) > a4(v) for some u,veX, (maybe u=v). If
0o(X) = Gp(x), then Go(x*) > ago(x*) where x* is constructed as above from Xx.
Proof. Notice that the word x, W/ B, W, is of length
L, =qn+M—-1)+n+M-1)=(q+1)n+2(M-1).

Let N,=YF L=(q+1)YF n+2k(M—1) and let M, =q > "
partial sum

&+ n;. Consider the

Nop—1 Nog—1~1 Nop—1
Y O(Tx*) = Y O(Tix*)+ Y O(Tix*).
i=0 =0 i=N oy

The first sum on the right is bounded by N,,_, (since 1 is an upper bound of ®). For
the second sum, we have

Nyp—1 Log—1

Y, O(Tx*) = ), O(T/(xy Wy By Wi -.))
J=Nap— i=0
Mop—j—1

) —-b
< Y ATy —0) A M=)

J=Myp_y

o/ -1 —b
L AT (=) A M=)
=0
Myp—lp-1 o/ 1 )
= )Y oTx)+ Y DT
=My, =0
PamDE D=2 oy

= A,+B,+C,+D,

where the inequality is obtained by cutting the sum into four sums: the first
one is taken over the first ¢n,,—¢, terms whose sum is bounded by
2 ra it D(TIx) +(qny,—¢,) (a—b)/k; the second one is taken over the next

{,+M—1 terms each of which is controlled by 1; the third sum taken over the
next n,,—7, terms can be written as

Nop—C =1

Y O(T(By, W)

j=0
which is bounded by ) "+ ' ®(T’v)+(n,,—7,) (a—b)/k; the last sum can be
estimated like the second sum. Thus we get
Nop—

Z O(T'x *)<N“ Ly kg By

4, B G
N N?lc N2k

Dk

+ .
N2k

1 N
N,
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By the properties of n,, the quantities N,,_,, C, and D, are all o(N,,) and

. A q . . B b

lim % = —~—g,(x), liminf—% < ——.

fooo Vo q+1 o) oo Nop  q+1
It follows that gu(x*) < (¢/(g+1))oy(x)+b/(g+1). In the same way, we can
prove that  Ga(x*) > (¢/(g+ D)oV +a/(g+1), so that Gy(x*)—gy(x*) >
(a—b)/(g+1)>0. O

Let G, be the set of (good) points x such that g4(x) = G4(x). When points u and
v, the corresponding sequence {#n,} and the number ¢ > 1 are fixed as above, to any
point x € G, we have associated a (unique) point x* in X, (the uniqueness comes from
the unique choice in the definition of W*). If we have a subset E of Gy, in this way
we get a (bad) subset £, of X .

PROPOSITION 8. Keep the same notation as above. For any E < Gy, we have
dim,, E, > —4_dim,, E.
q q+2

Proof.  Consider the bijective map f: E—— E, defined by f{x) = x*. It suffices to
show that /™' is ¢/(¢+2)-Holder [15, p. 139], or equivalently

p(ﬂx)’f(y)) 2 p(x’ y)1+2/q.

In fact, suppose that p(x,y) = m™".

(@) If r < gn,, we have p(f(x),(y)) = p(x,).
(b) If ¢Y ?'n,<r<q) ¥ n, for some k > 1, we have

P, Ay)) = m X

(c) If g Y. 2% n, <r<q) 7 n, for some k > 1, we also have

PUX).Ap)) Z e, O

To complete the proof of Theorem B we use the fact that dimy G4 = dim, X,. To
see this, it suffices to notice that the measure of maximal entropy of (X,, T) is the
Parry measure and that G has full Parry measure [22, p. 194]. O

VM) @K S 10010 — T R/)

5. Remarks

(1) Let C(Z,) be the set of real-valued continuous functions. Two functions f,, f, €
C(X,) are said to be cohomologous if f,—f, = wo T—w+c for some weC(Z,) and
some constant ¢. This is an equivalence relation. Denote by C(Z ) the quotient space
relative to this relation. Suppose that ® = (®,,...,®,) is of summable variation. It
may be proved that the ergodic limit g4(x) is a constant function on X, if and only
if @, considered as function in the quotient space are of rank zero. More generally,
it may also be proved that the dimension of L, is the rank of {®}, _,, considered as
elements in the quotient space.

(2) According to Theorem A, the dimension dim Eg(xx) (or equivalently the
topological entropy #,,,(£4())) is concave and varies upper semi-continuously on Ly,
then is continuous in the interior of Ly [20, Section 10]. We wonder if there is always
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continuity on the boundary of L, The thermodynamical formalism shows
differentiability in the interior for a function ®@ of summable variation, and analyticity
in the interior for a Holder function @ [21].

(3) When @ is of summable variation, the variational formula (Theorem A),
together with the thermodynamical formalism, implies the relation

P*(o) = — max A,
/ze.%(a)

where P*(x) is the Legendre transform of the pressure function P(f) (that is, the
pressure of the potential (S, ®)). It follows that

P(p) = inf [(oc,ﬁ>+ max hﬂ].

aeLg, HeFgy ()

Then we might get good information on the pressure function whenever the fibres of
projection are known. Therefore the fibres of projection are worthy of study. Some
related works are by T. Bousch [2], S. Bullett and P. Sentenac [6] and O. Jenkinson
[13, 14] (see also [16]).

(4) Generalization to conformal expanding dynamical systems is easy to guess.
Generalization to other systems is worthy of study and Liapunov exponents would be
involved.
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