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Abstract. Let µ be a self-similar measure on R generated by an equicon-
tractive iterated function system. We prove that the Hausdorff dimension of
µ∗n tends to 1 as n tends to infinity, where µ∗n denotes the n-fold convolution
of µ. Similar results hold for the Lq dimension and the entropy dimension of
µ∗n.

1. Introduction

Let µ1, ..., µn (n ≥ 2) be a family of Borel probability measures on R.
Recall that the convolution µ1 ∗ . . . ∗ µn of µ1, ..., µn is defined by

µ1 ∗ . . . ∗ µn(E) =

∫
Rn
χE(x1 + . . .+ xn)dµ1(x1) . . . dµn(xn)

for any Borel set E ⊂ R, where χE denotes the characteristic function of E.
In particular if µ1 = ... = µn = µ, then

µ∗n := µ ∗ . . . ∗ µ︸ ︷︷ ︸
n

is called the n-fold convolution of µ.
It is well known that if µ is absolutely continuous with a density function

f , then µ∗n is absolutely continuous with the density f∗n for each n ≥ 2,
where f∗n denotes the n-fold convolution of f . However if µ is a singular
measure, µ∗n may be still singular for all n. In this case it is interesting to
describe the asymptotic behavior of the “degree of singularity” of µ∗n as n
tends to infinity. There are some widely used indices for describing the degree
of singularity of measures, such as the Hausdorff dimension, the Lq dimension
and the entropy dimension.

Recall that for a Borel probability measure η on R, the upper Hausdorff
dimension and the lower Hausdorff dimension of η are defined respectively by

dimHη = inf{dimH E : E is a Borel set with η(E) = 1}
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and

dimHη = inf{dimH E : E is a Borel set with η(E) > 0},
where dimH E denotes the Hausdorff dimension of E (see [1, 2, 8] for the
definition and properties of the Hausdorff dimension). For q > 1, the upper
Lq-dimension of η is defined by

dimqη = lim sup
r→0

log
∫
η([x− r, x+ r])qdx

(q − 1) log r
− 1

q − 1
.

The lower Lq-dimension dimqη can be defined similarly by taking the lower
limit. The upper entropy dimension of η is defined by

dimeη = lim sup
n→∞

Hn(η)

log 2n
,

where

Hn(η) = −
∞∑

k=−∞

η
(
[2−nk, 2−n(k + 1))

)
log η

(
[2−nk, 2−n(k + 1))

)
.

The lower entropy dimension dimeη is defined similarly by taking the lower
limit.

As we will show, the sequences dimHµ
∗n, dimHµ

∗n, dimqµ
∗n, dimqµ

∗n,

dimeµ
∗n and dimeµ

∗n are increasing on n and bounded from above by 1 (see
Corollary 2.4). However, it is a rather subtle question to determine the limits
of these sequences in general. In this paper, we provide precise values of
the above limits for the class of equicontractive self-similar measures on R.
Suppose

φi(x) = ρx+ di (i = 1, . . . ,m)

is a family of equicontractive similitudes on R with 0 < ρ < 1, m ≥ 2 and
d1 < d2 < . . . < dm. Usually, {φi}mi=1 is called an equicontractive iterated
function system. For a given probability weight {pi}mi=1 (i.e., pi > 0 and∑
i pi = 1), it was proved by Hutchinson [5] that there is a unique one Borel

probability measure ν on R such that

(1.1) ν =
m∑
i=1

piν ◦ φ−1
i .

The measure ν is called an equicontractive self-similar measure.
We can formulate our result as follows

Theorem 1.1. Let ν be an equicontractive self-similar measure on R. Then

(1.2) lim
n→∞

dimHν
∗n = lim

n→∞
dimHν

∗n = lim
n→∞

dimeν
∗n = lim

n→∞
dimeν

∗n = 1

and

(1.3) lim
n→∞

dimqν
∗n = lim

n→∞
dimqν

∗n = 1 (1 < q ≤ 2).
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We remark that under the condition of Theorem 1.1, ν∗n is an equicontrac-
tive self-similar measure for each n ≥ 1 (cf. [3, Proposition 3.1]). It follows
from a result of Peres and Solomyak ([9, Theorem 1.1]) that

dimeν
∗n = dimeν

∗n, dimqν
∗n = dimqν

∗n (q > 1).

However we do not know whether dimHν
∗n and dimHν

∗n coincide.
Lindenstrauss, Meiri and Peres have considered the measure-theoretic en-

tropy of convolutions of ergodic measures on the circle R/Z [7]. Let {µi} be a
sequence of invariant and ergodic measures on R/Z with respect to the trans-
formation σp : x 7→ px(mod 1), where p is an integer greater than 1. They
proved that the measure-theoretic entropy h(µ1 ∗ · · · ∗ µn, σp) tends to log p
as n tends to infinity, under a sharp condition

∞∑
i=1

hi
| log hi|

=∞,

where hi = h(µi, σp)/ log p. We remark that one can use the above deep result
to deduce (1.2), if ν is a self-similar measure for the special iterated function
system

φi(x) =
1

p
(x+ i− 1), i = 1, · · · , p.

We organize the paper as follows. In Section 2 we establish a sufficient
condition for a probability measure on R to satisfy the result of Theorem
1.1. This condition will be verified for equicontractive self-similar measures in
Section 3 to demonstrate Theorem 1.1. Our proof is based on some classical
properties of Fourier transforms of Borel probability measures as well as some
basic properties of energy functions. We have also used some properties of
Fourier transforms of self-similar measures developed by Strichartz [10, 11, 12]
and Lau and Wang [6].

2. Probability Measures satisfying (1.2) and (1.3)

For a Borel probability measure η, the Fourier transformation η̂ is a complex-
valued function on R defined by

η̂(t) =

∫
e−itxdη(x).

For any integer n > 0 denote

(2.1) αn = αn(η) = lim sup
T→∞

log
∫
|t|<T |η̂(t)|ndt

log T
.

In this section we establish the following fact, which is the first step in our
proof of Theorem 1.1.
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Proposition 2.1. Suppose that η is a Borel probability measure on R with
compact support. If limn→∞ αn = 0, then η staisfies (1.2) and (1.3), where ν
is replaced by η.

Although the condition in the above proposition looks rather technical and
hard to check, we can verify it for the class of equicontractive self-similar
measures which proves our Theorem 1.1.

We prove several lemmas before giving the proof of Proposition 2.1.

Lemma 2.2. Let η1 and η2 be Borel probability measures on R. Then
(i) dimHη1 ∗ η2 ≥ dimHη1, dimHη1 ∗ η2 ≥ dimHη1.
(ii) For any q > 1, dimqη1 ∗ η2 ≥ dimqη1 and dimqη1 ∗ η2 ≥ dimqη1.

(iii) If furthermore η1 and η2 are compactly supported, then dimeη1∗η2 ≤ 1,
and dimeη1 ∗ η2 ≥ dimeη1, dimeη1 ∗ η2 ≥ dimeη1.

Proof. Suppose η1 ∗ η2(E) > 0 for some Borel set E ⊂ R. Then∫
η1(E − x)dη2(x) = η1 ∗ η2(E) > 0,

which implies that η1(E−x) > 0 for a set of x with positive η2 measure. Thus
there is at least one point x0 ∈ R such that η1(E−x0) > 0. Hence dimH E =
dimH(E − x0) ≥ dimHη1, from which we obtain dimHη1 ∗ η2 ≥ dimHη1.

Now suppose η1 ∗ η2(F ) = 1 for some Borel set F ⊂ R. Then∫
η1(F − y)dη2(y) = η1 ∗ η2(F ) = 1,

which implies that η1(F−y) = 1 for η2 almost all y ∈ R. Thus there is at least
one point y0 ∈ R such that η1(F −y0) = 1. Hence dimH F = dimH(F −y0) ≥
dimHη1, from which we obtain dimHη1 ∗ η2 ≥ dimHη1.

To see (ii), by the Hölder inequality we have∫
η1 ∗ η2([x− r, x+ r])qdx =

∫ (∫
η1([x− y − r, x− y + r])dη2(y)

)q
dx

≤
∫ ∫

η1([x− y − r, x− y + r])qdη2(y)dx

=

∫ ∫
η1([x− y − r, x− y + r])qdxdη2(y)

=

∫
η1([x− r, x+ r])qdx,

which implies (ii).
To prove (iii), define f(x) = −x log x for x ∈ R+. It is easy to see that

(2.2) f(x+ y) ≤ f(x) + f(y) ≤ 2f

(
x+ y

2

)
= f(x+ y) + (x+ y) log 2
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for all x, y ∈ R+. Since η1 is compactly supported,

∞∑
k=−∞

f
(
η1([2−nk + z, 2−n(k + 1) + z])

)
<∞, ∀n ∈ N, z ∈ R.

Now fix n and z. Denote by z0 the unique real number satisfying 0 ≤ z0 < 2−n

and 2n(z0 − z) ∈ Z. Using (2.2), we have

∞∑
k=−∞

f
(
η1([2−nk + z, 2−n(k + 1) + z))

)
=

∞∑
k=−∞

f
(
η1([2−nk + z0, 2

−n(k + 1) + z0))
)

≥
∞∑

k=−∞

[
f
(
η1([2−nk + z0, 2

−n(k + 1)))
)

+ f
(
η1([2−n(k + 1), 2−n(k + 1) + z0))

)
−η1([2−nk + z0, 2

−n(k + 1) + z0) log 2
]

=

∞∑
k=−∞

[
f
(
η1([2−nk + z0, 2

−n(k + 1)))
)

+ f
(
η1([2−nk, 2−nk + z0))

) ]
− log 2

≥
∞∑

k=−∞

f
(
η1([2−nk, 2−n(k + 1)))

)
− log 2 = Hn(η1)− log 2.

A similar argument yields

Hn(η1) ≥
∞∑

k=−∞

f
(
η1([2−nk + z, 2−n(k + 1) + z))

)
− log 2.

Therefore we have

(2.3)

∣∣∣∣∣Hn(η1)−
∞∑

k=−∞

f
(
η1([2−nk + z, 2−n(k + 1) + z))

)∣∣∣∣∣ ≤ log 2.

Similarly using (2.2) again, we can deduce that

Hn(η1) ≤ Hn+1(η1) ≤ Hn(η1) + log 2.

By the above inequality and the definition of entropy dimension, we have
dimeη1 ≤ 1. Note that η1 ∗ η2 is also compactly supported, therefore

dimeη1 ∗ η2 ≤ 1.
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By the convexity of f , we have

Hn(η1 ∗ η2) =

∞∑
k=−∞

f
(
η1 ∗ η2([2−nk, 2−n(k + 1)))

)
=

∞∑
k=−∞

f

(∫
η1([2−nk − z, 2−n(k + 1)− z))dη2(z)

)

≥
∞∑

k=−∞

∫
f
(
η1([2−nk − z, 2−n(k + 1)− z))

)
dη2(z)

=

∫ ∞∑
k=−∞

f
(
η1([2−nk − z, 2−n(k + 1)− z))

)
dη2(z)

≥
∫

(Hn(η1)− log 2) dη2(z) = Hn(η1)− log 2,

from which the last two inequalities in (iii) follow. �

In the following we cite some known facts about the relationship between
various dimensions of a measure.

Lemma 2.3. Suppose η is a Borel probability measure on R with compact
support. Then

(i) dimqη ≤ dimHη ≤ dimeη ≤ dimeη ≤ 1 for any q > 1.

(ii) dimqη ≤ 1 for any q > 1. Furthermore dimqη and dimqη are monotone
decreasing on q > 1.

We remark that part (i) of the above lemma was proved by Fan, Lau and
Rao [4, Theorem 1.4], while part (ii) was proved by Strichartz [12, Theorem
2.8 and Lemma 2.9].

As a corollary of Lemma 2.2 and Lemma 2.3, we have

Corollary 2.4. Suppose η is a Borel probability measure on R with compact
support. Then the sequences dimHη

∗n, dimHη
∗n, dimqη

∗n, dimqη
∗n, dimeη

∗n

and dimeη
∗n are increasing on n. Each of them are bounded from above by 1.

The following lemma is used to prove Proposition 2.1.

Lemma 2.5. For a Borel probability measure η on R with compact support,
we have

dimHη ≥ 1− α, and dim2η = 1− α,

where α = α2 = lim sup
T→∞

log
∫
|t|<T |η̂(t)|2dt

log T
.

Although the statement dimHη ≥ 1−α can be obtained by dim2η = 1−α
and Lemma 2.3 (i), we will prove the both statements directly for the self-
containedness. We divide the proof into three parts, i.e., Claims 2.6-2.8 given
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below. In the proof of Claim 2.7 and 2.8, we adopt some ideas due to Lau
and Wang [6].

Claim 2.6. dimHη ≥ 1− α.

Proof. Recall that for t ≥ 0, the t-energy It(η) of η is defined by

It(η) =

∫ ∫
|x− y|−tdη(x)dη(y).

It is well known (cf. [8, Theorem 8.7]) that if E is a Borel set with η(E) > 0,
then Is(η) =∞ for any s > dimH E. It implies that

dimHη ≥ sup{s ≥ 0 : Is(η) <∞}.
Recall that (cf. [8, Lemma 12.12]) for each 0 < t < 1, there is a positive

constant c(t) (independent of η) such that

It(η) = c(t)

∫
|x|t−1|η̂(x)|2dx.

Therefore

dimHη ≥ sup{s ∈ (0, 1) :

∫
|x|s−1|η̂(x)|2dx <∞}.

Consequently, to prove dimHη ≥ 1 − α it suffices to establish the following
inequality

(2.4)

∫
|x|β−1|η̂(x)|2dx <∞ for any β ∈ (0, 1− α).

To see (2.4) take ε > 0 so that β < 1 − α − 2ε. By the definition of α, there
exists an integer N > 0 such that∫

|x|<T
|η̂|2dx ≤ Tα+ε for any T > N.

It follows that∫
|x|≥N

|x|β−1|η̂(x)|2dx ≤
∞∑
i=1

∫
N+i−1≤|x|≤N+i

|x|−α−2ε|η̂(x)|2dx

≤
∞∑
i=1

(N + i− 1)−α−2ε

∫
N+i−1≤|x|≤N+i

|η̂(x)|2dx

≤
∞∑
i=1

(N + i− 1)−α−2ε(N + i)α+ε <∞.

Since β > 0, we have∫
|x|<N

|x|β−1|η̂|2dx ≤
∫
|x|<N

|x|β−1dx <∞.

The above two inequalities prove (2.4). �
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Claim 2.7. dim2η ≥ 1− α.

Proof. Let

Vγ(r; η) =
1

r1+γ

∫
η([x− r, x+ r])2dx for any γ, r ≥ 0.

The claim is a simple consequence of the following fact, proved by Lau and
Wang (see the proof of Proposition 3.2 in [6]):

(2.5) Vγ(r; η) ≤ C(γ)Iγ(η) for every r > 0,

where C(γ) is a positive constant depending on γ only.
For the reader’s convenience, we include a brief proof of (2.5):

Vγ(r; η) =
1

r1+γ

∫
η([x− r, x+ r])2dx

=
1

r1+γ

∫ ∫ ∫
χ[x−r,x+r](y)χ[x−r,x+r](z)dη(y)dη(z)dx

=
1

r1+γ

∫ ∫
L1([y − r, y + r] ∩ [z − r, z + r])dη(y)dη(z)

≤ 1

r1+γ

∫ ∫
|y−z|≤2r

2rdη(y)dη(z)

≤ 21+γ

∫ ∫
1

|y − z|γ
dη(y)dη(z) = 21+γIγ(η),

which proves (2.5).
Now take β < 1−α. Since Iβ(η) <∞, Vβ(r; η) has a uniform upper bound,

by the definition of dim2η we have dim2η ≥ β. Since β < 1 − α is arbitrary,
dim2η ≥ 1− α. �

Claim 2.8. dim2η ≤ 1− α.

Proof. First we prove

(2.6)

∫
η([x− r, x+ r])2dx =

2

π

∫
|η̂(t)|2 sin2(rt)

t2
dt ∀r > 0.

To see (2.6), fix r > 0 and define f(x) = η([x−r, x+r]). Then f(x) is a Borel
measurable function with compact support. By Fubini Theorem,

f̂(t) =

∫
e−itxf(x)dx =

∫
e−itx

∫
|x−y|≤r

dη(y)dx

=

∫ ∫
|x−y|≤r

e−itxdxdη(y)

=

∫
2e−ity sin(tr)

t
dη(y) =

2 sin(tr)

t
η̂(t).



CONVOLUTIONS OF EQUICONTRACTIVE SELF-SIMILAR MEASURES 9

Therefore (2.6) follows from the following equality, known as the Plancherel
formula (cf. [8]) ∫

|f̂(t)|2dx = 2π

∫
|f(x)|2dx.

Now since sin2(tr) ≥ 4
π2 (tr)2 for |tr| ≤ 1, by (2.6) we have

8π3

r2

∫
η([x− r, x+ r])2dx ≥

∫
|t|≤1/r

|η̂(t)|2dt.

Therefore by the definition of dim2η, we have dim2η ≤ 1− α. �

Proof of Proposition 2.1. Since |η̂∗n(x)| = |η̂(x)|n, by Lemma 2.5 we
have

dimHη
∗n ≥ 1− α2n and dim2η

∗n = 1− α2n.

Since limn→∞ αn = 0,

lim
n→∞

dimHη
∗n = 1 and dim2η

∗n = 1.

Combining it with Lemma 2.3 yields the desired result.

3. The proof of Theorem 1.1

Let ν be an equicontractive self-similar measure defined as in (1.1), and
let αn = αn(ν) be defined as in (2.1). By Proposition 2.1, it suffices to prove
limn→∞ αn = 0.

It is well known that the Fourier transform of ν is given by

ν̂(x) =

∞∏
n=0

P (ρnx),

where ρ is the common contractive ratio of φi and P (x) =
∑m
j=1 pje

−idjx (see

[11, p. 342]). Note that dj 6= dk for j 6= k and

|P (x)|2 =

m∑
j=1

p2
j +

∑
1≤k<j≤m

2pkpj cos((dj − dk)x)

= 1−
∑

1≤k<j≤m

2pkpj

(
1− cos((dj − dk)x)

)
.

We define Φ(x) = 1 − 2p1p2

(
1 − cos(2πx)

)
. Then Φ is a periodic function

with period 1. By the above equality,

|P (x)|2 ≤ Φ

(
d2 − d1

2π
x

)
.

Hence

(3.1) |ν̂(x)|2 ≤
∞∏
n=0

Φ

(
d2 − d1

2π
ρnx

)
.
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For a given positive integer ` and 0 < δ < 1, let r = r(`, δ) be a positive
integer such that

(3.2) Φr(x) < δ for any x ∈
[
k +

1

3
ρ`, k + 1− 1

3
ρ`
]

and k ∈ Z,

where Φr(x) := (Φ(x))r. Let q(`) be the smallest integer s ≥ ρ−`, and write
Λ = {0, 1, . . . , q(`)− 1}. For j ∈ Λ, define

Ij :=

[
1− ρ`

q(`)− 1
j,

1− ρ`

q(`)− 1
j + ρ`

]
.

It is clear that
⋃
j∈Λ Ij = [0, 1] and for any k ∈ Z, y ∈ R we have

#

{
j ∈ Λ :

[
k − 1

3
ρ`, k +

1

3
ρ`
]⋂

(Ij + y) 6= ∅
}
≤ 2,

where #A denotes the cardinality of A. This combined with (3.2) yields

(3.3) #

{
j ∈ Λ : max

x∈Ij+y
Φr(x) ≥ δ

}
≤ 2,

for any y ∈ R.
Now define a family of maps {ψj}j∈Λ on R by

ψj(x) = ρ`x+
1− ρ`

q(`)− 1
j, j ∈ Λ.

Then ψj([0, 1]) = Ij and [0, 1] =
⋃
j∈Λ ψj([0, 1]). Iterating the last equality n

times we get

[0, 1] =
⋃

j1,...,jn∈Λ

ψj1 ◦ . . . ◦ ψjn([0, 1]).

For simplicity we write Ij1...jn = ψj1 ◦ . . . ◦ψjn([0, 1]). By (3.3) for any k ∈ N
and j1, . . . , jk ∈ Λ we have

(3.4) #

{
jk+1 ∈ Λ : max

x∈Ij1···jkjk+1

Φr(ρ
−k`x) ≥ δ

}
≤ 2.
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By (3.1), we have for any integer n ∈ N,∫ 2π
d2−d1

ρ−n`

0

|ν̂(x)|2rdx ≤
∫ 2π

d2−d1
ρ−n`

0

∞∏
j=0

Φr

(
(d2 − d1)ρjx

2π

)
dx

=
2π

d2 − d1

∫ ρ−n`

0

∞∏
j=0

Φr(ρ
jx)dx

≤ 2π

d2 − d1

∫ ρ−n`

0

n∏
j=1

Φr(ρ
j`x)dx

=
2π

d2 − d1
ρ−n`

∫ 1

0

n−1∏
j=0

Φr(ρ
−j`x)dx

≤ 2π

d2 − d1
ρ−n`

∑
j1,...,jn∈Λ

∫
Ij1...jn

n−1∏
j=0

Φr(ρ
−j`x)dx

≤ 2π

d2 − d1

∑
j1,...,jn∈Λ

max
x∈Ij1...jn

n−1∏
j=0

Φr(ρ
−j`x).

Note that for any fixed indices j1, . . . , jn−1 we have

max
x∈Ij1...jn

n−1∏
j=0

Φr(ρ
−j`x) ≤ max

x∈Ij1...jn−1

n−2∏
j=0

Φr(ρ
−j`x) max

y∈Ij1...jn
Φr(ρ

−(n−1)`y).

Hence by (3.4),∑
jn∈Λ

max
x∈Ij1...jn

n−1∏
j=0

Φr(ρ
−j`x) ≤ max

x∈Ij1...jn−1

n−2∏
j=0

Φr(ρ
−j`x)(2 + δq(`)).

Thus by induction∑
j1,...,jn∈Λ

max
x∈Ij1...jn

n−1∏
j=0

Φr(ρ
−j`x) ≤ (2 + δq(`))

n
.

Therefore ∫ 2π
d2−d1

ρ−n`

0

|ν̂(x)|2rdx ≤ 2π

d2 − d1
(2 + δq(`))

n
.

Similarly ∫ 0

− 2π
d2−d1

ρ−n`
|ν̂(x)|2rdx ≤ 2π

d2 − d1
(2 + δq(`))

n
.

Thus ∫
|x|< 2π

d2−d1
ρ−n`
|ν̂(x)|2rdx ≤ 4π

d2 − d1
(2 + δq(`))

n
,
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which implies (see (2.1))

α2r = lim sup
T→∞

log
∫
|x|<T |ν̂(x)|2rdx

log T
≤ log(2 + δq(`))

log ρ−`
.

Now first let δ → 0 and then let `→∞ we finally obtain limr→∞ α2r = 0 and
so limr→∞ αr = 0. Therefore by Proposition 2.1 we get the desired results.
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