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Abstract. For a given expanding d-fold covering transformation of the one-dimensional
torus, the notion of weak Gibbs measure is defined by a natural generalization of the
classical Gibbs property. For these measures, we prove that the singularity spectrum
and the Lq -spectrum form a Legendre transform pair. The main difficulty comes from
the possible existence of first-order phase transition points, that is, points where the
Lq -spectrum is not differentiable. We give examples of weak Gibbs measure with phase
transition, including the so-called Erdös measure.

0. Introduction
The one-dimensional torus S1 := R/Z is endowed with the natural metric and dimH M

denotes the Hausdorff dimension of any M ⊂ S1 (by convention, dimH ∅ = −∞).
Let Br(x) be the closed ball of radius r > 0 centered at x ∈ S1; the local dimension
of a Borel probability measure η at x is by definition

DIMη(x) := lim
r→0

log η(Br(x))

log r
, (1)

provided that the limit exists. The level set E(α) (α ∈ R) associated to η is the set of points
x ∈ S1 such that DIMη(x) exists and is equal to α. The map α �→ dimH E(α) is called the
singularity spectrum of η. Heuristic arguments using techniques of statistical mechanics
(see [16] for example) show that the singularity spectrum should be finite on a compact
interval denoted DOM(η) and is expected to be the Legendre transform conjugate of the
Lq -spectrum τ associated to η (see Definition 1.3); that is, for all α ∈ DOM(η),

dimH E(α) = inf{αq − τ (q); q ∈ R} =: τ ∗(α). (2)
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The multifractal analysis of a probability measure is concerned with rigorous arguments
ensuring that the Legendre transform formula (2) holds; the first multifractal formalisms
were established for Gibbs [7, 36, 39], quasi-Bernoulli [4, 17] and self-similar measures
[6, 25, 33]: we refer to [34] for a general overview of the subject and complete references.
In this paper, we focus our attention on the notion of weak Gibbs measure defined in [46]
by a natural generalization of the classical Gibbs property (see Definition 1.1). Of special
interest are the g-measures, as considered in [22], which turn out to be weak Gibbs, as well
as a large class of the conformal measures studied in [19]. It follows from the variational
characterization of the g-measure proved in [26] that a non-ergodic g-measure cannot be
Gibbs. The existence of non-ergodic g-measures established in [3] shows that a weak
Gibbs measure need not be Gibbs.

Let T be an expanding d-fold covering transformation of S1 (with d ≥ 2) so that there
exists a Markov partition M1 of T , by d (semi-open) intervals; if Mn (n ≥ 1) denotes the
partition of S1 by the n-step basic intervals then M := ⋃

nMn is called the Markovian
net of T . From now on, we assume that η is a weak Gibbs measure of a potential φ
defined on the symbolic space which codes the Markovian dynamics of T . Our approach
to the multifractal analysis of η is classical; we consider the level sets E(α|M) associated
to the Markovian local dimension DIMη(·|M) and we give (Theorem A) an intermediate
Legendre transform formula, say, for any α in the interior of DOM(η),

dimH E(α|M) = τ ∗
φ (α), (3)

where the concave map τφ is implicitly defined by a pressure equation. An important
and non-trivial step is to prove (Theorem B) that dimH E(α|M) = dimH E(α), when
η is a weak Gibbs measure. The last step is achieved by proving (Theorem C) that
τφ coincides with the Lq -spectrum τ and we conclude (Theorem A′) that the Legendre
transform formula (2) holds, when η is weak Gibbs.

These generalizations are relevant essentially because the Lq -spectrum τ need not be
real-analytic/differentiable when η is weak Gibbs. For the thermodynamic formalism on
lattices, a system is said to exhibit a phase transition when a thermodynamic function
displays a defect of analyticity at some critical value (see [40, ch. 5]). We shall say that the
real number qc is a phase transition point (respectively a first-order phase transition point)
if τ is not real-analytic (respectively not differentiable) at qc: this will make sense, for we
shall prove (Theorem C) that τ coincides with a thermodynamic function determined by
a pressure equation. Let us denote by τ ′(q+

c ) (respectively τ ′(q−
c )) the right (respectively

left) derivative of τ at qc; if τ ′(q+
c ) < τ ′(q−

c ) then the mass distribution principle does
not apply to give the desired lower bound of dimH E(α|M) when τ ′(q+

c ) < α < τ ′(q−
c ).

Our argument depends on the tangency property of the topological pressure, which yields a
thermodynamic characterization of τ ′(q+) and τ ′(q−) for any q ∈ R (Lemma 3.2) and on
a formula which gives the Billingsley dimension of the generic points of a (not necessarily
ergodic) shift-invariant measure.

In §1 we describe the framework of the expandingd-fold covering transformation of the
one-dimensional torus and the thermodynamic formalism of the equilibrium state. Then we
give a definition of the weak Gibbs measure (Definition 1.1) making possible a rigorous
statement of Theorems A, B, C and A′; the proofs of these theorems are given in §3.
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Section 2 is devoted to an illustration of the previous results through the analysis
of two examples of Bernoulli convolutions. We first study (§2.1) the so-called
(2, 3)-Bernoulli convolution: this measure is proved to be weak Gibbs (Theorem 2.4) and
we show that its Lq -spectrum displays a phase transition point (Theorem 2.5). The case of
the (2, 3)-Bernoulli convolution is closely related to our main application, concerned with
the multifractal analysis of the Erdös measure. The Bernoulli convolution νβ (1 < β < 2)
defined in §2.2 is a non-atomic probability measure supported by the unit interval which is
either continuous or purely singular (see [21]). Erdös proved in [10] that νβ is purely
singular when β is a Pisot number (i.e. an algebraic integer whose conjugates have
modulus less than 1). When β = (1 + √

5)/2 the measure ν := νβ is called [42] the
Erdös measure. The multifractal analysis of ν has been partially studied in [13, 24, 27];
we prove (Theorem 2.9) that ν is a weak Gibbs measure (but not Gibbs) with respect
to a suitable 3-fold covering transformation (the potential of ν is defined by means of
continued fractions), so that the full multifractal formalism is completely established
(our contribution is concerned with the decreasing part of the singularity spectrum of ν).
In [13], the first author completes a result in [24] by giving an explicit formula for the
Lq -spectrum of the Erdös measure, proving in addition that there exists a negative qc such
that: (i) τ (q) = q log 2/logβ for any q ≤ qc; (ii) τ is infinitely differentiable at any
q > qc; and (iii) τ is not differentiable at qc. The weak Gibbs property of ν makes
possible (Theorem C) the use of the thermodynamic formalism and one may interpret qc
as a first-order phase transition. The variational principle allows an alternative approach
to (i) (Theorem 2.10), which is actually enough to ensure that τ is not real-analytic at
qc < 0; the fact that τ is not differentiable at qc is more difficult to establish: Appendix A
is devoted to a self-contained proof of this result based on the original argument in [13].
We point out that the multifractal formalism is valid for νβn , when βn is the Pisot number
such that βnn = βn−1

n + · · · + βn + 1 (n ≥ 3) [13, 32], the corresponding Lq -spectrum
being differentiable on the whole real line [13]. Even if some partial results can be
achieved (see e.g. [14]), the general case of a Pisot number seems to remain a difficult
problem.

1. Multifractal formalism of weak Gibbs measures

1.1. General framework. Let T be an expanding continuous transformation of S1 such
that T −1{x} is of cardinality d > 1 for any x ∈ S1. Assuming that T (0) = 0, there
exist d points xd = 0 = x0, x1, . . . , xd−1 such that T is a one-to-one, onto mapping
from [i] := [xi, xi+1[ to S1. The bilateral restrictions Ti :]xi, xi+1[→ S1\{0} are
diffeomorphisms with Hölder-continuous derivative (the transformation T may not be
differentiable at the points xi): we say that T is a regular d-fold covering transformation
(d-f.c.t.) of S1. Let �d be the one-sided direct product of an infinite number of copies of
the alphabet Ad := {0, . . . ,d − 1}, i.e. �d := ∏∞

0 Ad; we assume that �d is endowed
with the product topology and σ : �d → �d denotes the (one-sided) shift transformation.
Each x ∈ S1 is associated to a unique point χ(x) := (ωk) ∈ �d such that T k(x) ∈ [ωk],
for any integer k ≥ 0, and χ : S1 → �d is a one-to-one map such that the following
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diagram commutes

S1 T ��

χ

��

S1

χ

��
�d

σ �� �d

(we usually call χ the coding map of T ). For any x ∈ S1 such that ω = χ(x), we
denote by In(x) = [ω0 · · ·ωn−1] the n-step basic interval about x, that is, the set of
points y ∈ S1 such that T k(y) ∈ [ωk], for k = 0, . . . , n − 1. Let [[w]] be the set of
the ξ ∈ �d such that ξ0 · · · ξn−1 = w, which is usually called the n-step cylinder set about
w (clearly, χ−1([[w]]) = [w]). If M0 := {S1} and if Mn (n > 0) is the collection of
the n-step basic intervals then M := {M}∞n=0 is by definition the Markovian net of T .
The Hölder-continuous function �0 : �d → R such that �0(ω) = −log |T ′(x)| when
ω = χ(x) (and extended to �d by continuity) is called the volume-derivative potential of
T with respect to M. By a classical application of the Mean Value Theorem, there exists
a constant K > 1 such that, for any ω ∈ χ(S1) and any integer n > 0,

1

K
≤ |[ω1 · · ·ωn]|

exp(Sn�0(ω))
≤ K (4)

(|J | stands for the length of any interval J ⊂ S1 and Sn�0(ω) := ∑n−1
k=0 �0(σ

kω)).

Definition 1.1. The measure η defined on S1 is said to be a weak Gibbs measure of the
potential φ : �d → R, if there exists a sub-exponential sequence of real numbers
K(n) > 1 (i.e. limn(1/n) logK(n) = 0) such that, for any n > 0, and any ω ∈ χ(S1),

1

K(n)
≤ η[ω0 · · ·ωn−1]

exp(Snφ(ω))
≤ K(n); (5)

without loss of generality, we assume thatK(n) increases with n.

If K(n) is constant, one recovers the classical notion of Gibbs measures [2];
accordingly, by (4), the Lebesgue measure is a Gibbs measure of the volume-derivative
potential�0.

Suppose that the probability measure η is fully supported by S1; for ω ∈ χ(S1), we set
φ1(ω) := log η[ω0] and for any n > 1,

φn(ω) := log
η[ω0 · · ·ωn−1]
η[ω1 · · ·ωn−1] . (6)

Using the density of χ(S1) in�d, one extends φn to a continuous map defined on the whole
of �d and called the n-step potential of η. The following lemma provides a useful way to
prove that η is weak Gibbs (the proof is left to the reader).

LEMMA 1.2. Let φn be the n-step potential of a fully supported probability measure η; if
φn converges uniformly to a potential φ then η is a weak Gibbs measure of φ.

Even if a weak Gibbs measure need not be invariant under the dynamics of T , the notion
is closely related to the theory of equilibrium states. The topological pressure of a potential
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φ : �d → R (simply assumed to be continuous) is, by definition,

P(φ) := lim
n

1

n
log

∑
w∈An

d

exp(Snφ
∗[[w]]), (7)

where Snφ∗[[w]] := max{Snφ(ξ); ξ ∈ [[w]]} (a sub-additive argument ensures that the limit
in (7) does exist). The variational principle of Walters [45] asserts that, for any σ -invariant
probability measure η of metric entropy hσ (η), one has hσ (η) + η(φ) ≤ P(φ), equality
being obtained when η is an equilibrium state of φ; the set of equilibrium states of φ is a
non-empty weak-∗ compact convex set (in fact a Choquet simplex), whose extreme points
are σ -ergodic measures. We shall use the basic properties of the topological pressure listed
in [45, Theorem 9.7].

It is worth noting that the weak Gibbs property is satisfied by a g-measure in the sense of
Keane [22] as well as the so-called conformal measures. More precisely, given a potential
φ : �d → R, the probability measure η defined on S1 is said to be e−φ◦χ -conformal, if for
any Borel set A, with A ⊂ [i] for some i ∈ Ad, one has

η ◦ T (A) =
∫
A

e−φ◦χ(x) dη(x). (8)

Under the condition that η is fully supported by S1, it is easily seen that (8) implies the
uniform convergence of the n-step potentials of η, ensuring by Lemma 1.2 that η is weak
Gibbs. However, the converse is not true in general, even if there exists a partial reciprocal;
to see this, we notice that if in addition to being of full support and e−φ◦χ -conformal,
one also assumes that η is T -invariant, then, according to the previous remark, η is a
weak Gibbs measure of φ, but it is also necessary that φ is normalized in the sense that∑
σξ=ω eφ(ξ) ≡ 1 (the n-step potentials are trivially normalized and, using the uniform

convergence, one deduces that φ is also normalized). Now, if one assumes that η is a
T -invariant weak Gibbs measure of the normalized potential φ, then it is easily seen that
η is an equilibrium state of φ and by the variational principle in [26, Théorème 1], one
deduces that η is e−φ◦χ -conformal. When the potential φ is normalized one usually writes
g = eφ◦χ so that the T -invariant e−φ◦χ -conformal measures are exactly the g-measures.

1.2. Statement of the multifractal theorems. The classical starting point of the
multifractal analysis is to make possible an application of the Shannon–McMillan
Theorem, by the introduction of the Markovian local dimension

DIMη(x|M) := lim
n

log η(In(x))

log |In(x)| , (9)

provided that the limit exists; then the α-level set corresponding to this local dimension is
by definition

E(α|M) := {x ∈ S1; DIMη(x|M) = α}. (10)

From now on, suppose that the probability measure η defined on S1 is a weak Gibbs
measure of the negative potential φ : �d → R. For any (q, t) ∈ R × R we consider the
partition function

Zn(q, t) :=
∑
w∈An

d

η[w]q
|[w]|t . (11)
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Using the Gibbs property (4) of the Lebesgue measure and the weak Gibbs property (5)
of η, it follows from the definition given in (7) that

P(qφ − t�0) = lim
n

1

n
log Zn(q, t) =: Pφ(q, t). (12)

The convex property of P implies that Pφ is a convex map on R × R; for any q, q ′ ∈ R

with q ′ > q , one has

q ′φ − t�0 ≤ (q ′ − q) sup(φ)+ (qφ − t�0),

where sup(φ) := sup{φ(ω);ω ∈ �d}; hence

P(q ′φ − t�0) ≤ (q ′ − q) sup(φ)+ P(qφ − t�0),

and thus
Pφ(q, t)− Pφ(q

′, t)
q − q ′ ≤ sup(φ). (13)

Since φ is supposed continuous and negative, sup(φ) < 0, and one deduces from (13)
that the convex map q �→ Pφ(q, t) decreases from +∞ to −∞. Using the assumption
that sup(�0) < 0, the same argument shows that, for any q ∈ R fixed, the convex map
t �→ Pφ(q, t) increases from −∞ to +∞. Therefore, there exists an increasing concave
map τφ : R → R defined by the implicit equation Pφ(q, τφ(q)) = 0. The underlying
thermodynamic formalism related to the convex map Pφ leads to a characterization of the
points where τφ is not differentiable (i.e. the first-order phase transition points): actually,
according to Lemma 3.2 proved in §3.1,

τ ′
φ(q

−) = sup
µ

{
µ(φ)

µ(�0)

}
and τ ′

φ(q
+) = inf

µ

{
µ(φ)

µ(�0)

}
,

where the infimum and the supremum are respectively taken over the probability measures
µ, equilibrium states of the potential qφ−τφ(q)�0. Lemma 3.2 also provides a description
of the behavior of τφ about +∞ and −∞: more precisely we shall prove that

inf
µ

{
µ(φ)

µ(�0)

}
= lim
q→+∞

τφ(q)

q
=: α and sup

µ

{
µ(φ)

µ(�0)

}
= lim
q→−∞

τφ(q)

q
=: α,

where the infimum and the supremum are respectively taken over the probability measures
µ which are σ -invariant on �d.

It is now possible to state the multifractal formalism of a weak Gibbs measure with
respect to the Markovian local dimension.

THEOREM A. Let M be the Markovian net of a d-f.c.t. T and η be a weak Gibbs measure
of a negative potential φ : �d → R. The set of all points α with E(α |M) �= ∅ is the
interval [α, α] and dimH E(α |M) = τ ∗

φ (α), for any α < α < α.

When T is differentiable on the whole torus and η is a Gibbs measure associated to a
potential which is continuous with respect to the natural topology on S1, it is well known
[36] that E(α) = E(α|M). We emphasize that, in our framework, the transformation
T (respectively the potential of the weak Gibbs measure) may not be differentiable
(respectively continuous) for the natural topology on S1: in that case one may have
E(α) �= E(α|M). The following theorem is a crucial point of our multifractal analysis.
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THEOREM B. Let M be the Markovian net of a d-f.c.t. T and η be a weak Gibbs measure.
Then, dimH E(α|M) = dimH E(α), for any α ∈ R.

Definition 1.3. The Lq -spectrum of η is the concave map τ : R → R ∪ {−∞} such that

τ (q) := lim inf
r→0

log inf
{∑

i η(Bi)
q; {Bi}i

}
log r

,

where {Bi}i runs over the family of covers of S1 by closed balls of radius r .

THEOREM C. Let T be a d-f.c.t. and η be a weak Gibbs measure of a negative potential
φ : �d → R. Then, τφ(q) = τ (q), for any q ∈ R.

Finally, we can state the strong version of Theorem A.

THEOREM A′ . Let T be a d-f.c.t. and η be a weak Gibbs measure of a negative potential
φ : �d → R. The domain of the finite values of dimH E(α) is DOM(η) = [α, α] and
dimH E(α) = τ ∗(α), for any α < α < α.

2. Bernoulli convolutions
For practical reasons, we shall need basic notions about the set of words on an alphabet.
Given A := {0, . . . , s−1} (s ≥ 2) a finite alphabet, each element in An (n ≥ 1) is denoted
by a string of n letters/digits in A that we call a word; by convention A0 is reduced to
the empty word ∅. By definition, A∗ is the set of words on A, that is, A∗ := ⋃∞

n=0 An.
We denote by wm the concatenation of the two words w and m so that A∗, endowed with
the concatenation, is a monoid with unit element ∅. Whenever x0, . . . , xs−1 are s elements
of a monoid (X, 
) with identity element e, we denote x∅ := e and xw := xξ0 
 · · · 
 xξn−1 ,
for any word w = ξ0 · · · ξn−1 ∈ A∗.

2.1. The (2,3)-Bernoulli convolution. Let b and d be two integers with 2 ≤ b < d (b is
for basis and d is for digit). The (uniform) (b,d)-Bernoulli convolutionµ is defined as the
probability distribution of the random variable X : �d → R such that

X(ω) = 1

b

b− 1

d− 1

∞∑
n=0

ωn

bn
,

for any ω = (ωi)
∞
i=0 ∈ �d, when �d is endowed with the equidistributed Bernoulli

probability. The measure µ is non-atomic, is supported by the whole unit interval
I = [0, 1], and is either absolutely continuous or purely singular (see [21, Theorem 35]).
In this section we focus our attention on the (2, 3)-Bernoulli convolution µ, when �3 is
endowed with the equidistributed Bernoulli measure λ3 (by [8, Propositions 5.2 and 5.3],
µ is known to be purely singular). The measure µ turns out to be self-similar; to see this,
notice that for M ⊂ I one has X(ω) ∈ M if and only if ω0/4 + X(σω)/2 ∈ M , that is,
Sω0 ◦ X ◦ σ(ω) ∈ M , where Sω0(x) := x/2 + ω0/4; since λ3 is a Bernoulli measure, for
ε = 0, 1 or 2 one obtains

λ3([[ε]] ∩ {Sε ◦X ◦ σ(ω) ∈ M}) = λ3[[ε]]λ3{Sε ◦X ◦ σ(ω) ∈ M}
= 1

3λ3{Sε ◦X(ω) ∈ M} = 1
3µ(S

−1
ε (M)).
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Finally, one deduces that µ satisfies the following self-similarity equation:

µ = 1
3µ ◦ S−1

0 + 1
3µ ◦ S−1

1 + 1
3µ ◦ S−1

2 . (14)

Each dyadic sub-interval of I is coded by a word w ∈ {0, 2}∗ and in what follows we
denote [w] := Sw(I). From the self-similarity property of the measure µ given in (14) and
the fact that S−1

1 S00(M) = {0} and S−1
2 S00(M) = ∅, for anyM ⊂ I , one obtains

µ[00w] = 1
3µ(S

−1
0 [00w])+ 1

3µ(S
−1
1 [00w])+ 1

3µ(S
−1
2 [00w])

= 1
3µ(S

−1
0 S0[0w])+ 1

3µ(S
−1
1 S00[w])+ 1

3µ(S
−1
2 S00[w]) = 1

3µ([0w]).
Likewise, using the identity S12 = S20 and the fact that S−1

0 S20(M) ⊂ {1}, for any M ⊂ I ,

µ[20w] = 1
3µ(S

−1
0 S20[w])+ 1

3µ(S
−1
1 S20[w])+ 1

3µ(S
−1
2 S20[w])

= 1
3µ(S

−1
1 S12[w])+ 1

3µ[0w]
= 1

3µ([2w])+ 1
3µ([0w]),

and the following matricial identity holds:(
µ[00w]
µ[20w]

)
= 1

3P0

(
µ[0w]
µ[2w]

)
, where P0 :=

(
1 0
1 1

)
. (15)

Since S10 = S02, one gets in the same way that(
µ[02w]
µ[22w]

)
= 1

3P2

(
µ[0w]
µ[2w]

)
, where P2 :=

(
1 1
0 1

)
. (16)

A simple induction using (15), (16) and the fact that µ[0] = µ[2] = 1/2 yields, for any
ω0 · · ·ωn−1 ∈ {0, 2}n,

µ[ω0 · · ·ωn−1] = 1

2

1

3n−1
tVω0Pω0···ωn−1V, (17)

where

V0 :=
(

1
0

)
, V2 :=

(
0
1

)
, V :=

(
1
1

)
.

In order to fit our framework, the measure µ is identified to a measure on the torus S1.
Let T2 : S1 → S1 be the multiplication by 2 (mod 1); it is a 2-f.c.t. coded by the full shift
σ : � → � where � := �∞

0 {0, 2} and the volume-derivative potential is �0 : � → R

such that �0 ≡ −log 2. A dyadic interval [ω0 · · ·ωn−1] becomes an n-step basic interval,
i.e. [0] = [0, 1/2[, [2] = [1/2, 1[ and x ∈ [ω0 · · ·ωn−1] if and only if T k2 (x) ∈ [ωk]
whenever 0 ≤ k ≤ n− 1.

Denote by 0 := (ωi = 0)∞i=0; then, for any potential ψ : � → R,

exp(Snψ(20)) = exp(ψ(20))

exp(ψ(0))
{exp(ψ(0))}n.

A direct computation using (17) gives µ[20n−1] = n/(2 · 3n−1), for any n > 0; if µ is a
Gibbs measure of ψ , then there exists a constant K > 1 such that, for any n ≥ 1,

1

K
≤ 1

n
{3 exp(ψ(0))}n ≤ K;
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this is impossible and one concludes that µ is not a Gibbs measure. Our aim is to
prove that µ satisfies the weak Gibbs property with respect to some potential to be
identified. We consider the probability measure µ′ defined on S1 by setting, for any word
ω0 · · ·ωn−1 ∈ {0, 2}n,

µ′[ω0 · · ·ωn−1] = 1

2

1

3n
tVPω0···ωn−1V. (18)

It is clear that µ′ is T2-invariant and the next proposition shows how it is related to µ.

PROPOSITION 2.1. For any ω ∈ �, and any integer n ≥ 1,

3

n+ 2
≤ µ[ω0 · · ·ωn−1]
µ′[ω0 · · ·ωn−1] ≤ 3.

Proof. Let w ∈ {0, 2}n; it is easily seen that µ[w]/µ′[w] ≤ 3 and thus it remains to prove
that µ[w]/µ′[w] ≥ 3/(n+ 2). Assume that w = 0a12a2 · · · εak , with ε ∈ {0, 2}, k ≥ 2 and
a1, . . . , ak > 0 (the cases a1 = 0 or n are similar); if we denote

P
a2−1
2 · · ·Pakε V =:

(
p

q

)
,

then

µ[w]
µ′[w] =

3(1 1)

(
p

q

)

(1 1)P a1
0 P2

(
p

q

) = 3(p + q)

(1 + a1)(p + q)+ q
≥ 3

a1 + 2
.

Since n = a1 + · · · + ak, it follows that a1 ≤ n and thus µ[w]/µ′[w] ≥ 3/(n+ 2). �

In order to define the potential associated to µ′ in Theorem 2.2 below (as well as for the
Erdös measure in §2.2), we introduce some notations and ideas.

Given a sequence a0, a1, . . . of integers with a0 ≥ 0 and ai > 0 for i > 0, we denote

[a0; a1, . . . , ak] := a0 + 1

a1 + 1

. . . + 1

ak

=: pk
qk
,

where the irreducible fraction pk/qk is the kth convergent of the continued fraction
[a0; a1, . . . ] = limk[a0; a1, . . . , ak]. The integers pk and qk satisfy a well-known linear
recurrence, say(

pk

qk

)
=
(
akpk−1 + pk−2

akqk−1 + qk−2

)
= Qa0 · · ·Qak

(
1
0

)
where Qai :=

(
ai 1
1 0

)
; (19)

we refer to [23] for a general presentation of continued fraction theory.
For ε ∈ {0, 2} and a any positive integer, we denote 〈ε|a〉 = εa; given any sequence

a1, a2, . . . , ak (k ≥ 2) of positive integers, we define 〈ε|a1, a2, . . . , ak〉 by means of the
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induction formula 〈ε|a1, a2, . . . , ak〉 = εa1〈2 − ε|a2, . . . , ak〉. Let 0 := (ωi = 0)∞i=0,
2 := (ωi = 2)∞i=0 and θ : �3 → N ∪ {∞} such that

θ(ω) =
{

min{k ≥ 0; σkω ∈ [[1]] ∪ {0, 2}} if ∃k ≥ 0, σ kω ∈ [[1]] ∪ {0, 2};
∞ if ∀k ≥ 0, σ kω /∈ [[1]] ∪ {0, 2};

hence the map θ : �3 → N ∪ {∞} is the hitting time of [[1]] ∪ {0, 2}. Moreover, if
θ(ω) = 0 then we set n(ω) = 0, and if 0 < θ(ω) < ∞, there exists a unique finite
sequence of n(ω) positive integers aω1 , . . . , a

ω
n(ω) with aω1 + · · · + aωn(ω) = θ(ω) and such

that, ω0 · · ·ωθ(ω)−1 = 〈ω0|aω1 , . . . , aωn(ω)〉; when θ(ω) = ∞ we set n(ω) := ∞ and
there exists a unique (infinite) sequence of integers aω1 , a

ω
2 , . . . with aωi > 0 and such that

ω0 · · ·ωn−1 = 〈ω0|aω1 , . . . , aωk , α〉, where 0 ≤ α < aωk+1 and aω1 + · · · + aωk + α = n.

THEOREM 2.2. The T2-invariant probability measure µ′ defined on S1 by (18) is a
g-measure of the normalized potential ϕ : � → R such that

ϕ(ω) =




log(1/3), if n(ω) = θ(ω) = 0,

log([1; aω1 , . . . , aωn(ω)]/3), if 0 < n(ω), θ(ω) < ∞,

log([1; aω1 , . . . ]/3), if n(ω) = θ(ω) = ∞.

The proof of Theorem 2.2 relies on the following lemma, which, according to (19),
makes the link between the matrix product formula in (18) defining µ′ and the continued
fractions involved in the definition of the potential ϕ associated to µ′ in Theorem 2.2.

LEMMA 2.3. For w = 〈ε|a1, . . . , ak〉, one has tVPwV = tVQa1 · · ·QakV .

Proof. Notice that Q0Q0 is the identity matrix and that Pa2 Q0 = Q0P
a
0 = Qa , for each

integer a ≥ 0; given any finite sequence of integers a1, . . . , ak with a2 · · · ak−1 > 0, one
has

tVP
a1
2 P

a2
0 · · ·Pak2 V = tV (P

a1
2 Q0)(Q0P

a2
0 ) · · · (P ak2 Q0)Q0V

= tVQa1Qa2 · · ·QakV . �

Proof of Theorem 2.2. Assume that θ(ω) = ∞ (the case θ(ω) < ∞ being similar).
For n ≥ 1 one writes ω0 · · ·ωn−1 = 〈ω0|aω1 , . . . , aωk , α〉, with n = aω1 + · · · + aωk + α and
0 ≤ α < aωk+1; one considers x := [1; aω1 , . . . ] and for any k ≥ 1,

pk

qk
= [1; aω1 , . . . , aωk ] and

p′
k

q ′
k

:= [1; aω1 , . . . , aωk , α + 1].

By the definition of the n-step potential φn of µ′, it follows from Lemma 2.3 that

3 exp(φn(ω)) =
tVQaω1 Qa

ω
2

· · ·Qaωk QαV
tVQaω1 −1Qaω2

· · ·Qaωk QαV

= (1 0)Q1Qaω1
· · ·Qaωk Qα+1

t(1 0)

(0 1)Q1Qaω1
· · ·Qaωk Qα+1

t(1 0)
= (1 0) t(p′

k q ′
k)

(0 1) t(p′
k q ′

k)
= p′

k

q ′
k

.
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Using classical inequalities of the theory of continued fractions,∣∣∣∣x − p′
k

q ′
k

∣∣∣∣ ≤
∣∣∣∣x − pk

qk

∣∣∣∣+
∣∣∣∣pkqk − p′

k

q ′
k

∣∣∣∣ ≤ 1

qkqk+1
+ 1

qkq
′
k

≤ 1

qk+1
+ 1

q ′
k

.

Since n = aω1 + · · · + aωk + α, one gets qk+1 ≥ q ′
k > n, which gives the following upper

bound:

|exp(ϕ(ω))− exp(φn(ω))| ≤ 2

3n
.

The desired result is obtained by an application of Lemma 1.2. �

From Proposition 2.1 and Theorem 2.2, one deduces the following.

THEOREM 2.4. The (2, 3)-Bernoulli convolution µ is a weak Gibbs measure of ϕ.

Since µ is a weak Gibbs measure of the potential ϕ, it satisfies the multifractal
formalism as stated in Theorem A′; moreover, by Theorem C, its Lq -spectrum τ coincides
with the concave function τϕ , a solution of the implicit equation Pϕ(q, τϕ(q)) = 0.
The following theorem proves that τ is not real-analytic at a critical point qc < 0, meaning
that qc is a phase transition point.

THEOREM 2.5. The Lq -spectrum τ of the (2, 3)-Bernoulli convolution µ is a concave
function for which there exists qc < 0 such that τ (q) = q log 3/log 2 if and only if q ≤ qc.

The proof of Theorem 2.5 depends on the following lemma.

LEMMA 2.6. limq→−∞
∑∞
k=1

∑
a1,...,ak>0(

tVQa1 · · ·QakV )q = 0.

Proof. We first prove that if a1, . . . , ak are positive integers then

tVQa1 · · ·QakV ≥
(
a1 + β2

β2

)
· · ·
(
ak + β2

β2

)
, (20)

where β = (1 + √
5)/2. It is readily checked that tVQaV ≥ (a + β2)/β2 when a > 0.

Given k positive integers a1, . . . , ak , one has, for any integer a > 0,

tVQa1 · · ·QakQaV ≥ tVQa1 · · ·Qak−1Qak−1

(
a + 1
a + 1

)
.

If (20) is valid for rank 1 up to rank k ≥ 1, then (even when ak − 1 = 0),

tVQa1 · · ·QakQaV ≥
(
a1 + β2

β2

)
· · ·
(
ak−1 + β2

β2

)(
ak − 1 + β2

β2

)
(a + 1)

≥
(
a1 + β2

β2

)
· · ·
(
ak−1 + β2

β2

)(
ak + β2

β2

)(
a + β2

β2

)
,

and (20) follows by induction. Using (20), one gets, for any q < 0,
∞∑
k=1

∑
a1,...,ak>0

( tVQa1 · · ·QakV )q ≤
∞∑
k=1

∑
a1,...,ak>0

{(
a1 + β2

β2

)
· · ·
(
ak + β2

β2

)}q

≤
∞∑
k=1

( ∞∑
n=1

(
n+ β2

β2

)q)k

and the desired result holds. �
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Proof of Theorem 2.5. The Bernoulli convolutionµ being a weak Gibbs measure of ϕ, one
deduces from Theorem C that τ (q) = τϕ(q): this means that, for any q ∈ R,

τ (q) = max{t; Pϕ(q, t) ≥ 0} = min{t; Pϕ(q, t) ≤ 0}. (21)

Let α0 := log 3/log 2; for 0 = (ωi = 0)∞i=0 one has �0(0) = −log 2 and ϕ(0) = −log 3,
so that qϕ(0) − α0q�0(0) = 0, for any q ∈ R: it follows from the variational principle
that

0 = hσ (δ0)+
∫

{qϕ(ξ)− α0q�0(ξ)} dδ0(ξ) ≤ P(qϕ − α0q�0) =: Pϕ(q, α0q),

which by (21) implies that τ (q) ≤ α0q . We now prove that τ (q) ≥ α0q when q is
sufficiently close to −∞. Since µ′ is also a weak Gibbs measure of ϕ, one can write

Pϕ(q, t) = lim
n

1

n
log Zn(q, t), where Zn(q, t) :=

∑
w∈{0,2}n

µ′[w]q/|[w]|t .

By Lemma 2.3, one has, for any q < 0,

Zn(q, α0q) :=
∑

w∈{0,2}n
(µ′[w]/|[w]|α0)q

= 1

2q
∑

w∈{0,2}n
( tVPwV )

q = 2

2q

n∑
k=1

∑
a1+···+ak=n

( tVQa1 · · ·QakV )q

so that

Zn(q, α0q) ≤ 2

2q

∞∑
k=1

∑
a1,...,ak>0

( tVQa1 · · ·QakV )q.

Hence, by Lemma 2.6, there exists q0 < 0 such that Zn(q, α̃q) ≤ 1/2q for any q < q0 and
each n ≥ 1. Therefore, Pϕ(q, α0q) ≤ 0 and (21) gives τ (q) ≥ α0q when q ≤ q0; since τ
is a concave map with τ (0) = −1, there exists qc < 0 such that τ (q) = α0q if and only if
q ≤ qc. �

2.2. The Erdös measure. Suppose that 1 < β < 2 and let α := 1/(β−1). The Bernoulli
convolution νβ can be defined as the probability distribution of the random variable
Yβ : �2 → R such that Yβ(ω) = (1/α)

∑∞
k=0 ωk/β

k+1, where �2 is endowed with
the equidistributed Bernoulli measure. As in the case of a (b,d)-Bernoulli convolution, νβ
satisfies a self-similarity equation, say

νβ = 1
2νβ ◦ S−1

0 + 1
2νβ ◦ S−1

1 , (22)

with Sε(x) = (x+ ε/α)/β and ε ∈ {0, 1}. From now on, we assume that β = (1 +√
5)/2,

that is ν = νβ is the Erdös measure. The algebraic equation β2 = β + 1 satisfied by β
implies that 1/β = β − 1 =: ρ, so that S0(x) = ρx and S1(x) = ρx + ρ2. It is easily seen
that the intervals S00[0, 1[, S100[0, 1[ = S011[0, 1[ and S11[0, 1[ form a partition of [0, 1[;
this means that R0 := S00, R1 := S100 = S011 and R2 := S11 define a non-overlapping
system of affine contractions on [0, 1[ and for any word w on the alphabet {0, 1, 2}, we
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denote [w] = Rw(I). By symmetry ν[0] = ν[2] and according to the self-similarity
property (22) satisfied by ν, one gets ν[1] = (ν[0] + ν[2])/2, so that

ν[0] = ν[1] = ν[2] = 1
3 . (23)

Likewise, for any word w on the alphabet {0, 1, 2},
ν[1w] = 1

2ν(S
−1
0 [1w])+ 1

2ν(S
−1
1 [1w])

= 1
2ν(S

−1
0 S011[w])+ 1

2ν(S
−1
1 S100[w])

= 1
2ν(R2[w])+ 1

2ν(R0[w]) = 1
2ν[2w] + 1

2ν[0w],
which we can write in the following matricial way:(

ν[1w]
ν[1w]

)
= P1

(
ν[0w]
ν[2w]

)
where P1 :=

(
1/2 1/2
1/2 1/2

)
. (24)

As initially noticed by Strichartz et al. [43], the identity S100 = S011 plays a crucial role in
the overlapping situation involved in the self-similarity of ν. It follows from the same kind
of elementary computation which yields (24) that(

ν[01w]
ν[21w]

)
= 1

4
P1

(
ν[0w]
ν[2w]

)
; (25)

(
ν[00w]
ν[20w]

)
= 1

4
P0

(
ν[0w]
ν[2w]

)
where P0 :=

(
1 0
1 1

)
; (26)

(
ν[02w]
ν[22w]

)
= 1

4
P2

(
ν[0w]
ν[2w]

)
where P2 :=

(
1 1
0 1

)
. (27)

By induction using (23), (24), (25), (26) and (27), one gets for anyω0 · · ·ωn−1 ∈ {0, 1, 2}n,

ν[ω0 · · ·ωn−1] = 1

3

1

4n−1
tVω0Pω0 · · ·Pωn−1V, (28)

where

V0 :=
(

1
0

)
, V2 :=

(
0
1

)
, V1 =

(
1/2
1/2

)
.

Similarly to the (2, 3)-Bernoulli convolution, the Erdös measure ν is considered as a
probability measure on S1; moreover, the transformations R0, R1 and R2 are identified to
the local inverses of a 3-f.c.t. of S1 denoted T which is coded by the full shift σ : �3 → �3

and associated to the volume-derivative potential �0 : �3 → R, such that

�0(ω) = logρ21[[0]](ω)+ logρ31[[1]](ω)+ logρ21[[2]](ω).

We now consider the intervals [w] (w ∈ {0, 1, 2}∗) as subsets of S1 in such a way that
[0] := [0, ρ2[, [1] := [ρ2, ρ[, [2] := [ρ, 1[ (defining the one-step basic intervals of T ) and
for each word ω0 · · ·ωn−1 ∈ {0, 1, 2}n (n ≥ 1)

x ∈ [ω0 · · ·ωn−1] ⇐⇒ T k(x) ∈ [ωk] ∀k = 0, . . . , n− 1,

(defining the n-step basic intervals of T ).
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By (28) one gets that ν[10n] = (2n+4)/(3·4n+1) and thus ν is not a Gibbs measure with
respect to T . Following the same idea as in the case of the (2, 3)-Bernoulli convolution,
we introduce the T -invariant probability measure ν′, such that

ν′[ω0 · · ·ωn−1] = 1

2

1

4n
tVPω0 · · ·Pωn−1V. (29)

The same argument leading to Proposition 2.1 gives the following.

PROPOSITION 2.7. For any ω ∈ �3, and any integer n ≥ 1,

2

n+ 2
≤ ν[ω0 · · ·ωn−1]
ν′[ω0 · · ·ωn−1] ≤ 4.

In order to establish the following theorem, we use formula (29) defining ν′ together
with Lemma 2.3 and we apply the argument of the uniform convergence of the n-step
potentials (Lemma 1.2) in a similar way leading to Theorem 2.2.

THEOREM 2.8. The T -invariant probability measure ν′ defined on S1 by (29) is a
g-measure of the normalized potential φ : �3 → R such that

φ(ω) =




log(1/4), if n(ω) = θ(ω) = 0,

log([1; aω1 , . . . , aωn(ω) + 1]/4), if 0 < n(ω), θ(ω) < ∞,

log([1; aω1 , . . . ]/4), if n(ω) = θ(ω) = ∞.

As a corollary of Proposition 2.7 and Theorem 2.8, one has the following.

THEOREM 2.9. The Erdös measure ν is a weak Gibbs measure of φ.

The case of the Erdös measure ν is similar to the one of the (2, 3)-Bernoulli
convolution studied in §1.1; since ν is a weak Gibbs measure of the potential φ, it
satisfies the multifractal formalism as stated in Theorem A′ and, by Theorem C, its
Lq -spectrum τ coincides with the concave function τφ , a solution of the implicit equation
Pφ(q, τφ(q)) = 0. Theorem 2.10 below is the analog of Theorem 2.5: it proves that τ is
not real-analytic at a critical point qc < 0, meaning that qc is a phase transition point.

THEOREM 2.10. TheLq -spectrum τ of the Erdös measure is a concave function for which
there exists a real number qc < 0 such that τ (q) = q log 2/logβ if and only if q ≤ qc.

Proof. The Erdös measure ν being a weak Gibbs measure of φ, one deduces from
Theorem C that τ (q) = τφ(q): this means that, for any q ∈ R,

τ (q) = max{t; Pφ(q, t) ≥ 0} = min{t; Pφ(q, t) ≤ 0}. (30)

For α0 := log 2/logβ one can check that qφ(0)−α0q�0(0) = 0, for any q ∈ R: it follows
from the variational principle that

0 = hσ (δ0)+
∫

{qφ(ξ)− α0q�0(ξ)} dδ0(ξ) ≤ P(qφ − α0q�0) =: Pφ(q, α0q),

which implies that τ (q) ≤ α0q . We now prove that τ (q) ≥ α0q when q is sufficiently
close to −∞. Using the fact that ν′ is also a weak Gibbs measure of φ, it is easily seen that

Pφ(q, t) = lim
n

1

n
log Z̃n(q, t) where Z̃n(q, t) :=

∑
w∈{0,1,2}n

ν′[w1]q
|[w1]|t . (31)
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Notice that any wordw ∈ {0, 1, 2}n is associated to a unique sequence of (possibly empty)
words m1, . . . ,mk (1 ≤ k ≤ n) on the alphabet {0, 2} such that w1 = m11 · · ·mk1; since
ν′[w1] = ν′[m11] · · · ν′[mk1] and |[w1]| = |[m11]| · · · |[mk1]|, one has

Z̃n(q, t) ≤
∞∑
k=1

∑
m1,...,mk
mi∈{0,2}∗

(
ν′[m11]q
|[m11]|t

)
· · ·
(
ν′[mk1]q
|[mk1]|t

)
≤

∞∑
k=1

( ∑
m∈{0,2}∗

ν

[m1]q |[m1]|t
)k

(recall that {0, 2}∗ := {∅} ∪⋃∞
n=1{0, 2}n). However, according to Lemma 2.3, one gets

∑
m∈{0,2}∗

ν′[m1]q
|[m1]|α0q

= 2q + 2
∞∑
k=1

∑
a1···ak>0

( tVQa1 · · ·QakV )q,

which implies that Z̃n(q, α0q) is bounded for q < q0, with a small enough q0 given by
Lemma 2.6: by (31) one has Pφ(q, α0q) ≤ 0 and thus τ (q) ≥ α0q when q ≤ q0; since
τ is concave with τ (0) = −1, there exists qc < 0 such that τ (q) = α0q if and only if
q ≤ qc. �

Remark 2.11. (1) Starting from Definition 1.3 of τ , it is proved in [13] that τ is not
differentiable at qc; according to our terminology and the fact that τ = τφ , this means
that qc is a critical value of a first-order phase transition: we include in Appendix A a
proof of this result, based on the approach developed in [13].

(2) The phase transitions occurring in the multifractal formalism of the (2, 3)-Bernoulli
convolution and the Erdös measure are to be related to the problem of phase transition on
one-dimensional lattice systems and one-sided full-shift respectively studied in [9, 15] and
[18] (see also [19] and [30, 31] for the relationship with the multifractal formalism).

(3) We point out the similarity between the potentials associated with the (2, 3)-
Bernoulli convolution (Theorem 2.2), the Erdös measure (Theorem 2.8) and the potentials
considered in [41].

(4) The Lq -spectra (for q > 0) and the sets of possible local dimensions for a special
class of self-similar measures with overlaps were studied in [12, 20]; the Hausdorff
dimension of the corresponding self-similar sets was determined in [38].

3. Proof of the multifractal theorems

3.1. Proof of Theorem A: lower bound. For any probability measure µ, σ -invariant
on �d, we denote by Gσ (µ) the set of µ-generic points of �d, meaning that ω ∈ Gσ (µ)

if and only if Snf (ω)/n tends to µ(f ), for any real-valued continuous function f defined
on �d. Since the full-shift �d satisfies the specification property, the set Gσ (µ) is never
empty (especially when µ is not ergodic).

PROPOSITION 3.1. Let T be a d-f.c.t. of S1 and χ : S1 → �d the associated coding map;
for any σ -invariant measure µ (not necessarily ergodic) on �d, one has

dimH χ
−1(Gσ (µ)) = − hσ (µ)

µ(�0)
.
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Hint. For any Borel set M ⊂ �d, we denote by λ(M) the Lebesgue measure of χ−1(M);
the probability λ is non-atomic and fully supported by �d: by setting for any ω, ξ ∈ �d,

dλ(ω, ξ) =



1, if ω0 �= ξ0,

inf{λ[[ω0 · · ·ωn−1]]; ξ ∈ [[ω0 · · ·ωn−1]]}, if ω0 = ξ0,

one defines a metric dλ compatible with the product topology on �d. Let dimλ be the
λ-Billingsley dimension [1], that is, the Hausdorff dimension on the metric space (�d,dλ).
Given µ a probability measure σ -invariant on �d, we claim that

dimλ Gσ (µ) = − hσ (µ)

µ(�0)
. (32)

When µ is ergodic, this formula can be deduced by a classical argument using the
Shannon–McMillan Theorem and the fact that µ(Gσ(µ)) = 1. However, (32) is still
valid when µ is σ -invariant without being ergodic: this follows from [5, Theorems 7.1 and
7.2] and [29, Théorème 2], where the fact that λ is a Gibbs measure is needed.

Actually, it is easily seen from (4) that λ is a Gibbs measure of�0 in the sense that there
exists a constantK > 1 such that, for any ω ∈ �d and any integer n ≥ 1,

1

K
≤ λ[[ω0 · · ·ωn−1]]

exp(Sn�0(ω))
≤ K;

then we can apply [37, Théorème 1.2.2], ensuring that dimH χ
−1(M) = dimλ M , for any

M ⊂ �d: according to (32), one concludes that Proposition 3.1 holds.

We now prove a lemma that gives the characterization of the points where τφ is not
differentiable (i.e. the first-order phase transition points); it is essentially a corollary of
the tangency property of the topological pressure [45, Theorem 9.15] saying that µ is an
equilibrium state of the potential φ : �d → R if and only if P(φ + ψ) − P(φ) ≥ µ(ψ),
for any real-valued continuous function ψ defined on �d.

LEMMA 3.2. Given a negative potential φ : �d → R and τφ the concave map such that
Pφ(q, τφ(q)) = 0, the following two propositions hold:
(i) if Iq is the simplex of the equilibrium states of qφ − τφ(q)�0 then

τ ′
φ(q

−) = sup
µ∈Iq

{
µ(φ)

µ(�0)

}
and τ ′

φ(q
+) = inf

µ∈Iq

{
µ(φ)

µ(�0)

}
;

(ii) if Iσ (�d) is the simplex of the σ -invariant probability measures on �d then

inf
µ∈Iσ (�d)

{
µ(φ)

µ(�0)

}
= lim
q→+∞

τφ(q)

q
=: α

and

sup
µ∈Iσ (�d)

{
µ(φ)

µ(�0)

}
= lim
q→−∞

τφ(q)

q
=: α.
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Proof. (i) Let q > 0; from the definition of the concave map τφ : R → R one has
P(qφ − τφ(q)�0) = 0; similarly, for any h > 0

0 = P((q + h)φ − τφ(q + h)�0) = P(qφ − τφ(q)�0 + h(φ − (τ ′
φ(q

+)+ εh)�0)),

where we write τφ(q + h) = τφ(q) + hτ ′
φ(q

+) + hεh with εh tending to 0 when h tends
to 0. In conclusion, one has the equation

P(qφ − τφ(q)�0 + h(φ − (τ ′
φ(q

+)+ εh)�0))− P(qφ − τφ(q)�0) = 0;
which, by the tangency property of the pressure, ensures that

µ(φ)− (τ ′
φ(q

+)+ εh)µ(�0) ≤ 0,

for every µ ∈ Iq , that is, τ ′
φ(q

+) ≤ µ(φ)/µ(�0) − εh. When h tends to 0, one gets
τ ′
φ(q

+) ≤ µ(φ)/µ(�0) and thus

τ ′
φ(q

+) ≤ inf

{
µ(φ)

µ(�0)
;µ ∈ Iq

}
.

By the same argument one gets

sup

{
µ(φ)

µ(�0)
;µ ∈ Iq

}
≤ τ ′

φ(q
−).

It is clear that if τφ is differentiable at q then τ ′
φ(q) = µ(φ)/µ(�0), for every µ ∈ Iq .

Since τφ is not differentiable on an (at most) countable subset of R, there exists a sequence
of real numbers qn > q which tend to q and such that τφ is differentiable at qn for any n.
Let µn ∈ Iqn and assume (by compactness) that µn tends to a σ -invariant probability
measure µ in the weak-∗ sense; since the potentials qnφ − τφ(qn)�0 converge uniformly
to qφ − τφ(q)�0, it follows from the variational principle and the upper semi-continuity
of the entropy that µ ∈ Iq . Using the fact that τφ is concave,

τ ′
φ(q

+) = lim
n
τ ′
φ(qn) = lim

n

µn(φ)

µn(�0)
= µ(φ)

µ(�0)
,

and then τ ′
φ(q

+) = inf{µ(φ)/µ(�0);µ ∈ Iq }. The same argument applies to τ ′
φ(q

−).
(ii) We prove the assertion for α (the same argument applies to α). By the concavity of

τφ it is clear that α ≤ limq→+∞ τφ(q
+); this fact together with part (i) yields

inf

{
µ(φ)

µ(�0)
;µ ∈ Iσ (�d)

}
≤ α.

Moreover, if µ ∈ Iσ (�d) then, by the variational principle, hσ (µ) + µ(qφ − τφ(q)�0)

≤ Pφ(q, τφ(q)) = 0, for any q > 0. Since �0 is negative and uniformly bounded away
from 0,

τφ(q)

q
≤ hσ (µ)

qµ(φ�0)
+ µ(φ)

µ(�0)
≤ µ(φ)

µ(�0)
.

Therefore α = lim
q→+∞ τφ(q)/q ≤ µ(φ)/µ(�0), that is,

α ≤ inf

{
µ(φ)

µ(�0)
;µ ∈ Iσ (�d)

}
. �
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LEMMA 3.3. For any α < α < α, let qα ∈ R such that τ ′(q+
α ) ≤ α ≤ τ (q−

α ); then there
exists µ ∈ Iqα such that µ(φ)/µ(�0) = α and for such a measure one has

− hσ (µ)

µ(�0)
= sup{q ∈ R; αq − τα(q)} =: τ ∗

φ (α).

Proof. We consider the map � : µ �→ µ(φ)/µ(�0) which is continuous on the convex set
of probability measures on �d, endowed with the weak-∗ topology. Given α < α < α,
the set �(Iqα ) is a non-empty closed interval of R, for Iqα is a non-empty closed convex
subset of the σ -invariant measure. By Lemma 3.2, [τ ′(q+

α ), τ (q
−
α )] = �(Iqα ) and thus

there exists µ ∈ Iqα (not necessarily ergodic) such that �(µ) = µ(φ)/µ(�0) = α.
We now apply the variational principle: on the one hand, for every q ∈ R,

hσ (µ)+ µ(qφ − τ (q)�0) ≤ P(qφ − τ (q)�0) = 0;
on the other hand, since µ ∈ Iqα ,

hσ (µ)+ µ(qαφ − τ (qα)�0) = P(qαφ − τ (qα)�0) = 0.

Therefore, −hσ (µ)/µ(�0) = αqα − τ (qα) and −hσ (µ)/µ(�0) ≤ αq − τ (q), for any
q ∈ R, which means, by definition, that τ ∗(α) = −hσ (µ)/µ(�0). �

We are now in a position to prove the lower bound τ ∗
φ (α) ≤ dimH E(α|M), for

α < α < α. Given x ∈ S1 with χ(x) = ω, the Gibbs property of the Lebesgue measure
(with respect to the volume-derivative potential �0) ensures the existence of C > 1 such
that, for any integer n,

Sn�0(ω)− logC ≤ log |In(x)| ≤ Sn�0(ω)+ logC.

Likewise, by the weak Gibbs properties of η, there exists a sub-exponential sequence of
real numbersK(n) > 1 such that

Snφ(ω)− logK(n) ≤ log η(In(x)) ≤ Snφ(ω)+ logK(n).

The potential φ being negative, φ(ξ) < ε < 0 uniformly on �d and Snφ(ω)/n < ε for
any n; moreover, since (1/n) logK(n) tends to 0 when n goes to infinity, one deduces
that Snφ(ω) + logK(n) < 0, when n is sufficiently large. For the same reason that �0 is
negative, one also has Sn�0(ω)+ logC < 0, when n is sufficiently large, and thus

Snφ(ω)+ logK(n)

Sn�0(ω)− logC
≤ log η(In(x))

log |In(x))| ≤ Snφ(ω)− logK(n)

Sn�0(ω)+ logC
. (33)

Now assume that ω = χ(x) ∈ Gσ (µ), where µ ∈ Iqα (given by Lemma 3.3), satisfies
µ(φ)/µ(�0) = α; by the definition of Gσ (µ), one has limn Snφ(ω)/n = µ(φ) < 0 and
limn Sn�0(ω)/n = µ(�0) < 0, so that

lim
n

log η(In(x))

log |In(x)| = µ(φ)

µ(�0)
= α;

the point x being arbitrarily taken in χ−1(Gσ (µ)), one deduces that

χ−1(Gσ (µ)) ⊂ E(α|M).

Using successively Lemma 3.2 and Proposition 3.1, one concludes

τ ∗
φ (α) = − hσ (µ)

µ(�0)
= dimH χ

−1(Gσ (µ)) ≤ dimH E(α|M).

The required lower bound is proved.
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3.2. Proof of Theorem A: upper bound. The following proof is essentially the argument
given by Brown et al. [4] that we adapt to our framework. Notice that the hypothesis
that η is a weak Gibbs measure of the potential φ is implicitly needed to ensure that the
concave map τφ is well defined. We use the notions of ε-packing, box dimension (denoted
dimB) and packing dimension (denoted dimP ), presented in Appendix B. We shall prove,
in Theorem 3.4 below, a stronger result than the upper-bound dimH E(α|M) ≤ τ ∗

φ (α)

involved in Theorem A; actually in place of the level sets E(α|M), we shall deal with
what we call the ‘fat level sets’, defined by setting, for any α ∈ R,

F+(α|M) :=
{
x ∈ S1 : lim sup

n→∞
log η(In(x))

log |In(x)| ≤ α

}

and

F−(α|M) :=
{
x ∈ S1 : lim inf

n→∞
log η(In(x))

log |In(x)| ≥ α

}
.

THEOREM 3.4. Let M be the Markov net of a regular d-f.c.t. T and η be a weak Gibbs
measure of a negative potential φ : �d → R. Then, the following propositions hold:
(i) if α < α ≤ τ ′

φ(0
−) then dimP F+(α |M) ≤ τ ∗

φ (α);
(ii) if τ ′

φ(0
+) ≤ α < α then dimP F−(α |M) ≤ τ ∗

φ (α).

Proof. We prove part (i) while part (ii) can be handled in a similar way. See Figure 1
for the graph of τφ(q). To begin with, notice that, for τ ′

φ(0
+) ≤ α ≤ τ ′

φ(0
−), one has

τ ∗
φ (α) = −τφ(0) = 1, so that the upper bound dimP F+(α |M) ≤ τ ∗

φ (α) is trivial in that
case. We now consider that α < α < τ ′

φ(0
+); given β such that α < β < τ ′

φ(0
+), we

define
Fn+(β) := {x ∈ S1; |In(x)|β ≤ η(In(x))},

for any n ≥ 0, so that

F+(α|M) ⊂
∞⋃
m=0

∞⋂
n=m

Fn+(β). (34)

Let m ≥ 0 and ε > 0 be arbitrarily chosen; we consider J = ⋃∞
n=m Jn, where Jn ⊂ An

d
and such that {[w];w ∈ J } is an ε-packing of

⋂∞
n=m Fn+(β). By definition of an ε-packing,

it is clear that, for any word w ∈ J , there exists x ∈ ⋂∞
n=m Fn+(β) such that [w] = In(x)

for some n ≥ m, so that |[w]|β ≤ η[w]. Accordingly, for any δ ≥ 0 and q > 0, one can
write

∑
w∈J

|[w]|δ =
∞∑
n=m

∑
w∈Jn

|[w]|βq/|[w]|βq−δ

≤
∞∑
n=m

∑
w∈Jn

η[w]q/|[w]|βq−δ ≤
∞∑
n=1

Zn(q, βq − δ),

where Zn(·, ·) is as in (11). Since β < τ ′
φ(0

+), there exists q0 > 0 with βq0 − τφ(q0)

= τ ∗
φ(β). When δ > τ ∗

φ (β) one has βq0 − δ < τφ(q0), which, by definition of τφ , implies
that

Pφ(βq, βq0 − δ) = P(q0φ − (βq0 − δ)�0) < 0.
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t = τφ(q)

βq0 − τφ(β)
∗ = τφ(q0)

−τφ(β)∗

−1

q0

1

−δ

q

(q0, βq0 − δ)
βq0 − δ

FIGURE 1. We represent here the graph of the concave map q �→ τφ(q) (with a discontinuity of the derivative at
q = 0) and the gray area is the open domain of the (q, t) ∈ R×R for which Pφ(q, t) < 0; when α < β < τφ(0+),
the straight line with equation t = βq − τ∗

φ(β) is tangent to the graph of the map τφ at the point with abscissa

q0 > 0, and Pφ(q0, βq0 − δ) < 0 when δ > τ∗
φ(β).

Hence, there exists ρ < 0 and a rank n0 ≥ 0 such that Zn(q0, βq0 − δ) ≤ exp(nρ)
for any n ≥ n0; it follows that

∑
w∈J η[w]δ < ∞, for any δ > τ ∗

φ (β). This proves
that dimB

⋂∞
n=m Fn+(β) ≤ τ ∗

φ (β), for any m ≥ 0, and from (34) one concludes that
dimP F+(α|M) ≤ τ ∗

φ (β). Since β is an arbitrary real number such that α < β < τ ′
φ(0

+),
the continuity of τ ∗

φ at α yields the desired upper bound stated in (i); the proof of the
theorem is complete. �

3.3. Proof of Theorem B: upper bound. There exist conditions on the d-f.c.t. T ensuring
thatE(α) = E(α|M): for instance, this occurs when T is differentiable at the point 0 := 0
(mod 1). In our setting, the inclusion E(α) ⊂ E(α|M) does not hold in general; however,
we shall establish the upper bound dimH E(α) ≤ τφ(α)

∗ = dimH E(α | M) (see part (iii)
of Proposition 3.5 below), by means of the upper bounds in Theorem 3.4 involving the fat
level sets F−(α|M) and F+(α|M).

PROPOSITION 3.5. Let M be the Markov net of a regular d-f.c.t. T ; if η is a Borel
probability measure then the following two properties hold:
(i) E(α) ⊂ F−(α|M);
(ii) dimH E(α) ≤ dimH F+(α |M);
if in addition η is a weak Gibbs measure, then one has:
(iii) dimH E(α) ≤ τφ(α)

∗.
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In order to prove Proposition 3.5 we use ideas taken from the approach of Hofbauer
in [19]. Let dist(·, ·) be the usual distance on S1; for any x ∈ S1 and 0 < d < 1/2, we
define

Nd (x) := {n ∈ N; dist(T n(x), 0) > d} and ∂Md := {x ∈ S1; #Nd(x) < ∞}
(#A stands for the cardinality of the countable set A.)

LEMMA 3.6. [19, Lemma 13] Suppose that T is a regular d-f.c.t. of the torus S1; then

lim
d→0

dimH ∂Md = 0.

We define the n-step variation of the volume-derivative potential�0, by setting{
V0(�0) := max{�0(ω)−�0(ξ);ω, ξ ∈ �d},
Vn(�0) := max{�0(ξ)−�0(ω); ξ0 · · · ξn−1 = ω0 · · ·ωn−1} for n ≥ 1,

(35)

and we consider in addition

�n(�0) := V1(�0)+ · · · + Vn(�0). (36)

Notice that, since �0 is continuous on �d, the variation Vn(�0) tends to 0 when n goes
to infinity and, by a classical lemma on Cesàro averages, �n(�0)/n tends to 0 as well.
We denote by dn(x) the distance of x to the boundary of the basic interval In(x); the
following lemma shows that the ratio |In(x)|/dn(x) is a sub-exponential sequence, when
x ∈ S1\∂Md , for some 0 < d < 1/2.

LEMMA 3.7. Given any x ∈ S1\∂Md , there exists a rank n0 (depending on x) such that,
for any n ≥ n0,

0 < log

( |In(x)|
dn(x)

)
≤ �n(�0)+ log d.

Proof. By an application of the Mean Value Theorem, it is clear that

log |In(x)| ≤ sup
y∈In(x)

{Sn�0 ◦ χ(y)};

using the fact that x /∈ ∂Md , another application of the Mean Value Theorem yields

log dn(x) ≥ inf
y∈In(x)

{Sn�0 ◦ χ(y)} + log d,

and one concludes using the definition of �n(�0). �

Proof of Proposition 3.5. (iii) When η is a weak Gibbs measure, the upper bound
dimH E(α) ≤ τφ(α)

∗ is a trivial consequence of Theorem 3.4 together with parts (i) and
(ii), which we now establish.

(i) Fix x ∈ S1 and set εn := |In(x)|, for any n ≥ 0. Then, for any rank n ≥ 0,

log η(Bεn(x))

log εn
≤ log η(In(x))

log |In(x)| ,

ensuring that E(α) ⊂ F−(α|M).
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(ii) Since T is regular and uniformly expanding,

0 < γ := inf
ω∈�d

{exp(�0(ω))} ≤ sup
ω∈�d

{exp(�0(ω))} =: γ < 1

and, by a classical application of the Mean Value Theorem, γ n ≤ |In(x)| ≤ γ n, for any

x ∈ S1 and any integer n ≥ 0. Let x ∈ S1\∂Md and denote by dn(x) the distance of
x to the boundary of the basic interval In(x); it follows from the definition of ∂Md that
Bdn(x)(x) ⊂ In(x) and thus

log η(Bdn(x)(x))

log dn(x)
≥ log η(In(x))

log dn(x)
= logη(In(x))

log |In(x)|
(

1 + log(dn(x)/|In(x)|)
log |In(x)|

)−1

. (37)

Since one clearly has −(1/n) log |In(x)| ≥ −logγ > 0, one deduces from Lemma 3.7
that

log(dn(x)/|In(x)|)
log |In(x)| = (1/n) log(|In(x)|/dn(x))

−(1/n) log |In(x)| ≤ − (�n(�0)+ log d)/n

logγ
,

which according to (37) yields

log η(Bdn(x)(x))

log dn(x)
≥ logη(In(x))

log |In(x)|
(

1 − (�n(�0)+ log d)/n

log γ

)−1

,

and thus E(α) ∩ (S1\∂Md) ⊂ F+(α|M), for �n(�0)/n tending to 0. Let ε > 0 be
arbitrarily given; by Hofbauer’s lemma there exists d > 0 such that dimH ∂Md ≤ ε, so
that

dimH E(α) = dimH E(α) ∩ (S1\∂Md)+ dimH E(α) ∩ ∂Md ≤ dimH F+(α|M)+ ε.

Part (ii) is established since ε > 0 is arbitrarily chosen. �

3.4. Proof of Theorem B: lower bound. In order to prove the lower bound τφ(α)∗ ≤
dimH E(α) we use the underlying Markov structure to construct a slim level set S(α|M),
a subset of E(α) having the specified Hausdorff dimension, say τφ(α)∗. Usually this is
achieved by constructing a Frostman measure on the level set E(α); we shall use this
approach with the additional difficulty that the measure to consider may not give a positive
measure to E(α) (this is related to the fact that α may correspond to a first-order phase
transition point).

The proof of the desired lower bound is a consequence of Theorem 3.8 below. Let us
split any ω ∈ �d into an infinite sequence of finite words, say ω̃1, ω̃2, . . . , so that
(by concatenation) ω = ω̃1ω̃2 · · · and with the additional condition that the length of
each word ω̃n (n ≥ 1) is exactly n. Then we define the one-to-one map � : �d → �d by
setting

�(ω) := 1ω̃11ω̃21 · · · 1ω̃n1ω̃n+11 · · · =: ω∗ = (ω∗
i )

∞
i=0. (38)

THEOREM 3.8. Let µ be a σ -invariant measure on�d (d > 2)†; then the following hold:
(i) G∗

σ (µ) := �(Gσ(µ)) ⊂ Gσ (µ);

† If T is a 2-f.c.t. one can consider T ◦ T .
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(ii) dimλ G
∗
σ (µ) = dimλ Gσ (µ);

(iii) for any x ∈ S1 such that χ(x) ∈ �(�d) and any probability measure η on S1,

DIMη(x |M) = α ⇐⇒ DIMη(x) = α.

We claim that, for each α < α < α, the upper bound τφ(α)∗ ≤ dimH E(α) is a
consequence of Theorem 3.8. To see this, let qα ∈ R be such that τ ′(q+

α ) ≤ α ≤ τ ′(q+
α );

using Lemma 3.3, we consider an equilibrium state of the potential qαφ − τ (qα)�0, say
µα, for which µα(φ)/µα(�0) = α so that χ−1(Gσ (µα)) ⊂ E(α|M) and

dimλ Gσ (µα) = − hσ (µα)

µα(�0)
= τφ(α)

∗.

We define the slim level set S(α|M) := χ−1(G∗
σ (µα)); by part (iii) of Theorem 3.8,

one has DIMη(x|M) = DIMη(x) for any x ∈ S(α|M), and since χ−1(Gσ (µα)) ⊂
E(α|M), one deduces from part (i) of Theorem 3.8 that S(α|M) ⊂ E(α); by part (ii)
of Theorem 3.8, one concludes that‡

τφ(α)
∗ = dimλ Gσ (µα) = dimλ G

∗
σ (µα) = dimH S(α|M) ≤ dimH E(α),

completing the proof of the desired lower bound.
Therefore it remains to establish Theorem 3.8. To begin with we shall prove the

following lemma.

LEMMA 3.9. Let T be a regular d-f.c.t. of S1 (d > 2) and η a Borel probability measure.
Suppose that x is a point of S1 such that T mk (x) ∈ [1] (k ≥ 1), where m1,m2, . . . form a
strictly increasing sequence of integers; if limk log |Imk (x)|/log |Imk+1(x)| = 1, then

DIMη(x |M) = α ⇐⇒ DIMη(x) = α.

Proof. Let x ∈ S1 such that T mk(x) ∈ [1] (k ≥ 1); for ω = χ(x), it is clear that

Imk+1(x) = [ω0 · · ·ωmk−11] ⊂ Imk (x) = [ω0 · · ·ωmk−1].
The Lebesgue measure being Gibbs with respect to the Markov net associated to T , there
exists a constant 0 < c < 1 such that, for any i = 0, 1, 2,

|[ω0 · · ·ωmk−1i]| ≥ c|[ω0 · · ·ωmk−1]| =: rk,
ensuring that Brk (x) ⊂ Imk (x). Moreover, Imk+p(x) ⊂ Brk (x) for some constant integer
p > 0 and thus the following sequence of inclusions arises:

Imk+p(x) ⊂ Brk (x) ⊂ Imk (x) ⊂ Brk/c(x).

If DIMη(x|M) = α then it follows that log η(Brk (x))/log rk tends to α, when k goes to ∞;
notice that for rk+1 ≤ r ≤ rk

log rk
log rk+1

log η(Brk (x))

log rk
≤ log η(Br(x))

log r
≤ log rk+1

log rk

log η(Brk+1(x))

log rk+1
,

and from the assumption that limk log |Imk (x)|/log |Imk+1(x)| = 1, one gets DIMη(x) = α.
Conversely, if DIMη(x) = α, a similar argument proves that DIMη(x|M) = α. �

‡ Here, we use again the fact [37, Théorème 1.2.2] that dimH χ−1(M) = dimλ M, for any M ⊂ �d.
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Proof of Theorem 3.8. For any integer p ≥ 1, define np := ∑p−1
k=0 k = p(p − 1)/2 and

n′
p := np + p = np+1. For ω ∈ �d given, recall that �(ω) = ω∗ = (ω∗

i )
∞
i=0 and notice

that, by construction,

σnpω ∈ [[ω̃p]], σn
′
p−1ω∗ ∈ [[1]] and σn

′
pω∗ ∈ [[ω̃p]].

(i) Assume that f is a real-valued continuous function defined on �d. For any
ω ∈ Gσ (µ) and any integers n, p with p ≥ 2 and 0 ≤ n < p, one has

Sn′
p+nf (ω∗)− Sn′

p+nf (ω)

=
p−1∑
k=1

{f (σn′
k−1ω∗)+ Skf (σ

n′
kω∗)− Skf (σ

nkω)}

+ {f (σn′
p−1ω∗)+ Snf (σ

n′
pω∗)− Snf (σ

npω)} − Spf (σ
np+nω),

=
p−1∑
k=1

{Skf (σn′
kω∗)− Skf (σ

nkω)} + {Snf (σn′
pω∗)− Snf (σ

npω)}

+
p∑
k=1

f (σn
′
k−1ω∗)− Spf (σ

np+nω),

which gives, with Vk(f ) defined as in (35) and �n(f ) as in (36),

1

n′
p + n

|Sn′
p+nf (ω∗)− Sn′

p+nf (ω)| ≤ 2

p(p + 1)

{ p∑
k=1

k∑
j=1

Vj (f )+ pV0(f )

}

≤ 2(�p(f )+ V0(f ))

p + 1
.

With �′
k(f ) := �k(f )+ V0(f ), a straightforward computation yields, for any n ≥ 1,

1

n
|Snf (ω∗)− Snf (ω)| ≤ 2�′

ρn
(f )

ρn + 1
, (39)

where ρn is the integral part of (
√

8n+ 1 − 1)/2. The variation Vn(f ) tends to 0 when n
goes to infinity, as well as both�n(f )/n and�′

n(f )/n; this completes the proof of (i).
(ii) Let n := ρn(ρn − 1)/2 + r , where r is an integer such that 0 ≤ r < ρn and let

n′ = n + ρn. Since the Lebesgue measure is a Gibbs measure of the volume-derivative
potential�0, one gets

log |[ω∗
0 · · ·ω∗

n′−1]| ≥ Sn′�0(ω
∗)− logK

for the constantK > 1 given in (4). Thereafter, from (39) one deduces that

log |[ω∗
0 · · ·ω∗

n′−1]| ≥ Sn�0(ω)+ Sρn�0(σ
nω)− 2(n+ ρn)

�′
ρn
(�0)

ρn − 1
− logK

≥ Sn�0(ω)

{
1 − ρn‖�0‖∞

n sup(�0)
− 2(n+ ρn)

n sup(�0)

�′
ρn
(�0)

ρn − 1
− logK

n sup(�0)

}
,

with sup(�0) := sup{�0(ξ); ξ ∈ �d} < 0, that is

log |[ω∗
0 · · ·ω∗

n′−1]| ≥ Sn�0(ω)(1 − An), (40)
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where

An := ρn‖�0‖∞
n sup(�0)

+ 2(n+ ρn)

n sup(�0)

�′
ρn
(�0)

ρn − 1
+ logK

n sup(�0)

is clearly a quantity that tends to 0 when n goes to infinity. We use again the Gibbs property
of the Lebesgue measure, say,

log |[ω0 · · ·ωn−1]| ≤ Sn�0(ω)+ logK,

which yields the following sequence of inequalities:

log |[ω0 · · ·ωn−1]|
Sn�0(ω)

≥ 1 + logK

Sn�0(ω)
≥ 1 + logK

n sup(�0)
. (41)

Since �0 < 0, it is clear that Bn := logK/(n sup(�0)) tends to 0 when n goes to infinity
and from (41) (with n large enough),

Sn�0(ω) ≥ log |[ω0 · · ·ωn−1]|/(1 + Bn). (42)

It follows from (40) and (42) that there exists a sequence of real numbers b1, b2, . . . with
limk bk = 0 and such that

log |[ω∗
0 · · ·ω∗

n′−1]| ≥ log |[ω0 · · ·ωn−1]|
(

1 + An

1 + Bn

)
. (43)

In conclusion, for any ε > 0, there exists δ > 0 such that

dλ(ω, ξ) ≤ δ ⇒ dλ(ω, ξ)1+ε ≤ dλ(ω∗, ξ∗), (44)

and one deduces that dimλ G
∗
σ (µ) = dimλ Gσ (µ), for any σ -invariant measure η.

(iii) Let x ∈ S1 such that χ(x) = ω ∈ �(�d). Formk := n′
k − 1 one has T mk (x) ∈ [1]

(i.e. σmkω ∈ [[1]]) and limk log |Imk+1(x)|/log |Imk (x)| = 1. The result follows by an
application of Lemma 3.9. �

3.5. Proof of Theorem C. Let F0 := {S1} and suppose that Fn (n > 0) is a partition of
S1 by non-empty intervals. We say that F := ⋃

nFn is a net if any interval in Fn is the
union of intervals in Fn+1. For x ∈ S1 we denote by In(x) the interval in Fn such that
x ∈ In(x), and we suppose that limn |In(x)| = 0. Moreover,F is said to be regular if there
exists a constant c > 1 such that, for any J, J ′ with Fn+1 � J ′ ⊂ J ∈ Fn (n ≥ 0), one has
|J |/|J ′| ≤ c. Given 0 < r < 1 and x ∈ S1, let nr (x) be the rank such that |Inr (x)(x)| < r

and |Inr (x)−1(x)| ≥ r; furthermore, one defines an equivalence relation on S1 by setting
x∼
r
y if and only if y ∈ Inr (x)(x): the so-called r-Moran partition Fr is the partition of S1

generated by this equivalence relation. Notice that, under the condition of F to be regular,
any interval J ∈ Fr has approximately length r , in the sense that

r/c ≤ |J | < r.

We refer to the book of Pesin [35] for a systematic presentation of the previous framework.
In order to prove Theorem C we first establish the following theorem.
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THEOREM 3.10. Let F be a regular net of S1 and η a probability measure on S1. If η is
supposed to be of full support, then, for any q ∈ R,

τ (q) := lim inf
r→0

log
∑
J∈Fr η(J )

q

log r
.

Proof. According to Definition 1.3, one has τ (q) = lim infr→0 logZ(r)/log r , with

Z(r) := inf

{∑
i

η(Bi)
q; {Bi}i

}
,

the infimum being taken over the r-covers of S1; for any r > 0, define

Z̃(r) :=
∑
J∈Fr

η(J )q .

Let mr be the integral part of 1/r and consider Br := {Bi}mri=0 where Bi := [ir, (i + 1)r],
(0 ≤ i < mr ) and Bmr = [1 − r, 1] (Br is an r/2-cover of S1).

First, suppose that q < 0; by definition, one has |J | < r/2 for any J ∈ Fr/2 and thus
each ball Bi ∈ Br contains at least one interval in Fr/2, say Ji , so that

Z(r/2) ≤
∑
i

η(Bi)
q ≤ 2

∑
J∈Fr/2

η(J )q ≤ 2Z̃(r/2)

(the factor 2 appears because one may have Jmr−1 = Jmr ). By the regularity of F one
also has 2r ≤ |J |, for any J ∈ F2cr (where c > 1 stands for the constant involved in the
regularity property of F ); hence, each J ∈ F2cr contains at least one Bi ∈ Br , implying
that Z̃(2cr) ≤ 2Z(r/2); one deduces that τ (q) is the lower limit of the ratio log Z̃(r)/log r
when r tends to zero.

We now consider the case of q ≥ 0. By the regularity of F , one has r ≤ |J | for any
J ∈ Fcr ; hence, each Bi ∈ Br intersects no more than two elements of Fcr , one of them,
say Ji , satisfying η(Bi) ≤ 2η(Ji). One may have Ji = Jj for i �= j , but since each interval
in Fcr intersects at most N elements of Br , for some N independent of r , one gets∑

i

η(Bi)
q ≤ 2qN

∑
i

η(Ji)
q ≤ 2qN

∑
J∈Fcr

η(J )q, i.e.
1

2qN
Z(r/2) ≤ Z̃(cr). (45)

Suppose that C is an arbitrary r-cover of S1. It follows from Besicovitch’s covering Lemma
(cf. [28, p. 30]) that there exists a sub-cover C ′ of C, such that each point x ∈ S1 belongs
to at most three balls in C ′. One can check that, for 0 ≤ i ≤ mr , the number of C ∈ C ′
which intersects Bi is bounded by 6. Using again the fact that J ∈ Fcr intersects at most
N elements in Br , it is clear that J intersects at most 6N elements of C ′; since any ball in
C ′ intersects no more than three elements of Fcr ,∑

J∈Fcr
η(J )q ≤ 3(6N)q

∑
C∈C′

η(C)q ≤ 3(6N)q
∑
C∈C

η(C)q.

Taking the infimum over the r-cover C leads to Z̃(cr) ≤ 2(6N)qZ(r). With (45), one
concludes that τ (q) is the lower limit of the ratio log Z̃(r)/log r when r tends to zero. �

We now turn to the proof of Theorem C itself, which we split into two steps (the first
one being inspired by an argument in [36]).
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First step. To begin with, suppose that η is a Gibbs measure of a Hölder continuous
potential φ (which, according to our definition, implies that P(φ) = 0). For any q ∈ R

and any ω ∈ �d, the trivial identity

exp(Sn�q(ω)) = exp(qSnφ(ω))

exp(τφ(q)Sn�0(ω))
(46)

holds for �q := qφ − τφ(q)�0. Denote by ηq the unique T -ergodic Gibbs measure
associated to the Hölder continuous potential �q ; since η and the Lebesgue measure are
respectively Gibbs measures of φ and �0, the identity (46) gives, for any word w,

ηq [w]/R′ ≤ η[w]q
|[w]|τφ(q) ≤ R′ηq [w] (47)

for some constant R′ > 1. The Markovian net M being regular, it is possible by
Theorem 3.10 to consider the Lq -spectrum defined by the mean of the Moran partitions
Mr (0 < r < 1). By a summation of (47) over the [w] ∈ Mr , there exists a constant
R′′ > 1 such that

1/R′′ ≤ Z̃(r, q)/rτφ(q) ≤ R′′, where Z̃(r, q) =
∑
J∈Mr

η(J )q;

taking the limit when r tends to 0, one concludes that τ (q) = τφ(q), for any q ∈ R.

Second step. We now turn to the general case. Let us consider a sequence of Hölder
continuous potentials φk which are uniformly convergent to φ. Since P(φ) = 0, one has
|P(φk)| ≤ ‖φk − φ‖∞ and thus ‖(φk − P(φk)) − φ‖∞ ≤ 2‖φk − φ‖∞; hence one can
assume that P(φk) = 0. We denote by ηk the unique σ -ergodic Gibbs measure of φk; by
the first step of the proof, τk(q) = τφk (q), for any q ∈ R (τk denotes the Lq -spectrum
of ηk). Moreover, it follows from the classical properties of the topological pressure that
τφk tends to τφ uniformly on the compact intervals. It remains to prove the pointwise
convergence of τk(q) to τ (q). Given δ > 0, one has ‖φk − φ‖∞ ≤ δ whenever n is large
enough; therefore, for any integerm > 0 and any word w of length m, one has

η[w] ≤ K(m)Ck exp(2mδ)ηk[w] (48)

where m �→ K(m) (respectively Ck) is the sub-exponential sequence (respectively
constant) which characterizes the weak Gibbs property of η (respectively the Gibbs
property of ηk , for k ≥ 1). Let Nr be the maximal length of the words w such that
[w] ∈ Mr ; for any k ≥ 1 we consider the partition function Z̃k(r, q) := ∑

J∈Mr
ηk(J )

q ,
so that from (48)

Z̃(r, q) ≤ K(Nr)Ck exp(2Nrδ)Z̃k(r, q),

or equivalently

1

log r
log Z̃(r, q) ≥ 1

log r
log Z̃k(r, q)+

(
Nr

log r

logK(Nr)

Nr
+ Ck

log r
+ 2Nrδ

log r

)
.

When r tends to 0, one gets τ (q) ≥ τk(q) − 2aδ, where a is a constant such that
Nr/log(1/r) ≤ a for any 0 < r < 1. The symmetric argument yields τ (q) ≤ τk(q)+ 2aδ
and the proof of Theorem C is complete.
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A. Appendix. First-order phase transition
It was first proved in [13] that the Lq -spectrum τ of the Erdös measure is not differentiable
at the critical value qc defined in Theorem 2.10; the present appendix is devoted to a self-
contained proof of this result.

THEOREM A.1. The Lq -spectrum τ is not differentiable at the critical value qc.

Any word w ∈ {0, 1, 2}n is associated to a unique sequence of (possibly empty) words
m1, . . . ,mk (1 ≤ k ≤ n) on the alphabet {0, 2} such thatw1 = m11 · · ·mk1; from (29) one
has ν′[w1] = ν′[m11] · · · ν′[mk1]; since |[w1]| = |[m11]| · · · |[mk1]|, one deduces that

ν′[m11 · · ·mk1]q
|[m11 · · ·mk1]|t =

k∏
i=1

( tVPmiV )
q(βt/2q)2|mi |+3. (49)

Recall that

Pφ(q, t) = lim
n

1

n
log Z̃n(q, t) where Z̃n(q, t) :=

∑
w∈{0,1,2}n

ν′[w1]q
|[w1]|t ,

so that, with zn(q) := ∑
w∈{0,2}n( tVPwV )q , one gets†

Z̃n(q, t) =
n∑
k=1

∑
a1,...,ak≥0

a1+···+ak=n+1−k

k∏
i=1

zai (q)(β
t/2q)2ai+3. (50)

PROPOSITION A.2.
(i) qc < −2.25 and
(ii)

∑∞
n=0 nzn(q) < ∞ for any q < −2.25.

We shall give the proof of Proposition A.2 at the end of the present appendix.

PROPOSITION A.3. The following three propositions hold:
(i) X(q) := βτ(q)/2q = sup

{
0 ≤ x ≤ 1;∑∞

i=0 zi (q)x
2i+3 ≤ 1

}
;

(ii) q ≤ qc ⇐⇒ ∑∞
i=0 zi (q) ≤ 1;

(iii) qc ≤ q < −2.25 ⇒ ∑∞
n=0 zn(q)X(q)

2n+3 = 1.

Proof. (i) For x > 0, define tq(x) := q log 2/logβ + log x/logβ so that, for any q ∈ R,

X(q) = max{x; Pφ(q,tq(x)) ≤ 0} = min{x; Pφ(q,tq(x)) ≥ 0}.
† By definition {0, 2}0 = {∅} and P∅ is the identity matrix, so that z0(q) = ( tVP∅V )q = 2q .
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For any (q, x) ∈ R × [0, 1] we set F(q, x) := ∑
n zn(q)x

2n+3 (∈ [0,+∞]) and we
consider, for any q ∈ R,

x(q) := sup{x ≥ 0;F(q, x) ≤ 1} = sup{x ≥ 0;F(q, x) < 1}, (51)

the second equality being justified by Abel’s theorem, for x(q) is bounded by the radius of
convergence of the power series

∑
i zi (q) x

2i+3. It follows from (50) that

Z̃n(q,tq(x)) =
n∑
k=1

∑
a1,...,ak≥0

a1+···+ak=n+1−k

k∏
i=1

zai (q)x
2ai+3 ≤

∞∑
k=0

( ∞∑
n=0

zn(q)x
2n+3

)k
,

that is,

Z̃n(q,tq(x)) ≤
∞∑
k=0

(F (q, x))k. (52)

Given any x ≥ 0 with F(q, x) < 1, the upper bound in (52) implies that Z̃n(q,tq(x))
is bounded and thus Pφ(q,tq(x)) ≤ 0: this means that x ≤ X(q), and from the second
equality in (51), one deduces that x(q) ≤ X(q).

For the converse inequality, let n ≥ 1 and r ≥ 1 be given so that

nr∑
m=1

Z̃m(q, t) ≥
∑

m1,...,mn∈{0,2}∗
|m1|,...,|mn|<r

ν′[m11]q
|[m11]|t · · · ν

′[mn1]q
|[mn1]|t

=
( ∑
m∈{0,2}∗,|m|<r

ν′[m1]q
|[m1]|t

)n
=
( r−1∑
i=0

∑
m∈{0,2}i

ν′[m1]q
|[m1]|t

)n
,

which yields
nr∑
k=1

Z̃k(q,tq(x)) ≥
( r−1∑
i=0

zi (q) x
2i+3

)n
. (53)

Let x > x(q) and r0 > 0 such that z0 := ∑r0−1
i=0 zi (q)x2i+3 > 1; from (53), one deduces

that

lim
n

1

n
log

nr0∑
k=1

Z̃k(q,tq(x)) ≥ log z0 > 0.

This is inconsistent with the fact that Zn(q,tq(x)) ≤ e−nε for ε > 0 and any n large
enough and thus Pφ(q,tq(x)) ≥ 0 and X(q) ≤ x: one concludes that X(q) ≤ x(q), for x
can be taken arbitrarily close to x(q). Finally, since τ (q) ≤ q log 2/logβ, for any q ∈ R,
one necessarily has 0 ≤ X(q) ≤ 1, which complete the proof of (i).

(ii) According to Theorem 2.10, one has q ≤ qc if and only if βτ(q)/2q = 1, which
leads to (ii) as a straightforward consequence of (i).

(iii) Notice that the map F : (q, x) �→ F(q, x) is finite and continuous at any point
(q, x) ∈ ]−∞,−2.25[ × [0, 1], for part (ii) of Proposition A.2 ensures that

0 ≤ F(q, x) ≤
∑
n

zn(q) < ∞,
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whenever q < −2.25 and 0 ≤ x ≤ 1. We first assume that qc < q < −2.25 (which is
consistent with respect to part (i) of Proposition A.2); it is clear that F(q, · ) increases from
0 up to F(q, 1). By (ii), one has F(q, 1) > 1 and thus there exists a unique 0 < xq < 1
such that F(q, xq) = 1, which also satisfies xq = max{0 ≤ x ≤ 1;F(q, x) ≤ 1}: since
0 ≤ X(q) ≤ 1, one deduces from (i) that X(q) = xq .

We now consider the case when q = qc; since X(qc) = 1, we need to prove that
F(qc, 1) = ∑

n zn(qc) = 1. Part (ii) insures that F(q, 1) > 1 for any qc < q , which
implies that F(qc, 1) ≥ 1, by the fact that F is continuous at (qc, 1): since (ii) also implies
that F(qc, 1) ≤ 1, one concludes that F(qc, 1) = 1, completing the proof of (iii) and of
the proposition as well. �

Proof of Theorem A.1. We shall prove that X is not differentiable at qc; since by
Proposition A.3, one has X(q) = 1 whenever q ≤ qc, this will be established if one shows
that X

′(q+
c ) < 0. According to part (iii) of Proposition A.3, for any qc ≤ q < −2.25, one

has the equation
∞∑
n=0

zn(qc)X(qc)
2n+3 =

∞∑
n=0

zn(q)X(q)
2n+3,

or equivalently, using the fact that X(qc) = 1,

∞∑
n=0

(zn(qc)− zn(q)) =
∞∑
n=0

zn(q)(X(q)
2n+3 − 1)

= (X(q)− X(qc))

∞∑
n=0

zn(q)
2n+2∑
i=0

X(q)i .

Finally one can write

X(q)− X(qc)

q − qc
= −

∑∞
n=0 (zn(q)− zn(qc))/(q − qc)∑∞

n=0 zn(q)
∑2n+2
i=0 X(q)i

. (54)

If q tends to qc with qc < q < 2.25, then
∑2n+2
i=0 X(q)i tends to 2n + 3 and since by

Proposition A.2 one has
∑∞
n=0 zn(qc) (2n+ 3) < ∞, one concludes from (54) that

X
′(q+

c ) = −
∑∞
n=0

∑
w∈{0,2}n( tVPwV )qc log( tVPwV )∑∞
n=0 zn(qc)(2n+ 3)

< 0. �

Proof of Proposition A.2. Given (an)
∞
n=1 a sequence of positive integers, it is easily

checked by induction that, for any k ≥ 1,

tVQa1 · · ·QakV ≤ (1 + a1) · · · (1 + ak−1)(2 + ak); (55)

likewise, if A(a1, . . . , a2k) := (1+a1a2)(1+a3a4) · · · (1+a2k−1a2k) then, for ε = 0 or 1,

tVQa1 · · ·Qa2k+εV ≥
{
A(a1, . . . , a2k) if ε = 0,

A(a1, . . . , a2k)(1 + a2k+1) if ε = 1.
(56)

In what follows, ζ will stand for the Riemann zeta function (i.e. ζ(x) = ∑∞
n=1 1/nx ,

x > 1).
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(i) When q < −1 one has ζ(−q)− 1 < 1 and the following inequalities hold:

∞∑
n=0

zn(q) = 2q + 2
∞∑
k=1

∑
a1,...,ak≥1

( tVQa1 · · ·QakV )q

≥ 2q + 2
∞∑
k=1

∑
a1,...,ak≥1

(1 + a1)
q · · · (1 + ak−1)

q(2 + ak)
q

= 2q + 2

( ∞∑
n=1

(n+ 2)q
) ∞∑
k=0

( ∞∑
n=1

(n+ 1)q
)k

= 2q + 2(ζ(−q)− 1 − 2q)

2 − ζ(−q) .

Accordingly, one can use numerical computations to get the lower bound
∑
n zn

(−2.25) > 1, proving that qc < −2.25.

(ii) Let q < 0; from (56) and the fact that (1 + a2k+1)
q ≥ a

q

2k+1, one gets

∞∑
n=0

nzn(q) ≤ 2
∞∑
n=0

n(2 + n)q + 2
∞∑
k=1

∑
a1,...,a2k≥1

(a1 + · · · + a2k)A(a1, . . . , a2k)
q

+ 2
∞∑
k=0

∑
a1,...,a2k+1≥1

(a1 + · · · + a2k+1)A(a1, . . . , a2k)
qa
q

2k+1

= 2
∞∑
n=0

n(2 + n)q + 2
∞∑
k=1

∑
a1,...,a2k≥1

2ka1A(a1, . . . , a2k)
q

+ 2
∞∑
k=1

∑
a1,...,a2k+1≥1

2ka1A(a1, . . . , a2k)
qa
q

2k+1

+ 2
∞∑
k=1

∑
a1,...,a2k+1≥1

a2k+1A(a1, . . . , a2k)
qa
q

2k+1

= 2
∞∑
n=0

n(2 + n)q + 4

( ∑
n,m≥1

n(1 + nm)q
) ∞∑
k=1

k

( ∑
n,m≥1

(1 + nm)q
)k−1

+ 4

( ∑
n,m≥1

n(1 + nm)q
)( ∞∑

n=1

nq
) ∞∑
k=1

k

( ∑
n,m≥1

(1 + nm)q
)k−1

+ 2

( ∞∑
n=1

nq+1
) ∞∑
k=1

( ∑
n,m≥1

(1 + nm)q
)k
.

On the one hand, for any q < −2 one has
∑∞
n=0 n(2 + n)q < ∞ and

∑
n,m≥1

n(1 + nm)q ≤ 2
∞∑
n=1

n(1 + n)q +
( ∞∑
n=2

nnq
)( ∞∑

n=2

nq
)
< ∞. (57)

Thus, there exist three positive constants C, C′ and C′′ such that

∞∑
n=0

nzn(q) ≤ C + C′
∞∑
k=1

k

( ∑
n,m≥1

(1 + nm)q
)k−1

+ C′′
∞∑
k=1

( ∑
n,m≥1

(1 + nm)q
)k
. (58)
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On the other hand, one has for any q < −1,

∑
n,m≥1

(1 + nm)q =
∑
n,m>1

(1 + nm)q + 2
∞∑
n=1

(1 + n)q − 2q

≤
∞∑

n,m>1

(nm)q + 2
∞∑
n=2

nq − 2q

=
( ∞∑
n=2

nq
)2

+ 2
∞∑
n=2

nq − 2q = (ζ(−q)− 1)2 + 2(ζ(−q)− 1)− 2q .

For θ0 > 0 such that θ2
0 + 2θ0 − 1/8 = 1, one can check that ζ(2.25)− 1 < θ0, so that∑
nm≥1

(1 + nm)−2.25 < θ2
0 + 2θ0 − 1/8 = 1. (59)

Therefore, by (58) and (59), one concludes that
∑
n nzn(q) < ∞ when q < −2.25. �

B. Appendix. Box and packing dimensions
Let M be a subset of S1. An ε-packing of M (0 < ε < 1) is a collection {Ji}i of mutually
disjoint intervals Ji ∈ F with |Ji | ≤ ε and which intersect M; for any 0 ≤ ρ ≤ 1 we set

Pρ(M) := lim
ε→0

sup

{∑
i

|Ji |ρ; {Ji}i
}
,

where {Ji}i runs over the ε-packing of M (Pρ is not sigma-additive). The box dimension
of M is by definition

dimB M := inf{ρ;Pρ(M) = 0} = sup{ρ;Pρ(M) = ∞};
in general, dimB

⋃
n Mn �= supn dimB Mn, wheneverM1,M2, . . . form a countable family

of subsets of S1. There are many other equivalent definitions of the box dimension of M ,
one of them using a regular net of S1: suppose that F := ⋃

nFn is a net of S1, then, for
any 0 ≤ ρ ≤ 1, we set

Pρ(M|F) := lim
ε→0

sup

{∑
i

|Ji |ρ; {Ji}i
}
,

where {Ji}i runs over the ε-packing of M by intervals in F . Recall that F is said to be
regular if there exists a constant c > 1 such that for any n one has |J |/|J ′| ≤ c, for any
J ∈ Fn, J ′ ∈ Fn+1 and J ′ ⊂ J ; if F is regular then

dimB M := inf{ρ;Pρ(M|F) = 0} = sup{ρ;Pρ(M|F) = ∞}
and one recovers the usual definition of the box dimension by using the dyadic net for
example. The notion of packing dimension has been introduced by Tricot in [44]; the
packing dimension of M is

dimP M := inf

{
sup
n

dimB Mn;M ⊂
⋃
n

Mn

}
,
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with the important property that dimP

⋃
n Mn = supn dimP Mn; moreover the packing

dimension is a useful notion to get an upper bound of the Hausdorff dimension since

dimH M ≤ dimP M ≤ dimB M.

A systematic approach and detailed proof about fractal dimensions can be found in
[11, 28]; we also refer to [35] for a point of view related to dynamical systems.
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