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Abstract

LetK be a compact subset of Rn
, 0 ≤ s ≤ n. Let P s

0 , Ps denote s-dimensional packing

premeasure and measures, respectively. We discuss in this paper the relation between P s
0

and Ps. We prove: if P s
0 (K) < ∞, then Ps(K) = P s

0 (K); and if P s
0 (K) = ∞, then

for any ε > 0, there exists a compact subset F of K, such that Ps(F ) = P s
0 (F ) and

Ps(F ) ≥ Ps(K)− ε.

1 Introduction

Let E ⊂ Rn. A δ-packing of the set E is a countable family of disjoint closed balls of

radii at most δ and with centers in E. For s ≥ 0, the s-dimensional packing premeasure is

defined as

P s0 (E) = inf
δ>0
{P sδ (E)}, (1)

where P sδ (E) = sup{
∑
Bi∈R |Bi|

s : R a δ-packing of E}, |Bi| denotes the diameter of Bi.

The s-dimensional packing measure is defined as

Ps(E) = inf{
∞∑
i=1

P s0 (Ei) : E ⊂
∞⋃
i=1

Ei}. (2)

It is known that Ps is countably subadditive, but P s0 is only finitely subadditive. For any

E ⊂ Rn, P s0 (E) ≥ Ps(E) and P s0 (E) = P s0 (E), where E is the closure of E.

The upper box-counting dimension dimB and the packing dimension dimP can be induced

respectively by packing premeasure and packing measure by

dimB(E) = inf{s ≥ 0 : P s0 (E) = 0} = sup{s ≥ 0 : P s0 (E) =∞};

dimP(E) = inf{s ≥ 0 : Ps(E) = 0} = sup{s ≥ 0 : Ps(E) =∞}.

For further properties of above measures and dimensions, we refer to Tricot[6], Sullivan

[5], Mattila [4] and Falconer [2].
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As parameters to describe non-smooth sets, the packing measure, packing premeasure,

upper box-counting dimension and packing dimension play an important role in the study of

fractal geometry in a manner dual to the Hausdorff measure and Hausdorff dimension.

From the above definitions, we see that estimating the packing premeasure (and thus the

upper box-counting dimension) is much easier than estimating the packing measure (and thus

the packing dimension). It is therefore natural to look for relationships between the packing

premeasure and measure. This is the main aim of this paper and we prove the following main

result:

Let K be a compact set of Rn and let s ≥ 0.

(1) If P s0 (K) <∞, then Ps(K) = P s0 (K);

(2) If P s0 (K) = ∞, then for any ε > 0, there exists a compact subset F of K, such that

Ps(F ) = P s0 (F ), and Ps(F ) ≥ Ps(K)− ε.

As a corollary, We show that there are compact sets with infinite packing premeasure

which contain no subsets of positive finite packing premeasure. This is in contrast to the

existence results of Joyce and Preiss [3] for packing measure, and Bescovitch [1] for Hausdorff

measure.

2 Main result and the proof

In this section, we will prove our main result: the packing measure and the packing

premeasure of a compact set coincide if the packing premeasure of this set is finite.

Lemma 2.1 Let K ⊂ Rn be a compact set, s ≥ 0 and P s0 (K) <∞. Then for any subset F

of K, and any ε > 0, there exists an open set U such that U ⊃ F and P s0 (U ∩K) < P s0 (F )+ε.

Proof. Since F has the same packing premeasure as its closure, we can assume F to be

compact. The case s = 0 is trivial, so we assume s > 0.

For ε > 0, define the ε-parallel body Fε of F by

Fε = {x ∈ Rn : |x− y| < ε for some y ∈ F}.

By the definition, Fε is open and Fε ⊃ F .

Set

A = inf
ε>0

P s0 (Fε ∩K); (3)

then 0 ≤ A <∞.

Let B be the collection of all closed balls in Rn. Define a mapping φ : B → [0, 1] ⊂ R as

follows:

φ(B(x, r)) =

{
0, if x ∈ F,
sup{r′/r : 0 < r′ ≤ r, B(x, r′) ∩ F = ∅}, otherwise,

(4)
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where B(x, r) denotes the closed ball with center x and radius r.

From the above definition, if φ(B(x, r)) 6 =0, then for any 0 < t < 1, B(x, tφ(B(x, r))r) ∩
F = ∅; if φ(B(x, r)) 6 =1, then by the compactness of F , there exists y ∈ F , such that

B(y, (1− φ(B(x, r)))r) ⊂ B(x, r).

Given any ω > 0, there exists, by (3), ε1 > 0 such that

A ≤ P s0 (Fε1 ∩K) ≤ A+ ω. (5)

By the definition of the packing premeasure, we can choose δ1 > 0 such that

P sδ1(Fε1 ∩K) < P s0 (Fε1 ∩K) + ω, (6)

then select a δ1-packing {Bi}mi=1 of Fε1 ∩K such that
m∑
i=1

|Bi|s > P sδ1(Fε1 ∩K)− ω. (7)

Since
m∑
i=1
|Bi|s ≤ P sδ1(Fε1 ∩K) and P sδ1(Fε1 ∩K) ≥ P s0 (Fε1 ∩K), we obtain from (5)-(7)

that

A− ω ≤
m∑
i=1

|Bi|s ≤ A+ 2ω. (8)

Set I = {i : 1 ≤ i ≤ m, φ(Bi) < 1}. Then, as mentioned, for any i ∈ I there exists

y ∈ F , such that

B(y,
1

2
(1− φ(Bi))|Bi|) ⊂ Bi. (9)

Let B̂i := B(y, 12(1 − φ(Bi))|Bi|), i ∈ I. Since {Bi} are disjoint, the finite family of the

balls {B̂i : i ∈ I} is a δ1-packing of F . Hence

P sδ1(F ) ≥
∑
i∈I
|B̂i|s =

∑
i∈I

(1− φ(Bi))
s|Bi|s =

m∑
i=1

(1− φ(Bi))
s|Bi|s. (10)

Set J = {j : 1 ≤ j ≤ m, φ(Bj) > 0} and let xj be the center of Bj . Then, as we have

already seen, for any 0 < t < 1 and j ∈ J ,

B(xj ,
1

2
tφ(Bj)|Bj |) ∩ F = ∅. (11)

For 0 < t < 1, j ∈ J , define B?
t,j = B(xj ,

1
2 tφ(Bj)|Bj |). Since F and B?

t,j (j ∈ J) are

compact, by (11) we can choose 0 < ε2(t) < min{ε1, δ1}, such that

B?
t,j ∩ Fε2(t) = ∅, j ∈ J. (12)

Now, let ε3(t) = ε2(t)/2, and suppose {Ci}∞i=1 is an arbitrary ε3(t)-packing of Fε3(t) ∩K,

then Ci ⊂ Fε2(t), 1 ≤ i < ∞. Thus, from (12), {B?
t,j : j ∈ J} ∪ {Ci : 1 ≤ i < ∞} is a

δ1-packing of Fε1 ∩K, and hence

P sδ1(Fε1 ∩K) ≥
∑
j∈J
|B?

t,j |s +
∞∑
i=1

|Ci|s

= ts
∑
j∈J

(φ(Bj))
s|Bi|s +

∞∑
i=1

|Ci|s

= ts
m∑
i=1

(φ(Bi))
s|Bi|s +

∞∑
i=1

|Ci|s. (13)
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Since {Ci : 1 ≤ i <∞} is an arbitrary ε3(t)-packing of Fε3(t) ∩K, we obtain from (3) and

(13) that

P sδ1(Fε1 ∩K) ≥ ts
m∑
i=1

(φ(Bi))
s|Bi|s + P sε3(t)(Fε3(t) ∩K)

≥ ts
m∑
i=1

(φ(Bi))
s|Bi|s + P s0 (Fε3(t) ∩K)

≥ ts
m∑
i=1

(φ(Bi))
s|Bi|s +A.

Since 0 < t < 1 is arbitrary, we have

P sδ1(Fε1 ∩K) ≥
m∑
i=1

(φ(Bi))
s|Bi|s +A. (14)

Hence, from (5), (6) and (14), we get

m∑
i=1

(φ(Bi))
s|Bi|s ≤ 2ω. (15)

Let l = ω1/2s, M = {i : 1 ≤ i ≤ m, φ(Bi) ≥ l}, and M c = {i : 1 ≤ i ≤ m, φ(Bi) < l}.
Then, from (15),

∑
i∈M
|Bi|s ≤ l−s

∑
i∈M

(φ(Bi))
s|Bi|s ≤ l−s

m∑
i=1

(φ(Bi))
s|Bi|s ≤ l−s(2ω) = 2

√
ω. (16)

From (8) and (16) we see that

∑
i∈Mc

|Bi|s =
m∑
i=1

|Bi|s −
∑
i∈M
|Bi|s ≥

m∑
i=1

|Bi|s − 2
√
ω ≥ A− ω − 2

√
ω. (17)

Therefore, by (10) and (17),

P sδ1(F ) ≥
m∑
i=1

(1− φ(Bi))
s|Bi|s

≥
∑
i∈Mc

(1− φ(Bi))
s|Bi|s

≥ (1− l)s(A− ω − 2
√
ω)

= (1− ω1/2s)s(A− ω − 2
√
ω). (18)

Let δ1 ↓ 0, we get by (18)

P s0 (F ) ≥ (1− ω
1
2s )s(A− ω − 2

√
ω),

and since ω can be picked arbitrary small, we get finally

P s0 (F ) ≥ A,

which yields the conclusion of the lemma. 2

4



Lemma 2.2 (Proposition 2 of [3]). If M ⊂ Rn is a compact set, s ≥ 0, and if for every

ε > 0, every δ > 0 and every subset S of M one can find an open set G ⊃ S such that

P s0 (G ∩M) ≤ P sδ (S) + ε, then Ps(M) = P s0 (M).

Theorem 2.3 Let K be a compact subset of Rn and let s ≥ 0, P s0 (K) <∞. Then Ps(K) =

P s0 (K).

Proof. This follows immediately from Lemma 2.1 and Lemma 2.2. 2

From Theorem 2.3, we get immediately

Corollary 2.4 Let E ∈ Rn and s ≥ 0.

1). Assume that 0 < P s0 (E) < ∞. Then 0 < PsE < ∞. In particular, dimBE =

dimP E = s.

2). Assume that E is compact and s > dimP E, then either P s0 (E) = 0, or P s0 (E) =∞.

The following corollary shows that the Theorem of Joyce and Preiss [3] does not hold for

the packing premeasure.

Corollary 2.5 There exists a compact set K and s > 0 with P s0 (K) = ∞ such that K

contains no subset with positive finite packing premeasure.

Proof. Let K = {n−1 : n ∈ N} ∪ {0} and s = 1
4 , then Ps(K) = 0. Moreover, by a direct

calculation, we obtain that dimBK = 1
2 , and thus P s0 (K) =∞.

We conclude that for any F ⊂ K, P s0 (F ) = 0 or ∞. Otherwise, assume that F ⊂ K with

0 < P s0 (F ) < ∞. Then 0 < P s0 (F ) < ∞, thus by Theorem 2.3, 0 < Ps(F ) < ∞, which is

impossible since F is a subset of K. 2

3 Compact sets of infinite packing premeasure

In this section, we discuss the compact sets of infinite packing premeasure.

Theorem 3.1 Let K be a compact subset of Rn, s ≥ 0 and P s0 (K) =∞. Then for any ε > 0,

there exists a compact subset F of K such that P s0 (F ) = Ps(F ) and Ps(F ) ≥ Ps(K)− ε.

Proof. The case Ps(K) =∞ is trivial, so we assume in the following that Ps(K) <∞.

By the definition of Ps(K), there exist compact sets {Ki}∞i=1, such that
∞⋃
i=1

Ki = K, and

∞∑
i=1

P s0 (Ki) ≤ Ps(K) +
ε

2
. (19)

Since
∞∑
i=1

P s0 (Ki) ≥ Ps(K), there exists m ∈ N such that

m∑
i=1

P s0 (Ki) ≥ Ps(K)− ε

2
. (20)
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From (19) and (20), we obtain

∞∑
i=m+1

P s0 (Ki) ≤ ε. (21)

Let F =
m⋃
i=1

Ki, then by the finite subadditivity of P s0 and (19) we have

P s0 (F ) ≤
m∑
i=1

P s0 (Ki) <∞,

thus from Theorem 2.3, we have P s0 (F ) = Ps(F ).

Finally, by (21) we obtain

Ps(K)− Ps(F ) ≤ Ps(
∞⋃

i=m+1

Ki) ≤
∞∑

i=m+1

P s0 (Ki) ≤ ε. 2

Remark 3.2 The following example shows that the conclusion of Theorem 3.1 cannot be

strengthened to: under the conditions of Theorem 3.1, there exists a compact set F ⊂ K

such that P s0 (F ) = Ps(F ) = Ps(K).

Example 3.3 Let n ∈ N and consider the intervals In = [ 1n ,
1
n + 1

n3 ]. Since P1/4(In) =∞ for

each n ∈ N, by the theorem of Joyce and Preiss [3], there exists a compact set En ⊂ In such

that P1/4(En) = 1
n(n+1) . Set K = (

∞⋃
n=1

En)
⋃
{0}. Then K is compact and P1/4(K) = 1.

For any n ∈ N, pick xn ∈ En arbitrarily, then by a simple calculation, we get dimB({xn :

n ∈ N}) = 1/2, which yields that P 1/4(K) ≥ P 1/4({xn : n ∈ N}) =∞.

Assume that F ⊂ K satisfying P 1/4(F ) < ∞, then by the analysis above, there must

exist m ∈ N, such that F ∩Em = ∅, and we get therefore P1/4(F ) ≤ P1/4(K)−P1/4(Em) =

1− 1
m(m+1) < 1. That is, for any F ⊂ K with P 1/4(F ) <∞, P1/4(F ) 6= P1/4(K).
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