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Let J be the repeller of an expanding, C'*°-conformal topological mixing map g.
Let @ :J —» R? be a continuous function and let o(x) = lim,, o0l Z;’;& ®(g/x) (when
the limit exists) be the ergodic limit. It is known that the possible a(x) are just the
values [ @dy for all g-invariant measures . For any o in the range of the ergodic
limits, we prove the following variational formula:

(1)
ftiEe = {f lognévgudu(x)/ a= }

where p is a g-invariant Borel probability measure on J, &4(u) is the entropy of p,
[[Dygl| is the operator norm of the differential D,g, and dim is the Hausdorff
dimension or the packing dimension. This result gives a substantial extension of the
well-known case that @ is Holder continuous. We also prove that unless the same
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ergodic limit exists everywhere, the set of points whose ergodic limit does not exist
has the same Hausdorff dimension as the whole space J. © 2002 Elsevier Science (USA)

Key Words: conformal repeller; dimensions; entropies; recurrences; Markov
measures.

1. INTRODUCTION

Let M be a smooth Riemannian manifold and g: M — M a C'*0-
conformal map. Consider a g-invariant compact subset J of M. We say that
g is expanding on J if there exist C > 1 such that ||(D,g)u|| = C|u|| for all x € J,
ue T.M. We say that J is a repeller of the expanding g if:

(@) J =),=09 "V for some open neighborhood ¥V of J; and
(b) g is topologically mixing on J, i.e., when U, W are nonempty
(relative) open sets in J, g"(U) n W #0 for n sufficiently large.

A finite closed cover {Ry,...,R,_1} of J is called a Markov partition of J
(with respect to g) if:

(1) intR;,=R;foreachi=0,...,m—1;
(i) intR; nintR; = 0 for i#; and
(iii) each g(R;) is the union of a subfamily of {R;}"-.

It is well known that any repeller J of a continuously differentiable
expanding map g has Markov partition of arbitrary small diameter (see [25,
p. 146]) and (J,g) is semi-conjugated to (X4, o), a subshift space of finite
type. In what follows, we always assume that J is a repeller of an expanding,
C'*-conformal, topologically mixing map g.

Let @ be a continuous function defined on J with values in R?. For any
x € J, we define the ergodic limit, when it exists, as

n—1

1 :
— _ J
oa(x) = nanolc " jEZO D(¢'x).

The quantity a(x) is regarded as the recurrence of x relative to @ (the term
“recurrence’” gets its usual sense when @ = (13,,...,1p,) where 15 denotes
the characteristic function of a set B). Let

Ly = {o:0=u0a(x) for some xeJ}.
Let .#,J) be the set of all g-invariant Borel probability measures

concentrated on J. The function @ : J — R? induces a map Py : My J) —
R? given by

v = [ @dn e,
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As a consequence of the Birkhoff ergodic theorem, we see that if u is ergodic,
then a(x) = P4(u) for p-a.a. x € J. It can be proved that Ly = @x(.# 4(J)) and
hence Ly is a nonempty compact convex set. For o € Ly, we let

E(@)=1{xeJ:ax)=o0a}

and
Fol) ={peMyJ): Pu(p) =0}

In this paper, we will investigate the size of the set E(x) as well as the size of
the set of points such that the limits defining a(x) do not exist. Recall that J
is a metric space induced by the Riemannian metric and there are various
notions of dimension on J. We will consider the Hausdorff dimension dimy
and the packing dimension dimp (see, e.g., [11, 12, 19, 21]). The sizes of the
sets in question will be described by these dimensions.

The first historical example of this type is due to Besicovitch [1] and
Eggleston [10]; they proved that for a € I = [0, 1],

® g L
E(o) = {XZZ%EIZ,}L%;ZSJZ% &, =0 or 1}
=

n=1

has Hausdorff dimension —(ology o + (1 — a)loga(1 — «)). In this case the

corresponding maps are g¢g:I — I such that g(x)=2x(mod1) and

d(x) = A (they are not continuous). A slightly more elaborate example
2?

was given by Billingsley [2]. Fan and Lau [15] studied the asymptotic
behavior at infinity of multiperiodic functions F(x) =[], /' (57) where f'is
a positive Holder continuous periodic function with period 1 (e.g., F(x) =
|<i§(x)|q where (ﬁ(x) is the Fourier transform of the scaling functions in the
wavelet theory). By using the Ruelle-Perron—Frobenius operator with the
Holder continuous potential log f and the standard ‘“‘multifractal for-
malism” argument, they showed that (& = log f, and g(x) = 2x (mod 1) as
above) the Hausdorff dimension of

n—1
E(x) = {x €[0,1]: lim lz d(2/x) = oc}
=0

n—-oon

is hy(u)/log 2 where hy(u) is the entropy of the Gibbs measure p with respect
to g [15, Theorem 6]. Some further consideration of the ergodic limit and the
multifractal formalism for Holder continuous @ was given by Pesin and
Weiss [23]; a special case @(x) = ||Dyg|| was considered by Weiss [27].

If the function @ has no regularity like Holder continuity or summable
variation, the question is more subtle because the multifractal formalism will
not work as there is a lack of differentiability on the pressure function and a
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lack of Gibbs property on the invariant measures. Fan et al [14] had
considered the setting on (X4, 6), a subshift space of finite type. They showed
that for a continuous @ : £, — RY,

dimy E(2) = lmmax{ha(,u) cue Fp(n)}.

log

Another consideration using pressures was given by Olivier [20]. Our main
results here are the following.

THEOREM 1.1. Let J be a repeller of an expanding, C'*°-conformal
topological mixing map g. Let ® : J — R? be a continuous function. Then for
any o € Ly, we have the variational formula

. : hy(p)
dimy E(z) = dimp E(2) = max —— |
) = dime B) = I Tlog 1D.gl du)

where ||Dygl| is the operator norm of the differential Dyg, hy(ut) is the entropy
of w with respect to g. Moreover, dimy E(x) is an upper semi-continuous
function of o.

THEOREM 1.2.  Under the hypotheses of Theorem 1.1, either

(1) all points x € J have the same ergodic limit; or
(1) the set of points x such that the limit defining o(x) does not exist is of
the same Hausdorff dimension as that of J.

A first thought of proving these theorems is to lift the dynamical
system (J,g) to (£4,0) and apply the results in [14]. However, this will
meet some difficulties. Firstly, in contrast to the Holder continuous case,
it is possible that for some o € Ly, there exists no ergodic measure u
supported on E(x); we cannot compare the dimensions of E(x) and its
lift by using the measure p in the usual way (see, e.g., [16, pp. 341,342]).
Secondly, the lifting map is not one-to-one on the boundary of the
Markov partition and we cannot make use of the ergodic measure to
take care of the boundary (by ignoring a measure zero set). Hence instead
of using directly the results in the symbolic space, we will adopt the
approach by modifying the well-known topological pressure and Bowen’s
formula (see [21]). We introduce the following expressions (Section 4): For
each real number s, we define

Sfla,s5n,8) = Z diam(R,,)’

[w]eF (x;n,¢)
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with
n—1
Z D(¢'x) — o

1
F(OC;n, 8) = {[CO] tWE 2A,m -
n<=

<¢ for some xeR(,,}.

Here X, , is the n-tuple in £, and R, = n([w]) with 7 : ¥4 — J denoting the
coding map. We prove (Proposition 4.3 and Theorem 5.1)

THEOREM 1.3. For oo € Ly and s € R, we have

. ..o o, S, 1, € L
lim lim 1nfL’) = lim lim sup
e—>0  n—o00 n e=0 ;500

g FE51) _ i )

Moreover P(a,s) satisfies the following variational principle:
Pls) = maxthy) — 5 [ logID.glldute): ue ol

For each « € Lg, if we define A(x) such that P(a, A(x)) = 0, then we can
prove Theorem 1.1 by showing that

dimy E(2) = dimp E(x) = A(a) (1.1)

and

A() = ma ()

X ———————, 1.2
5% Tlog1D.gl due) (2

The invariant set considered in Theorem 1.2 is called the divergence set of
@. The Birkhoff ergodic theorem says that the divergence set is of null
measure with respect to any invariant measure. Theorem 1.2 states that it is
either empty or large in the sense that it has the same Hausdorff dimension
as that of the whole space. The result of full Hausdorff dimension for Holder
continuous @ was obtained by Barreira and Schmeling [4] (see also [5, 7,
22]). In our proof we first make use of Bowen’s formula (see, e.g., [21, p.
203]) to choose an « such that dimyJ = dimy E(x), then use the symbolic
expression to adjust the x € £(«) to form a new set F' of the same dimension,
but each y € F does not have an ergodic limit.

We organize this paper as follows. In Section 2, we set up the necessary
materials for the subshift space of finite type and the Markov measure
of order ¢. In Section 3, we prove a dimensional result for the
“nonhomogeneous” Moran sets. This together with the mass distribution
principle are used in Section 4 to prove (1.1). The variational principle of the
pressure function P(o,s) in Theorem 1.3 is proved in Section 5 and the
Markov measures of order ¢, £>1, are used to approximate the measure
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that attains the maximum in (1.2). By using the results in the
previous sections, we complete the proofs of Theorems 1.1 and 1.2 in
Section 6.

2. PRELIMINARIES

Most of the materials in this section are known. We recall them here both
for our convenience and that of the reader.

For an m x m matrix 4 with entries 0 or 1, we let (£4,5) denote the
subshift space of finite type [6]. 4 is a metric space with d(x, y) = m™" for
x =(x;)j>1 and y = (¥;);>1, where n is the largest integer such that x; =
vj,1<j<n. We shall always assume that 4 is primitive. This means the
dynamical system (X4, 0) is topologically mixing.

For k>1, X, denotes the set of finite sequences @ = (i1, . .., i) such that
ai.i,, = 1 for all 1<j<k— 1. These sequences w are called (admissible)
words; the length of the word is denoted by |w| (= k). For w = (i1,...,i) €

X4k, the k-cylinder [w] is defined by {x e 4 : x; =iy,...,x, = ix}. It is clear
that there is a one-to-one correspondence between X4, and the set of k-
cylinders. Without confusion we just use X,; to denote the set of all
k-cylinders.

Let £, be the partition consisting of all n-cylinders [w]e€ Z,,. The
entropy h,(u) of a g-invariant measure p on X, (i.e., u € .#,(X,)) can be
expressed as

h(y) = lim

n—00

where  He, (1) = — Y u(4)log p(A).

He, (1)
n ez,

The nth conditional entropy of u is defined by A" (u) = He,e, ,(w),n> 1.
Using elementary properties of the conditional entropy [26, p. 80], we can
prove

PROPOSITION 2.1.  For each u € M ;(Z,), we have

W) = He (1) — He, () Yn>1

and
h(p) = lim A" () = inf 2™ ().
n—00 n

The entropy h(u) is an upper semi-continuous functional defined on M ;(Z,)
with respect to the weak™® topology.
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A Borel probability measure yu on X is uniquely determined by its values
on the cylinders with

e =1, Y uo) = u(w). 21)

ey,

It is invariant with respect to the shift ¢ if and only if

> u(i,o) =p(w))  ¥n=1 and weX,,. (2.2)

These three conditions may be referred to as normalization condition,
consistence condition and invariance condition. We call a measure u €
M (24) a Markov measure of order € (or simply £-Markov measure), £ > 1, if
it satisfies the following Markov property: for n>1,

,ll([in, ceey in+€])
:u([ina ceey in+€71])

o . L (LI )
(— u(i, ..., IHI])jll,u([ij,j—j)'

s ljre1])

w(its .. sinre]) = ulir, - o o inge1])

Note that the standard Markov measure is when £ =1. We will see
from Corollary 2.4 that the set of all £-Markov measures, £> 1, is dense in
%G(ZA)'

PROPOSITION 2.2. Suppose pe M,(Zy) is an -Markov measure. The
entropy of u is

wlit, -5 ies1])

W == 3 Al e Dlogs

Moreover, h™(u) = h(p) for n=€+ 1.

Proof. We need only use the definition of Markov measure and
the expression of A”)(u) in Proposition 2.1 to check that A" (u) = A"~ D(y)
forn=¢+1. 1

In view of (2.1) and (2.2) we let A; denote the set of all
nonnegative functions p defined on X,; satisfying the following two

relations:
> plinia,. i) =1,

11,025eees i

D plisivs. i) =Y plit, . osiko1i).
i i
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PrOPOSITION 2.3. Let p € Ag; define i on X4 by

n—k+1

(i1, -« sin)) = PG, - ik)
U121 1 Pl 174 j];! Z

p(lla ) ij+k—1)
lp(lla DRI ij+k—29 l)

Then u is a (k — 1)-Markov measure. If furthermore p is positive, then u is
the Gibbs measures associated with the potential

Y(x) = log pxi,....x0) —log > plr,...x1,0).

The reader can refer to [6] for the definition and property of a Gibbs
measure. As a corollary, we have

COROLLARY 2.4. Given pe M(Xy), let {pi} in A, be defined by
pilins ..o i) = [y, - . - ik]).
Let ;. be the associated (k — 1)-Markov measure in Proposition 2.3. Then
p=w* Jim e, AW = lim ().

If further the support of u is the whole space X, then the {u;} are ergodic
and are Gibbs measures.

We call y; the kth Markov approximation of .

COROLLARY 2.5. For any u € M (Xy), there exists a sequence of ergodic
measures {Vitps1 < M (X4) such that

u=w*lim v, h(p) = lim h(v;).
k—00 k—00

Proof. In view of Corollary 2.4, we only need to consider the case that the
support of u is not the whole space X 4. In such a case we select a & € .#,(X4)
supporting the whole space 2. Take p” = (1 — L)+ 1& Then ™ supports
the whole space X . Since p = w*lim, . u™ and A(u) = lim,_ h(u™),
combining it with Corollary 2.4 we get the desired result. 1

Let X be a compact metric space and let 7 : X — X be a continuous map.
We let .4 r(X) denote the space of all T-invariant Borel probability measures
on X.

ProPOSITION 2.6. Let X;,i = 1,2 be compact metric spaces and let T; :
X; = X; be continuous. Suppose ©: X1 — X, is a continuous surjection such
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that the following diagram commutes:

X, X x

) g
b
X> — X2
Then w*: M71,(X\) = M1,(X2) (defined by pr>pon=') is surjective. If,
furthermore, there is an integer m >0 so that n~'(y) has at most m elements
for each y € X,, then

hr (1) = hr,(uenh)

for each pe Mr (Xy).

Proof. The first part of the result is the same as [18, Chap. IV, Lemma
8.3]. The second part follows from the Abramov—Rokhlin formula (see

(3D. 1

From Corollary 2.5 and Proposition 2.6, we have the following corollary
immediately.

COROLLARY 2.7. For any pe M ,J), there exists a sequence of ergodic
measures {l k=1 < My(J) such that

= w Jim g, h(p) = lim Au).
—00 k—o00

3. NONHOMOGENEOUS MORAN SET

In our proof of (1.1) we need to use a class of Cantor sets from a very
general Moran construction. Let X — R? be a compact set with nonempty
interior. Let {n;};>1 be a sequence of positive integers. Let D = ;- ( Dk
with Dy = {0} and Dy = {w = (jij2...ji) : 1<ji<n;, 1<i<k}. Let Dy =
{Gi1ja...):1<ji<n;,i=1}. Suppose that 4 = {X,, : w € D} is a collection
of subsets of R?. We say that ¢ fulfills the Moran structure provided it
satisfies the following conditions:

(1) Xo =X, X,; © X, for any w € Dy_1,1<j<wn; the interiors of X,
and X, are disjoint Vo #o', w,®’ € D,,.

(2) There exist two positive constants C; and C,, closed balls B, B,
and r, € R" for each w € D, such that
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(i) By, =Xy < By

(i) B, and B, have radii Cyr,, and Cyry;

(iil) limg—oo MaXyep, ¥ = 0;

(iv) there exist positive constants C3 and Cy4 such that

v, Fey Vg
Cy- < €t (3.1)

Fo oy Fo

for all wn#w'n, w,0' €D, wn,w'n e D, m<n.

If ¢ fulfills the above Moran structure, we call the set

F=OUx

n>0 weD,

a nonhomogeneous Moran set associated with ¢. The nonhomogeneity
refers to the nonconstant number n; of descendents in the kth level for
each predecessor in the (k — 1)th level. This class of sets was considered in
[17, 24] for the case that each X,,w e D, has equal size. For the
homogeneous Moran set (i.e., n; is a constant) the reader can refer to [8,
9, 21] for details.

Let

. Fiyeeiy
pr = min — Mi = max  rj..
(i1 )EDy Fijoiy_, (#1-+ix)€Dk

They are the minimal contraction ratio and the maximal size (up to a fixed
constant multiple) of the set X, in the kth generation.

PropPOSITION 3.1. For the Moran set E defined as above, suppose
furthermore

log pi
=0. 3.2
fae log M}, (3-2)
Then we have
dimyg E = lim inf sy, dimp £ = lim sup sy,
k=00 k—00

where sy satisfies the equation y_, ep, 7 = 1.

Proof-  We first prove dimy £ = lim inf;_ s¢. The inequality dimy E
< liminfy_, s¢ is straightforward. We need only prove the reverse
inequality.
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Let 4, be the g-algebra generated by the cylinders [w], w € D,. For any
n>=1 and a>0, we define a measure y, (depends on «) on 4, by

ra(

w0
R
Z w'eD, Ty

For any m<n and for w € D,,, we have

(0] = > paen))

wneD,

§ o § : o
= oy To'y
wneD, w'neD,

= > (Oar ) [ (o)

wneD, w'neb,

~ n((0])  (by (3.1)).
That is, there exists C > 0 such that for m<n,

crtlod oy ep

tm([@]) ’

By the compactness of D, there is a subsequence {u,, }x>1 that converges in
the weak* topology. Denote by p the limit. Then

tn([0]) = (3.3)

Ccl< w(w])

<C Vm>0 and weD,. (3.4)
tm([©])

Let v be the probability measure on E such that v=peon~' where
n: Dy — E is defined by (i1iz---) = [0 Xiji,- We claim that for each
o<lim infy_, o s¢, there exists C' > 0 such that

1

V(X)) <C'r Vo € Dy with large k.

To prove the claim, we observe that for any a<f < liminf;_ s, there
exists Ny such that for any k> N,,

> o> (3.5)

neDy

For w € D,, let
A={neD:ry<ry<rp, X, nX,#0},

where 1= (ji...jm) €D and n* = (ji-- jn_1). By Assumption 2(ii) of
the Moran construction and a simple geometric argument, there exists
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Cs such that

d
> ph< Z Zr—zé Cs. (3.6)

ned I * ned

Hence for n large enough,
V(Xo)< > u(ln)
ned

o

v
<c 1 (by (3.4))
el > Gt i oo
fo/f o
<cy - (by (3.2))

ned ZUI--JW\)EDW\ Ji-Jl
<cr M (by (39)

ned

<Oy pl (by (3.2)

ned
< CCs”  (by (3.6)).

This completes the proof of the claim.
Now let o/ <a. By (3.2), there exists ko such that

!

[ Vk=ko, (iy---ix) € Dy. (3.7

i) X iy
Let B be a ball of radius r such that r< infu,ngO+1 To. Set
B = {w eD: X, "B#0D, ry,=r> Fajs 1 <j<n‘w|+]}.

Then by assumption (2), there exists L >0 (not depending on r) such that
#A < L. It follows from (3.7) that

W(B)< Y v(X,) SLCCsr <LCCsr.

WeR

The mass distribution principle will imply that o <dimy E. Since of <a is
arbitrary, we have a <dimy E. Thus we obtain that dimy £ >1im inf;_  s¢.

We now prove that dimp £ = lim sup,_, ., sx. Denote s = lim sup;_, o, Sk-
We first show that dimp E <s. Let ¢ > 0; it suffices to show that dimp E<s +
2¢. Take k; € N such that llg’ggﬂ‘jf <o for any k>ky. Let o* = (iy -+ ix—1) if
o = (i - - - i); the definitions of p; and M} imply that

For < (1) T2 Wk>k, e Dy.
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Take k; > ky such that s; <s + ¢ for each k>k;. Let u, (depends on s + ¢) be
the measure defined as in (3.3) with s + ¢ replacing o and let u be a w*-limit
point of {y,}. Then by (3.4), for each n>k; and w € D,,

s+é&
p([o)=C ' (o] = C = "D SOl O
w'eD, w’

Now pick 0 > 0 such that 6 < infuep,, |X(,| and suppose that {B;} is a family
of disjoint balls with centers in £ and diameters less than 6. For each i, pick
w; € D such that the center of B; is contained in X, and X,, < B; and
Xor & B Itis clear that w; € UkskDk and >, p(fo;]) < 1. Since X | > %|B,<|
for each i, we have

Z |Bi|s+21: < Z(2|Xw?‘|)s+2£ < (2C2)s+2£ Z r,;EZS

1

<SCQCY™* Y uo) < CQC)™ .

Hence by using the standard notations of packing dimension [11], we have
P(v5+2f:(E) < C—] (2C2)s+2£

and 2°7#(E) < P§P4(E) < PS(E) < 0o, which implies that dimp E <s + 2.
To show that dimp E >, we consider the upper box dimension of X,, N E
for any fixed ko € N and wg € Dy,. We need only show that dimp(X w N
E)=s. It follows that dimg(¥ N E)>s for each open set ¥ with V N E #0.
This implies dimp(E)>s since E is compact [11].
Indeed for any ¢,0 >0, take k such that maxwweDkr(UO,,<min{%,8} and
sg=s — 0. Then by (3.1),

§—0
1< Y mi< Y (cf”’rww)

w'eDy,, w'neDy '€Dy,, w'neDy Foy
C4maxu)’ eDy, Vo' $-0
ko T QO _5
< | ———— #Dy, E r, 0
1% 01
@0 woneDy
_ —0
=Cs g Foon
woneDy

Let o/, = {won € Dy : 27" ' <ryy<27"}. Then

o0
D WS
=0

woneDy
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which implies that there exists m such that
Hof >C71 1 2/71(5725)
In=Co 755 .

By conditions (1) and (2), there is a constant C7 € N (depending only upon
C, C, and d) such that each closed ball with radius 27" intersects at most
C7 elements of {X,, : won € o, }. Thus if we denote by N»-»(X, N E) the
least number of closed balls with radii 27" needed to cover E, then

1

_ 27m(sf25).
=20

Nyn(X o, NE)=C7 ' et ), > Cg ' CF!

Since ¢ can be taken arbitrarily small, the number m in the above inequality
can be picked arbitrarily large. Therefore dimp(X,, N E)>s — 2. Since
0>0 is arbitrary, di—mB(Xw(J NE)=s for any ko e N and wy € Dy,. This
completes the proof of the claim and hence the proposition. I

4. PRESSURE FUNCTION AND DIMENSION OF E(«)

Let 2 ={Ry,...,R,_1} be a Markov partition of the repeller J with
respect to an expanding, C'*°-conformal, topological mixing map ¢. It is
well known that this dynamical system induces a subshift space of finite type
(X4,0), where 4 = (a;;) is the transfer matrix of the Markov partition,
namely, a; =1 if intR; n g '(intR;)#0 and a; = 0 otherwise [25]. The
matrix 4 is primitive, i.e., there is a positive integer M so that 4 > 0. This
gives the coding map = : £, — J such that

)= (g " "R),  Vo=(nim--)

n=1

and the following diagram

commutes. The coding map = is a Holder continuous surjection. Moreover,
there is a positive integer ¢ so that 7~'(x) has at most ¢ elements for each
x €J (see [25, p. 147]). For each cylinder [w], the set n([w]) is called a basic
set and is denoted by R,,. It follows from [21, Proposition 20.2] that
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ProPOSITION 4.1.

(1) For any integer k > 0, the interiors of distinct R, ®w € Dy are disjoint.

(i1) Each R, contains a ball of radius r,, and is contained in a ball of
radius .

(iii) There exist positive constants K| <1 and K, > 1 such that for
every R,

n—1 n—1
K [[IDgodll ™" <ro <o <Ka [[IIDgdll ™', VxeR,. (41
j=0 =0

Note that the secon.d part makes use of |D.g"|| = H;:(; 1D giceygll,
a consequence of the chain rule and the property of the determinant.

Since AM >0, for any we Y4, and any 0<z<m —1, there are
0<y1,...,yuy<m—1 such that

(@, ¥15 s YM>Z) € Tyt 41-

We call o = (w, y1,..., yu) an extension of o to join z.
For a fixed continuous @ : J — R?, and for any o e R?, n>1 and ¢> 0,
we define

F(a;n,e) = {[w] ONCDIPN <e¢ for some xeRw}

1 n—1 .
— Z D(¢'x) — o
n4
Jj=0
and

flesine)= Y diam(R,)’

[w]eF (x;n,e)
for any s € R.

LeEmMMA 4.2. For any &> 0, there exists N = N(¢) such that for any p>1
if n=N,

J(@,5:n,)" <CP f(a,5;(n + M) p, 2¢)
for some C >0, independent of p and e.

Proof. Without loss of generality, we can assume that |@(x)|<1 for all
x €J (|| denotes the Euclidean norm).

For wi,...,w,eF(x;n,e), let 0 =@ @, €Y 4pnimy Where oy e
X n+m 1s an extension of oy joining the leading letter of @y (with the
convention that w1 = w;). By definition we can choose x; € Ry, 1 <k< p,
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such that

<é&.

1 n—1 .
=Y B(g'x) — o
n<

j=0

Let x be a point in R,,; then x = n(@1---w,---). Let zx = n(wg---@,---),
1 <k< p. It follows from the conjugation of g and ¢ that g +Mk=D+i(x) =
¢/(z;) and hence

(n+M)p—1 ) P ntM—1 .
Yoodgn =YY" o).
7=0 k=1 j=0
Therefore,
1 (n+MZ)p—1
D(¢x) — o
(n+M)p =
1 p n+M-—1
= D(g'zp) — o
(n+M)p kz:; jz:(;

n+M—1

(P(¢'xx) — )

J=0

n+M—1 ) )

+ 0y \@(gfzk>¢<gka)|>

j=0
1 n—1

<H—M<(n.g+2M)+ (Z;II@IIJ»+2M>>,

J

where ||®@]|; = sup{|®(x) — @(y)|: x,y € R, for some weX,;}. Since P is
continuous, n~! Z}:&HQ)“/‘ tends to zero as n — oo. We have

1 (n+MZ)pfl )
— D(g/'x) — 0| <2¢
(n+Mp =

for n=N and for all p>1. This implies that the [w], which contains x, is in
F(“; (}’l +M)P, 25) Let ;Lmax = maXer”ngH and ;Lmin = minxe]||ng||~ By
(4.1), we have

diam(Ra-,l @ ...u')p)
(n+M)p—1

>Ki [ 1Dyl
j=0
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p—1n—1 —1 n+-M—1
-1
||Dg(u+/w)k+j(x)g|| H H ||Dq<wr mk+/(x)g||

k=0 j=0 k=0 j=n

I’ll
(Ig‘zgdwnmRmHJ>(zmw>Mp

> (K ﬁdi’m(R )
2K2}M P a Wy Js

‘max

and similarly

2K>
KM

min

p_p
diam(Rg,6,--6,) < ( ) diam(R,,, ).
k=1

It follows that

P
( > diam(Rw)s> <cr Y diam(Rg,-s,)
[w]eF (a;n,€)

[w/eF (u;n,¢e)

<CcP > diam(R,)’,
[n]eF (o p(n+M),2¢)

where

max

(2K»)~ (K] mm) for s<0

{ KM for s=0

and the lemma follows. 1
By using the above lemma, we have

ProroOSITION 4.3. For o€ Ly and s € R,

1 .
lmmmﬁﬁﬂﬂﬁmmmi&ﬂﬁ
>0 n-oo0 n i=0  poeo

= P(a,5). (4.2)

The function P(a,s) is upper semi-continuous on the variable a. Moreover,
Co(t — )< P(a,5) — P, 1) < Ci (1 — 9) 4.3)

for any s, teR with s<t, where C|=max,slog||D.gll and
C> = minye, log||Dygll.
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Proof. The equality of the limits follows from the subadditivity in the
lemma and a standard argument. We will include a proof for completeness.
First, note that the two limits in (4.2) exist since f(o,s;n,¢) is an increasing
function on the variable . Denote by f§ the left-hand-side limit. Then for any
0 > 0, there exists g > 0 such that

lim inf
n—00

10g.f(a,S;n,8o)<ﬁ+5.
n

Fix d,¢p > 0. To show the equality in (4.2), we only need to show that

log f (o, 53n,80/4)
n

lim sup
n—o00

<p+26.

Fix n € N with n>N(gy/4) where N(ey/4) is defined as in Lemma 4.2. Take a
sequence of integers n; T 0o such that

fo,53mp,80) <™ P VkeN,
For each k, write ny = (n + M) py — €, with 0<¢, <n + M. By Lemma 4.2,
f(,s5n,80/H < CP f(a, 55 (n + M) pr, €0/2).

Take ko such that (pr, — D(e0/2) > ||D|| + || + (e0/2), and let & > ko. If [w] =
[i1 -+ insany pi] € F (o (n + M) pi, €0/2), then there exists x € [w] such that

(n+M)pr—1
. n-+ M)pe
Y B¢ -+ M)pa <+ Mpio 2)”" 0
=0

This implies that

nkfl

. M) pe
> Blg'x) — ma RURR LT
/=0

< 5 + (n + M)(| || + |o) < mgeo,

hence [i; - - - iy, ] € F(a; ng, &0) and
S (n+ M) pr, e0/2) <m"™ f (e, 51 1y, 8).
It follows that
m~ M CPS £(or, 5, 80 /4) P < f (01, 55 1, 80) < PO
Therefore

Fo, s, 60/4) < W/ (P(B+0) 05 (n M) /(i)
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Letting k — oo, we have

F(o 551, 80/4) < MEF20) s
Letting n — oo, we have

i sup 108/ €255 20/4)

n—00 n

<B+20

as desired. Thus we have proved the equality in (4.2).
We will show below the upper semi-continuity of P(-,s). Given « € Ly, for
any 1 > 0, there is ¢ > 0 such that

lim inf
n—-0o0

l .
08 fsm) o
n

Let feLe with |f —af <% For each [w] € F(f;n,¢/3), there exists x € R,
such that | 377~ @(¢/x) — nf| <"%. Hence

<n(|ﬂf of +§) <ne

n—1
Z D(¢'x) — no
=0

and [w] € F(x; n, ¢). This proves that F(f;n,¢/3) = F(x;n,¢). It follows that
f(B,s:n,¢/3)< f(o,5:n,¢); therefore

log«f(ﬁ’s; n’8/3)< hmlnflog f(OC,S; nzs)
n

n—00 n

P(f,s)< liminf <P(a,8) + 1.
n—oo

This establishes the upper semi-continuity of P(:,s) at o.

The assertion on the Lipschitz property follows from the following
inequality, which can be deduced from (4.1):

Ki(max ||Dygl))™" <diam(R,,) < K»(min [[Dyg])™". 1
xeJ xeJ

For a € Ly, we define A(x) to be the unique number s such that P(a, s) = 0.
Since P(a,s) is upper semi-continuous on « and strictly decreasing on s (by
(4.3)), we have immediately

COROLLARY 4.4.  A(x) =0 and is an upper semi-continuous function on Lg.

PROPOSITION 4.5.  For o € Lg, we have

dimy E(2) = dimp E(@) = A(x).
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Proof. We first show that for o € Ly, dimp E(x) < A(x). Let A(x) <t; then
P(o, 1) <0; it follows that there exist ¢ >0 and é > 0 such that

| TN, €
lim sup 28/ (%5m8) 5

n—00 n

Therefore there is a number N = N(g,d) such that for n >N, f(a,t;n,8) <

e Let
<}

G(o, k) = ﬁ{er:

n=k

1 n—1 .
72 D(g'x) — o
ey

It is clear that for any ¢ >0,

E(x) = Loj G(o, k, €).
k=1

We show below that dimp G(a, k, ¢) <t for each k. Let % be a collection of
disjoint cylinders [®], w € £,4,, n>max{k, N}, such that the basic set R,, has
nonempty intersection with G(a, k,¢). Thus each [w] in % is contained in
F(a;n,e) for some n=N. It follows that

Y (diamR,Y< Y > (diamR,)

[w]leF n=N [w]eF(un,g)
6—6
= Zf(oc,t;n,s)s — <00.
n=N I—e

Since the family of [w] € & are disjoint, this implies that dimp G(a, &, &) <t.
By the o-stability of packing dimension, we have dimp E(o) <¢ as desired.

We now prove dimy E(x) = A(x) for « € Lyp. Let A(x) > ¢. By Proposition
4.3, there are ¢; /" oo and ¢; | 0 such that f(«,¢;,¢)> 1. Write simply
F¢, = F(o; ), ¢7) and define a new sequence in the following manner:

T A 2SO 2SO ORI ST )
N N> N;

where N, j=1 diverge to oo fast and will be determined in the sequel. We
relabel the sequence as {£F}. Define

Y = {Rp,-c, 0 keN, [a)i]eF[;k for 1<i<k}
and

o* = k U  Raan

=1 [weF 1 <i<k
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where @; is an extension of w; joining the leading letter of w;y; (with
convention wyy; = wp). In view of Proposition 4.1, the collection ¥ has
the Moran structure and ©@* is a Moran set in J. More precisely, @
is constructed as follows. At level 0, we have the initial set [J,R;.
In step k>1, we have the basic sets Rg,..,, wjeF[* for 1<j<k. By
(4.1), the max1mal diameter M; of the basic set Rwl @, 18 less than
Kz()umm)* - *f, the minimal contraction ratio p; of the adjacent
level is greater than fT‘Z(/lmax)*[:*M ,  where Apnax = max,e/||Dygll,
Amin = Minye/||Dygl|. It follows that

log pi_ (6§ + M)Iog Amax — log Ky + log (2K5)
logMy ~  (CF+ -+ + €)log Amin — logKy

In order for it to tend to zero (in view of Proposition 3.1), we can
take Ny =1 and N;=2*N-1 for j>1. Hence we conclude from
Proposition 3.1 that

dimy @* = liminf sy,
k—00

where s, satisfies the equation

> diamRp 60" = 1. (4.4)

[(U,-]eF,* A<i<k
i

Recall that we have proved in Lemma 4.2 that

K\ .
( Ko %a) ,11 diam(R,,,) <diam(Rgr..a;)-
Making use of lim;_,, £f = oo and dlam(Rw)<K2/1
d >0, there exists kg such that for k > ko,

min» We see that for any

i 1+0
(H diam(R,,, )) <diam(Rg-.z50)-

i=1
Hence for &k > ko,

k

I_If(oC sc(1+0): 66 =[] D (diam(R,, )***?

i= i=1 [w;]eF

. S
< E (diam(Rg;..5))™* = 1.
[wileF x, 1<i<k
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Therefore f(a, si(1 + 3); {’:", ¢f)<1 for some 1<i<k. This implies that
si(1+ 0)=1¢ since f(a,1;€F,eF)> 1. Therefore liminfy_,~ s >1.

Now we prove that @* < E(a). Fix x € ©*. For a given large integer #, let
k be the unique integer satisfying

k—1 k
D+ M)<n< > (6 + M),
i=1 i=1

By the definition of @* there exist [w] e Fps, 0= 1,...,k, such that
X € Rgr..z;. For 1<i<k, pick x; € R, such that

-1
Z D(g'x;) — Cro| < eFer.
Jj=0
Then
n—1 )
Z d(¢'x) — no
=0
k=1 -1
<30 ST(@(gft M) — | 4 (kM + €6)(2|P])
i=1 =0
k—1 -1
< (@(gTH DM ) — B(g/xy))
i=1 ;=0
k—1 -1
+ (P(¢'x;) — )| + (kM + £)(2]|2]))
=1 j=0
k=1
< ||¢||,> + Z(F*f*) + (kM + £5)(2|P).
=1 j=1 =
Therefore

Ik HOS ) + S e + M+ )29l
pOpT s

Z@(g X) — no

*
Since lim;_,, £ = oo and limkﬁooki** 0 (by the definition of N)),
we have i=1 i
=
li P — =
nLn;cn Z (¢’x) — no| = 0.
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This proves that x € E(«). Thus we have proved that @* < E(«), from which
dimg(«) =¢ follows. 1

5. A VARIATIONAL PRINCIPLE

In this section, we will prove the following variational principle. Let
P(o,s) be defined as in the last section.

THEOREM 5.1. For any a € Ly and s € R, we have

P(a,s) = #§a§a){hg(u) —s / log [IDxgll du(x)}-

Proof.  Part 1. Let u be a g-invariant measure in 7 (%), i.e., o = [P dpu.
We show that

Pl s)>hy() — s / logl|Dygll du().

By Proposition 2.6, there exists v e .#,(X,) such that u=von~' and

hy(v) = hy(n). Let us assume at first that v is ergodic. Fix ¢ >0. For any
neN, let F, (c F(a;n,¢)) be the collection of all the n-cylinders [w] in
2,4 such that there exists y € R,, satisfying

<e (5.1)

1 Vlfl .
=) o(g'y) o
Ly

and

n—1

1
2> 1oglDycgll — [ loglDuglducr) < (5.2)
i=0

We claim that the sequence {F,} satisfies

log #F,

lim inf —&
n—oo

= hy(10).

Indeed let E; = [J{[w] : [w] € F,;}. By (5.1) and (5.2) and Birkhoff’s ergodic
theorem,

v(U ﬂE,) = 1.

n=0j=n
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Hence there exists an integer N such that v(|") ;> Ej) > 0, which implies that

dlmB(ﬂ ~y Ej)=dimy v = O"g(‘ni, and by the definition of box dimension,

log #F, .
lim inf Ogn > (log m) dimp ( N Ef> > hoy(v) = hy(1)

o0
n— j}N

and the claim follows.
By (4.1) and (5.2), it is easy to see that for n large enough and any
welF,,

<2e. (5.3)

log diam(R.,) + / log 1Dl dyu(x)

Recall that P(a,s) = lim,_ lim inf,,, log f(a,s;n,¢)/n with f(o,s;n,¢) =
Z[w]eF(am) diam(R,,)*. By applying the claim and (5.3), we have the desired
inequality for P(a,s).

To complete the proof, we consider now v without assuming the
ergodicity. By Corollary 2.5, there exists a sequence of ergodic
measures {v,} which converges to v in the weak™ topology and satisfies
lim, o A5 (vs) = he(v). Let g, = v,on ! and o, = [ @ dp,; then

Py, 5) > hy(j1,) — s / log [1Dsgll dinx).

Letting n — oo, then o, —» «, and by the upper semi-continuity of
P(-,s), we have the desired inequality again.

Part 11.  In what follows, we show that for any o« € Ly and s € R, there
exists fi € Z (o) such that

P s)<hy(@) — s / log D9l diic). (5.4)

For each integer k£ > 0, we define two functions on Z, by
¥Y.(A) = max @ £ (A) = max log||D,gl,
W)= max B &)= max log|Dygl

where /(1) denotes the k-cylinder which contains A. It is clear that W, (1),
&u(2) depend only on the first k coordinates of 2. Since g is C'*?, log ||D.g]| is
Holder continuous. Since 7 : X4 — J is also Holder continuous there exists
C>0and 0<p<1 such that

|£4(2) — log [IDxcsygll | < Cp".
To prove (5.4), we first observe that given any ¢ > 0, if £>1 is sufficiently
large,

1¥(2) — (n(2))| <§ VieZ,.
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Similarly to the definitions of F(«;n,¢) and f(a,s;n,¢) for @, we define

Fir(o;n,e) = {[w] ON-D I <¢ for some A€ [w]}

n—1
N ()
=0

and

filsine) =) diam(R,)".

[w]eF i (osn,€)
It is clear that for any s € R and sufficiently large £,
F(o;n,e/2) € Fi(osn,e) and  f(o,53m,6/2) < fi(a, 550, 8).

For w € 24,141 and A € [w], by the definition of ¥}, we have ¥(¢/ 1) =
Wiy - ijpx—1) il @ =dy i ijpp - - - ipqr—1. We define an integer valued
function ¢, : Z4x — Z* by

¢o(t) = #{k-segments i;---i; 4 of w that equals 1}, TE€Zyh

It is clear that ) . du(t)=n. Let 2y ={¢y: ®€Z nii-1,[0n] €
Fi(a,s;n,¢)}. Since ¢,(t)<n for each w € Ty,,4 1 and t € Ty, #P <n*Eax
<n™. For each ¢ e P, we let 7(¢p) denote the collection of all the
® € 24 44—1 such that ¢ = ¢,,. Then for ¢, = ¢ and 1 € [w],

1 n—1 - 1

=D VD) == D p) (). (5.5)

n < n
j:0 TGZ/M»

The same is true if we replace ¥ by &. Also

frosine< < max diam(an)S> HT())

QbEQJ}k OPw=
< " ma max diam(R,,)’ |#7 ().
o max ( max, (@, ) #7(0)
It follows that

I Sim,E log #T .
log fule,sime) _ <u+£ max log dlam(Rw)>
n PePy n nw,p,=¢

; o(log ”) (5.6)

n
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(The constant in ‘O’ depends upon k.) For a fixed ¢ € 2, {¢(z)/n:1 € X 4}
defines a probability vector. For the corresponding @ € 4,441, if we let
n — oo, the sequence of vectors {¢(-)/n} has a weak*-accumulation point.
By Lemma 3 in [13], this weak™-accumulation point belongs to A;, and
moreover for any x > 0, there is N = N(#) such that when n > N, there exists
a positive p € A; such that

— p(v)|<n, p(t) > k+1, TE Xy

‘@
n

Consider the (k — 1)-Markov measure v, defined by p (Proposition 2.3), for
any cylinder [w] € 7(¢) with o = (x;)/* !, ¢,, = ¢, we have

wod = B2 T ey > 1T a0 =,

t( |k) TEX 4k re):“

where

pli, ..., i)

t(r) - Z&‘p(ils .. .,ik,],ﬁ)

for t =iy -+ i. Then a# 7 (¢) <vp(Upjer g [0) <1 and hence

log #7(¢) Z¢(T) o 1(0) + O(IIOg nl)

n

Zp(r)logt(f)JrO(' oe nllognl)

(6]
— oo p)+0(' e 11I10g11|>-

(The last equality follows by Proposition 2.2.)
For the second expression in (5.6), we have by (4.1),

n—1

log diam(R,,y,) <log(2K») — » " log 1Dyl
i=0
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for any x € R,,. Hence for any /A € [w],
(P 1 158, .
~log diam(Ry,) < ~ log(2K2) — = > &(a'(2)) + Cp
n n n =0

< Tlog(Ka) +Cof 1 Y Gu@G@ by (59)

‘EGZA,k

1
< 108K + Cpt = [ &0 dv, () + minlel
1
< 1og2K2) + 26+ millal — [ tog IDsngll v, )
Let *(v,) = [®omdv,; then

|D*(v),) — o < /E(’kdvp—oc +¢

=" PO — o] + ¢

N

S0y — of w4 5

n—1

_ %Z Yol () — o

Jj=0
< mn|| Wil + 2e.

+m |l +¢  (by (5.5)

We conclude from (5.6) that

log f(a,s,n,¢/2) _ 1og fi(%,5,n,¢)
n = n

< sup (hg(v) s / log [Dsyydl dv(y))

lo +lo
+ 0('”% + 1 |log nl) + 2Cp",

where the supremum is taken over veA; and satisfies |@*(v) — o<
m*n||®||x + 2¢. Let n — 0o and then n — 0; we get

lim sup &/H®BSEmE) (h(,(v) s / log 1Dl dv(y))

n—00 n 0¥ (v)—a] <3e

+ 2Cpk.
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Note that the set of invariant measures v on X4 such that |@4(v) — a| <3¢ is
compact; by using the upper semi-continuity of /4,(v) and letting ¢ — 0, then
k — 00, we can find ¥ such that [@ondV = o and

P(3,5) = lim lim sup 28/ B850 o / 10g 1D g1l d¥().
n

n—0oo

Take ji ~1; then fi € # ¢(2) and by Proposition 2.6,
Pl ) <hy(@) — s / log 1D gl diit).

This completes the proof. 1

6. PROOF OF THE MAIN THEOREMS

From the results in the previous sections, we can conclude our first main
theorem easily.

THEOREM 6.1. Let J be a repeller of an expanding, C'*°-conformal
topological mixing map g. Let @ : J — R? be a continuous function. Then for
any o € Ly,

. hy(1)
dimy E(o dimp E(x ax ——— 9
B = dime £ = 8%, Tog ID.ll duo)

Moreover dimy E(o) is an upper semi-continuous function of o.

Proof. 1t follows from Proposition 4.5 that
dimy E(o) = dimp E(ax) = A(x),

where A(x) = s is the unique solution that satisfies P(x,s) = 0. Thus by
Theorem 5.1,

0= max () — 4G) / log [IDsgll du()}.

HEF p(ar)

It implies that

hy(10)

Ao) = e
4P o(a) Jlog |IDgll du(x)

as is desired. The upper semi-continuity of dimy E(«) follows from Corollary

44. 1

We call a point xeJ a divergent point if the limit o(x) = lim,_
n 'S ;’;& @(¢/x) does not exist. In the following, we shall prove that the set
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of divergent points is of full dimension if it is not an empty set. Without loss
of generality, assume that @ takes real value (instead of the vector value); we
let a(x) and &(x) be the liminf and lim sup of n~' 377~ &(¢/x). For any fi<a,
set

N R IRl N
E(@) = {x eJ: ]}erlcn—kj; P(¢'x) = o for some {n}~, 1 oo},

E(@)={xeJ: ax)=a},

E()=i{xel: ax) = aj,
E@,p) =ixe: ax) =a, abx) =}

LEMMA 6.2.  For any o € Lg, dimy E(x) < A(2).

Proof. Assume that A(x)<t; we will show that dimy E(x)<t. By the
strict decreasing property of P(a,-), we have P(x, ) <0. Hence there exists
¢>0 and J > 0 such that

. 1 4,
lim sup 28/ (%518 5
n—00 n

This implies f(a,t; n, &) <exp(—nd) for n>=Ny. Since

E(a)gﬁU{er:

k=0n=>k

4
<}

YGr = {R, : [w] € F(a;n,e) for some n={}

1 n—1 )
— Z D(g/x) — o
n<

J=0

c ﬁ U{er:

k=Non=k

1 n—1 )
- > d(gx) o
Jj=0

for each k > N, the collection

is a cover of E(x). Note that

> (diamR,) =>" > (diamR,)

R,€%, n={ [wleF(u;n,e)
exp(—9)
= o, n,e)S————= <00
;f( ) ST exp(=9)
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for each ¢, and we have

H'(E@) < le""i <0

— exp(—9) '
It follows that dimy E(x)<t. B
From Theorem 6.1 and Lemma 6.2, we have the following immediately.

ProPOSITION 6.3.  For any o € Lg,

dimy E(2) = dimy E(x) = dimy E(o) = A(a).

Remark. We point out that by modifying Lemma 6.2, we can prove
dimp (1,.;, E(®) = dimy J. For simplicity we omit the proof since we do not
use this result here.

PROPOSITION 6.4.  For any o € Ly and f € Ly satis fying f<a,
dimy E(x, ) = min(A(®), A(B)).

Proof By Lemma 6.2, dimy E(x, f) <min(A(x), A(f)) is obvious. For
the reverse inequality, we use the similar idea in the proof of the lower
bound in Proposition 4.5; we will only give a sketch here.

For any ¢t <min(A(x), A(f)), by Proposition 4.3, there are £; T oo and ¢; | 0
such that f(a, £ €2j—1,62j-1) > 1, f(B, t;02j,€27) > 1, j = 1,2,.... Write simply
Fe, = F(o60j1,85-1), Feoy, = F(B; 6o, 625), j=1,2,..., and define a new
sequence {{*;} in the following manner:

f],...,51;52,...,fg;...;fj,...,fj;...,
—— ——

Ny N> N;

where N;, j>1 diverge to oo fast. By the same proof as in Proposition 4.5,
we can show that the corresponding Moran set ©®* is contained in E(a, B)
and dimy E(, f) =>dimyg @* = liminfs; >¢. 1

Lemma  6.5. If limk%wé Z’}kgol D(¢/x) =a for some xeJ and
{nk}pe, /0o, then a € Lg.

Proof. For each keN, let g = |%Z 7’: _0] @(¢/x) — o) and pick
of €2y, such that xeR,. We define a new sequence in the
following manner:

(o1, .,0,0, . ..,0, .., 0.0, ..,
S—— —,— N——
N1 N2 N

where Ny =1 and N; = 2"+ N1 j>2 We relabel this sequence as {w?},
and define {£f} as the length sequence of {w}}. Take y € (),Z, R~ —, we
“1 Tk
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show below that

nl

lim — Z d(¢y) = o,

n—-oon

which implies o € L.
For a large integer n, there is one unique integer & satisfying

k—1 k
D (EE+My<n< > (EF+ M),
i=1 i=1

Then

n—1

Z P(¢'y) — na

-1

Z (¢(g£’f+~~+é’;"4+(i—1)M+j(y)) _ oc)

i=1

+ (kM + )21 21)

k—

Jj=
k-1 -1
Z (@1 ) — )

k—1 -1

N @(gx) — )

i=1 ;=0

k=1 /-1
< Z( 1 |‘15||,> + 2(8*5*) + (kM + £5)(2]|D])).

i=1 j=

+ + (kM + )22l

Since lim;_,, F = 00 and limy_, oo = Sy 1{)* = 0 (by the definition of N;), we

have Zl 1%

n—1

hm Z(D(g’y)—noc =0,

which implies o € Lp. 1

THEOREM 6.6. Let J be a repeller of an expanding, C'*°-conformal
topological mixing map g. Let ® : J — R? be a continuous function. Then
either

(1) all points x € J have the same ergodic limit; or
(i1) the set of points x such that the limit defining o(x) does not exist is of
the same Hausdorff dimension as that of J.
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Proof. We can assume, without loss of generality, that & takes real
value. Let P;(¢) be the standard topological pressure with respect to g where
the potential ¢ is a continuous function on J [21, Chap. 4]. If we consider
¢(x) = slog||D.gll, s € R, then Bowen’s equation states that there exists a
unique ¢ such that

Pj(—tlog|IDxgll) = 0

(see [21, Appendix II]). Since g: M — M is a C'*%-conformal expanding
map, there is a unique equilibrium measure u; corresponding to the Holder
continuous potential function —¢log||D.g|| and

hg(,ul)
Jlog |IDxgl| dpi (x)

[21, Theorem 20.1]. Set o = [ ®(x) dpi(x). If (i) of the theorem does not hold,
we can assume, without loss of generality, that there exists x € J, f <o such
that «(x) = f. By Lemma 6.5, f € Ly. Thus by Proposition 6.3, there exists
[ € M y(J) with [ d(x)dus(x) = f and

(6.1)

dimHJ = dlIIlH Hy =

hg(ﬂz)
Jlog |ID.gll dua(x)

For any 6 > 0, consider E(x, (1 — d)a + 6p). It is clear that
E(,(1 = 8)a+dp)cixed: alx)<d(x)}.

dimy E(p) = (6.2)

Let us denote the second set by F. By Proposition 6.4, dimy E(a, (1 — 8)x +
opf) = min{A(x), A((1 — )+ f)} and by Proposition 4.5 and
Theorem 6.1,

hy((1 — 0)p1 + Op2)
J1og[IDygll d((1 — 0)p1(x) + Opa(x))

_ (1- 5)hg(/il) + 5hg(,“2)
Jlog[IDygll d((1 — )i (x) + dpa(x))

Let 6 — 0; we have dimy F >dimy(u;) = dimy(J). This completes the proof
of Theorem 6.6. 1

A((1 = S+ )=
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