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Abstract

For a real number q > 1 and a positive integer m, let

Ym(q) :=

{
n∑
i=0

εiq
i : εi ∈ {0,±1, . . . ,±m}, n = 0, 1, . . .

}
.

In this paper, we show that Ym(q) is dense in R if and only if q < m+1 and q is not a
Pisot number. This completes several previous results and answers an open question
raised by Erdős, Joó and Komornik [8].
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1 Introduction

For a real number q > 1 and a positive integer m, let

Ym(q) :=

{
n∑
i=0

εiq
i : εi ∈ {0,±1, . . . ,±m}, n = 0, 1, . . .

}
.

In this paper, we consider the following old question regarding of the topological structure
of Ym(q):

Question 1.1. For which pair (q,m) is the set Ym(q) dense in R?

It is well known that Ym(q) is not dense in R in the following two cases: q is a Pisot
number (Garsia [11]), or q ≥ m+1 (Erdős and Komornik [9]); Recall that a Pisot number
is an algebraic integer > 1 all of whose conjugates have modulus < 1 (cf. [21]). For the
reader’s convenience, we include a brief proof. First assume that q is a Pisot number.
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Denote by q1, . . . , qd the algebraic conjugates of q. Then ρ := max1≤j≤d |qj| < 1. Let
P (x) =

∑n
i=0 εix

i be a polynomial with coefficients in {0,±1, . . . ,±m}. Suppose that
P (q) 6= 0. Then P (qj) 6= 0 for 1 ≤ j ≤ d. Hence P (q)

∏d
j=1 P (qj) is a non-zero integer.

Therefore

|P (q)| ≥
d∏
j=1

1

|P (qj)|
≥
(

1∑n
i=0 mρ

i

)d
> m−d(1− ρ)d.

It follows that Ym(q) is not dense in R with 0 being an isolated point. The same argument
also shows that 0 is an isolated point of Y2m(q) = Ym(q) − Ym(q), therefore Ym(q) is
uniformly discrete in R. Next assume that q ≥ m+ 1. Then for any n ∈ N,

qn −
n−1∑
i=0

mqi =
qn(q − 1−m) +m

q − 1
≥ (q − 1−m) +m

q − 1
= 1.

It follows that |P (q)| ≥ 1 for any polynomial P with degree ≥ 1 and coefficients in
{0,±1, . . . ,±m}. Hence Ym(q) ∩ (−1, 1) = {0}, as a consequence, Ym(q) is not dense
in R.

In this paper, by proving the reverse direction we obtain the following theorem, which
provides a complete answer to Question 1.1.

Theorem 1.2. Ym(q) is dense in R if and only if q < m+ 1 and q is not a Pisot number.

We remark that Question 1.1 is closely related to a project proposed by Erdős, Joó and
Komornik in last 90’s. For q > 1 and m ∈ N, let

Xm(q) =

{
n∑
i=0

εiq
i : εi ∈ {0, 1, . . . ,m}, n = 0, 1, . . .

}
.

SinceXm(q) is discrete, we may arrange the points ofXm(q) into an increasing sequence:

0 = x0(q,m) < x1(q,m) < x2(q,m) < · · · .

Denote

`m(q) = lim inf
n→∞

(xn+1(q,m)− xn(q,m)), Lm(q) = lim sup
n→∞

(xn+1(q,m)− xn(q,m)).

Originated from the study of expansions in non-integer bases, Erdős, Joó and Komornik
[7, 8, 9] proposed to characterize all the pairs (q,m) so that `m(q) and Lm(q) vanish. By
definition, `m(q) = 0 is equivalent to that 0 is an accumulation point of Ym(q). However,
it was proved by Drobot [5] (see also [6]) that Ym(q) is dense in R if and only if 0 is an
accumulation point of Ym(q). Hence `m(q) = 0 if and only if Ym(q) is dense in R. In [8],
Erdős, Joó and Komornik raised the open question whether `1(q) = 0 for any non-Pisot
number q ∈ (1, 2). This question was also formulated in [22, 1]. As a direct corollary of
Theorem 1.2 and Drobot’s result, we can provide a confirmative answer to this question.
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Corollary 1.3. `m(q) = 0 if and only if q < m+ 1 and q is not a Pisot number.

In the literature there are some partial results on Question 1.1 and the project of Erdős
et al. It was shown in [5, 6] that if q ∈ (1,m + 1) does not satisfy an algebraic equation
with coefficients 0,±1, . . . ,±m, then `m(q) = 0. In [3] Bugeaud showed that if q is
not a Pisot number, then there exists an integer m so that `m(q) = 0. The approach of
Bugeaud did not provide any estimate of m. A substantial progress was made later by
Erdős and Komornik [9], who proved that `m(q) = 0 if q is not a Pisot number and
m ≥ dq− q−1e+ dq−1e, where dxe denotes the smallest integer≥ x. Recently Akiyama
and Komornik [1] showed that `1(q) = 0 if q ∈ (1,

√
2] is not a Pisot number smaller than

the golden ratio (1 +
√

5)/2. In [22], Sidorov and Solomyak proved that if q ∈ (1,m+ 1)

and q is not a Perron number, then `m(q) = 0. Recall that an algebraic integer q > 1 is
called a Perron number if each of its conjugates is less than q in modulus.

As for the value of Lm(q), Erdős and Komornik [9] proved that Lm(q) > 0 if q is a
Pisot number or q ≥ (m+

√
m2 + 4)/2. It remains an open problem whether Lm(q) = 0

for all other pairs (q,m) with q > 1 and m ∈ N. In [13], Komornik conjectured that this
is true in the case when m = 1, i.e., L1(q) = 0 for any non-Pisot number smaller than
the golden ratio. Some partial results were obtained by Erdős-Komornik and Akiyama-
Komornik: Lm(q) = 0 if q is non-Pisot and m ≥ dq− q−1e+ 2dq− 1e ([9]); furthermore,
L1(q) = 0 if 1 < q ≤ 3

√
2 ≈ 1.2599 ([9, 1]). Here the second part was only proved in [9]

for all 1 < q ≤ 4
√

2 ≈ 1.1892 with the possible exception of the square root of the second
Pisot number.

By directly applying Corollary 1.3 and [1, Lemma 2.5] (which says that `m(q2) = 0

implies 3 Lm(q) = 0), we have the following theorem which improves the results in [9, 1].

Theorem 1.4. If 1 < q <
√
m+ 1 and q2 is not a Pisot number, then Lm(q) = 0. In

particular, if q ∈ (1,
√

2) and q2 is not a Pisot number, then L1(q) = 0.

Let us mention some other important results related to Question 1.1. In [9], Erdős and
Komornik showed that if q > 1 is not a Pisot number and m ≥ q − q−1, then Ym(q) has
a finite accumulation point. Very recently, Akiyama and Komornik [1] characterized all
pairs (q,m) so that Ym(q) has a finite accumulation point, completing the previous results
of Erdős and Komornik [9] and Zaimi [24] on this topic.

Theorem 1.5 (Akiyama and Komornik [1]). Ym(q) has a finite accumulation point in R
if and only if q < m+ 1 and q is not a Pisot number.

In this paper, we shall prove the following result.

Theorem 1.6. Assume that 1 < q ≤ m+1. Then Ym(q) has no finite accumulation points
in R if and only if 0 is not an accumulation point of Ym(q).

3This implication was first proved in [8, Theorem 5] in the case m = 1. It extends to m > 1 directly.
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Theorem 1.6 was conjectured at the end of [1], where the authors observed that, com-
bined with Theorem 1.5, this would yield that 0 is an accumulation point of Ym(q) (equiv-
alently, Ym(q) is dense in R) if and only if q < m+ 1 and q is not a Pisot number. Hence
Theorem 1.2 follows from Theorem 1.6 and Theorem 1.5.

We remark that the separation property of Ym(q) were also considered by Lau [14] in
his study of Bernoulli convolutions (see [18] for a survey about Bernoulli convolutions).
Following Lau [14], we call q ∈ (1, 2) a F-number if

Y1(q) ∩
[
− 1

q − 1
,

1

q − 1

]
is a finite set.

Clearly, each Pisot number in (1, 2) is a F-number. Lau raised a question in [14] whether
or not there exists a F-number which is non-Pisot. As a corollary of Theorem 1.2 (it
also follows from Theorem 1.5 together with Remark 1.10 and Lemma 2.1), we have the
following answer to Lau’s question.

Corollary 1.7. Every F-number is a Pisot number.

As a closely related topic, for q ∈ (1, 2), the topological structure of the following set

A(q) =

{
n∑
i=0

εiq
i : εi ∈ {−1, 1}, n = 0, 1, . . .

}

has been studied in the literature [19, 2, 23, 1]. It was proved that if 1 < q ≤
√

2 is not
a Pisot number, then A(q) is dense in R [1]; moreover, for almost all q ∈ (

√
2, 2), A(q)

is dense in R [19]. Meanwhile, there exist non-Pisot numbers q ∈ (
√

2, 2) such that A(q)

is discrete [2]. It is an interesting question to characterize all q ∈ (
√

2, 2) so that A(q) is
dense in R.

The proof of Theorem 1.6 is based on our study on separation properties of homoge-
neous iterated function systems (IFS) on R. Let m be a positive integer and Φ = {φi}mi=0

a family of contractive maps on R of the form:

φi(x) = ρx+ bi, i = 0, 1, . . . ,m,

where

0 < ρ < 1 and 0 = b0 < . . . < bm = 1− ρ. (1.1)

Φ is called a homogeneous iterated function system on R. According to Hutchinson [12],
there is a unique compact set K := KΦ ⊂ R such that

K =
m⋃
i=0

φi(K).
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We call K the attractor of Φ. It is easy to check that

K =

{
∞∑
n=0

binρ
n : in ∈ {0, 1, . . . ,m} for n ≥ 0

}
.

The condition (1.1) implies that the convex hull of K is the unit interval [0, 1].
For any finite word I = i1i2 . . . in ∈ {0, 1, . . . ,m}n, write φI = φi1 ◦ φi2 ◦ . . . ◦ φin .

Clearly, φI(0) = bi1 + ρbi2 + . . .+ ρn−1bin .

Definition 1.8. Say that Φ satisfies the weak separation condition if there exists a constant
c > 0 such that for any n ∈ N and any I, J ∈ {0, 1, . . . ,m}n,

either ρ−n|φI(0)− φJ(0)| = 0 or ρ−n|φI(0)− φJ(0)| ≥ c.

Definition 1.9. Say that Φ satisfies the finite type condition if there exists a finite set
Γ ⊂ [0, 1) such that for any n ∈ N and any I, J ∈ {0, 1, . . . ,m}n,

either ρ−n|φI(0)− φJ(0)| ≥ 1 or ρ−n|φI(0)− φJ(0)| ∈ Γ.

Remark 1.10. By definition, for 1 < q < 2, q is a F-number if and only if the IFS
{q−1x, q−1x+ (1− q−1)} satisfies the finite type condition.

The concepts of weak separation condition and finite type condition were respectively
introduced in [15, 16] in more general settings for the study of IFSs with overlaps. One is
referred to [25, 4] for some equivalent definitions.

It is easy to see that in our setting, the finite type condition implies the weak separa-
tion condition (this is also true in the general settings of [15, 16]; see [17] for a proof).
However it is not clear whether the weak separation condition also implies the finite type
condition in our setting. The following theorem gives this implication under an additional
assumption on Φ.

Theorem 1.11. Let Φ = {φi(x) = ρx + bi}mi=0 be an IFS satisfying (1.1). Assume in
addition that

bi+1 − bi ≤ ρ for all 0 ≤ i ≤ m− 1. (1.2)

Suppose Φ satisfies the weak separation condition. Then Φ also satisfies the finite type
condition.

We remark that the condition (1.2) is equivalent to [0, 1] =
⋃m
i=0 φi([0, 1]), i.e., KΦ =

[0, 1].
Now for a given pair (q,m) with 1 < q ≤ m + 1, consider a special IFS Φ =

{ρx + bi}mi=0 with ρ = q−1 and bi = i(1 − q−1)/m for 0 ≤ i ≤ m. Then Φ satisfies
the assumptions in Theorem 1.11. However Φ satisfies the weak separation condition if



6 De-Jun Feng

and only if 0 is not an accumulation point of Ym(q); whilst Φ satisfies the finite type
condition if and only if Ym(q) has no finite accumulation points in R (see Lemma 2.1).
Hence according to Theorem 1.11, the condition that 0 is not an accumulation point of
Ym(q) implies that Ym(q) has no finite accumulation points in R; from which Theorem
1.6 follows. As a corollary of this and Theorem 1.2, we have

Corollary 1.12. For a given pair (q,m) with 1 < q < m + 1, let Φ denote the IFS
{φi(x) = q−1x+ i(1− q−1)/m}mi=0 on R. Then Φ satisfies the weak separation condition
(resp. the finite type condition) if and only if q is a Pisot number.

The paper is organized as follows. In Section 2, we prove Theorem 1.11. In Section 3,
we give some final remarks and questions.

2 Separation properties of IFSs and the proof of Theo-
rem 1.11

Before giving the proof of Theorem 1.11, we first present two lemmas.

Lemma 2.1. Let Φ = {φi(x) = ρx+ bi}mi=0 be an IFS on R with

0 < ρ < 1, 0 = b0 < . . . < bm = 1− ρ.

Denote

Y =

{
n∑
i=1

εiρ
−i : εi ∈ {bs − bt : 0 ≤ s, t ≤ m}, n = 1, . . .

}
.

Then Φ satisfies the weak separation condition if and only if 0 is not an accumulation point
of Y ; whilst Φ satisfies the finite type condition if and only if Y has no finite accumulation
points in R.

Proof. For n ≥ 1, I = i1 . . . in, J = j1 . . . jn ∈ {0, 1, . . . ,m}n, we have

ρ−n(φI(0)− φJ(0)) =
n∑
s=1

(bis − bjs)ρ−(n+1−s) =
n∑
s=1

(bin+1−s − bjn+1−s)ρ
−s. (2.1)

Hence by Definition 1.8, Φ satisfies the weak separation condition if and only if 0 is not
an accumulation point of Y . In the following we show that Y has no finite accumulation
points if and only if Φ satisfies the finite type condition.

By (2.1) and Definition 1.9, we see that Φ satisfies the finite type condition if and
only if Y ∩ [−1, 1] contains only finitely many points. It is direct to see that Y has no
finite accumulation points implies Y ∩ [−1, 1] contains only finitely many points. Hence
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to finish the proof, we only need to show that the finiteness assumption of Y ∩ [−1, 1]

implies that Y has no finite accumulation points.
From now on, we assume that Y ∩ [−1, 1] contains only finitely many points. Set

A = Y ∩ [−1, 1] and B = {bi− bj : 0 ≤ i, j ≤ m}. Since A and B are finite sets, we can
pick u > 1 such that (1, u) ∩ ρ−1(A+B) = ∅, where

ρ−1(A+B) := {ρ−1(x+ ε) : x ∈ A, ε ∈ B}.

Since 0 ∈ A, we have (1, u) ∩ ρ−1B = ∅. We first claim that Y ∩ (1, u) = ∅. To see this,
for any y ∈ Y , let deg(y) denote the smallest n ∈ N such that y =

∑n
i=1 εiρ

−i for some
ε1, . . . , εn ∈ B. Assume on the contrary that Y ∩ (1, u) 6= ∅. Define

N = min{deg(y) : y ∈ Y ∩ (1, u)}.

Then N ∈ N. Pick z ∈ Y ∩ (1, u) so that deg(z) = N . Since (1, u)∩ ρ−1B = ∅, we have
z 6∈ ρ−1B and thus N = deg(z) ≥ 2. Then there exist ε1, . . . , εN ∈ B such that

z =
N∑
i=1

εiρ
−i.

Denote w =
∑N−1

i=1 εi+1ρ
−i. Then w ∈ Y and z = ρ−1w+ ρ−1ε1. Notice that w 6∈ A (and

hence |w| > 1); for otherwise we have z ∈ ρ−1(A + B), contradicting (1, u) ∩ ρ−1(A +

B) = ∅ and z ∈ (1, u). On the other hand, we must have |w| < z; if not,

|ρ−1ε1| = |ρ−1w − z| ≥ ρ−1|w| − z ≥ (ρ−1 − 1)z > ρ−1 − 1 = ρ−1 maxB,

leading to a contraction. Therefore, we have 1 < |w| < z < u, and thus |w| ∈ Y ∩ (1, u).
However, deg(|w|) ≤ N−1 < deg(z), contradicting the minimality of deg(z). Therefore,
we must have Y ∩ (1, u) = ∅.

Since Y = −Y , we also have Y ∩ (−u,−1) = ∅. Thus Y ∩ (−u, u) contains only
finitely many points. In the end, we show that Y has no finite accumulation points. As-
sume on the contrary that Y has a finite accumulation point, saying v. We derive a con-
tradiction as below. Note that Y ∩ (−u, u) contains only finitely many points. Hence we
must have |v| ≥ u. Note that for any n ∈ N,

Y = ρ−nY +Dn, (2.2)

where Dn := {
∑n

i=1 εiρ
−i : εi ∈ B for all i}. Take a large n such that ρn|v|+ 1 < u. By

(2.2), Y has a finite accumulation point w (it is possible that w /∈ Y ), and z ∈ Dn such
that v = ρ−nw + z. Then

|w| = |ρn(v − z)| ≤ ρn|v|+ ρn
n∑
i=1

(1− ρ)ρ−i < ρn|v|+ 1 < u.

This contradicts the fact that Y has no accumulation points in (−u, u).
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Lemma 2.2. Let Φ = {φi(x) = ρx+ bi}mi=0 be an IFS satisfying

0 < ρ < 1, 0 = b0 < . . . < bm = 1− ρ

and
bi+1 − bi ≤ ρ for all 0 ≤ i ≤ m− 1.

Then the following properties hold:

(1) For any n ∈ N, we have [0, 1] =
⋃
I∈{0,1,...,m}n φI([0, 1]);

(2) For n, k ∈ N and J ∈ {0, 1, . . . ,m}n, if [c, d] is a subinterval of φJ([0, 1]) with length
≥ ρn+k, then there exists J ′ ∈ {0, 1, . . . ,m}k such that φJJ ′(0) ∈ [c, d].

Proof. It is direct to check that [0, 1] =
⋃m
i=0 φi([0, 1]). Iterating this relation for n times

yields (1).
To see (2), note that φ−1

J ([c, d]) is a subinterval of [0, 1] with length≥ ρk. By (1), there
exists J ′ ∈ {0, 1, . . . ,m}k such that φJ ′(0) ∈ φ−1

J ([c, d]). Therefore φJJ ′(0) ∈ [c, d].

Proof of Theorem 1.11. We divide the proof into some small steps.
Step 1. Let 0 < δ < 1. We claim that there is a finite set Γδ ⊂ [0, 1 − δ] such that for

each n ∈ N and I, J ∈ {0, 1, . . . ,m}n,

either ρ−n|φI(0)− φJ(0)| > 1− δ or ρ−n|φI(0)− φJ(0)| ∈ Γδ. (2.3)

To prove the above claim, we use an idea in [10]. Since Φ satisfies the weak separation
condition, according to the pigeon-hole principle, we have

sup
(x,k): x∈[0,1], k∈N

#
{
φI(0) : φI(0) ∈ [x, x+ ρk], I ∈ {0, 1, . . . ,m}k

}
:= ` <∞, (2.4)

where #X denotes the cardinality of X . Indeed, we have ` ≤ 1/c + 1, where c is the
constant in Definition 1.8.

Pick x ∈ [0, 1] and k ∈ N so that the supremum in (2.4) is attained at (x, k). Clearly,
the supremum in (2.4) is also attained at (φI(x), n+k) for any n ∈ N and I ∈ {0, 1, . . . ,m}n.
Pick a large integer k′ so that ρk′ + ρk

′+k < 1 and let

x0 = φ0k′ (x), k0 = k′ + k.

Then [x0, x0 + ρk0 ] ⊂ [0, 1] and the supremum in (2.4) is attained at (x0, k0). Choose
W1, . . . ,W` ∈ {0, 1, . . . ,m}k0 such that φW1(0), . . . , φW`

(0) are different points in [x0, x0+

ρk0 ].
Fix 0 < δ < 1. Pick k1 ∈ N so that

ρδ ≤ ρk1 < δ. (2.5)
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Now suppose that I, J ∈ {0, 1, . . . ,m}n for some n ∈ N such that

|φI(0)− φJ(0)| ≤ (1− δ)ρn.

Without loss of generality, assume that φI(0) ≤ φJ(0). Denote ∆ = [φJ(0), φI(0) +

ρn]. Clearly ∆ ⊂ φI([0, 1]) ∩ φJ([0, 1]), and |∆| ≥ δρn, where |∆| denotes the length
of ∆. Since φI(0) + ρn = φI(1), we see that φ−1

I (∆) = [u, 1] for some u ∈ (0, 1)

with 1 − u ≥ δ > ρk1 . Set I ′ = m. . .m︸ ︷︷ ︸
k1

. Since φm(1) = 1, we have φI′(1) = 1.

Observe that φI′([0, 1]) has length ρk1 , therefore φI′([0, 1]) = [1 − ρk1 , 1] ⊂ [u, 1], and
thus φII′([0, 1]) ⊂ φI([u, 1]) = ∆; in particular,

φII′([x0, x0 + ρk0 ]) ⊂ ∆ ⊂ φJ([0, 1]).

Note that φII′([x0, x0 + ρk0 ]) is a subinterval of φJ([0, 1]) with length ρn+k0+k1 . By
Lemma 2.2(2), there exists J ′ ∈ {0, 1, . . . ,m}k0+k1 such that φJJ ′(0) ∈ φII′([x0, x0 +

ρk0 ]). Let x1 = φII′(x0). Then φII′([x0, x0 + ρk0 ]) = [x1, x1 + ρn+k0+k1 ]. Recall that
φW1(0), . . . , φW`

(0) are different points in [x0, x0 + ρk0 ], hence φII′W1(0), . . . , φII′W`
(0)

are ` distinct points in [x1, x1 + ρn+k0+k1 ]. Since φJJ ′(0) ∈ [x1, x1 + ρn+k0+k1 ], by the
maximality of ` (cf. (2.4)), we must have

φJJ ′(0) ∈
{
φII′Wj

(0) : 1 ≤ j ≤ `
}
.

That is,
φJ(0) + ρnφJ ′(0) ∈

{
φI(0) + ρnφI′Wj

(0) : 1 ≤ j ≤ `
}
.

It follows that

ρ−n(φJ(0)− φI(0)) ∈
{
φI′Wj

(0)− φJ ′(0) : 1 ≤ j ≤ `
}

⊂
{
φĨ(0)− φJ̃(0) : Ĩ , J̃ ∈ {0, 1, . . . ,m}k0+k1

}
.

Hence we can finish the proof of the claim in Step 1 by setting

Γδ =
{
φĨ(0)− φJ̃(0) : Ĩ , J̃ ∈ {0, 1, . . . ,m}k0+k1

}
∩ [0, 1− δ]. (2.6)

Step 2. Denote γ = min{b1, bm − bm−1} and B = {bi − bj : 0 ≤ i, j ≤ m}. By (1.1)
and (1.2), 0 < γ ≤ ρ < 1. Let Γγ be given as in Step 1 (in which we take δ = γ). Set

η := max
(
ρ−1(±Γγ +B) ∩ [0, 1)

)
.

Clearly 0 ≤ η < 1. We claim that for any n ∈ N and I, J ∈ {0, 1, . . . ,m}n,

either ρ−n|φI(0)− φJ(0)| ≥ 1 or ρ−n|φI(0)− φJ(0)| ≤ η. (2.7)
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Assume the claim is not true. Then we can find n ∈ N and I, J ∈ {0, 1, . . . ,m}n, such
that

η < ρ−n(φJ(0)− φI(0)) < 1. (2.8)

Assume further that the above n is the smallest. As below we derive a contradiction.
First we show that n ≥ 2. For otherwise, n = 1 and by (2.8), 0 < ρ−1(φJ(0) −

φI(0)) < 1, and hence ρ−1(φJ(0)−φI(0)) ∈ ρ−1B ∩ [0, 1); by the definition of η and the
fact 0 ∈ Γγ , we have ρ−1(φJ(0)− φI(0)) ≤ η, a contraction to (2.8).

Since n ≥ 2, we can write
I = I ′i, J = J ′j,

where I ′, J ′ ∈ {0, 1, . . . ,m}n−1 and i, j ∈ {0, 1, . . . ,m}. Then we have

φI(0) = φI′(0) + ρn−1bi, φJ(0) = φJ ′(0) + ρn−1bj.

Therefore,
φJ ′(0)− φI′(0) = φJ(0)− φI(0) + ρn−1(bi − bj). (2.9)

By (2.9) and (2.8), we have

|φJ ′(0)− φI′(0)| < ρn + ρn−1(1− ρ) = ρn−1. (2.10)

In the following we show further that

|φJ ′(0)− φI′(0)| ≤ (1− γ)ρn−1. (2.11)

By (2.9) and the fact that φJ(0) > φI(0), we have

φJ ′(0)− φI′(0) > ρn−1(bi − bj) ≥ −ρn−1(1− ρ) ≥ −ρn−1(1− γ). (2.12)

To get an upper bound for φJ ′(0) − φI′(0), we consider the following two scenarios re-
spectively:

(i) (i, j) = (m, 0);

(ii) (i, j) 6= (m, 0).

First assume that (i) occurs. Then by (2.9),

φJ ′(0)− φI′(0) = φJ(0)− φI(0) + ρn−1(1− ρ),

from which and (2.8) we obtain

φJ ′(0)− φI′(0)

ρn−1
=

φJ(0)− φI(0)

ρn−1
+ (1− ρ)

=
φJ(0)− φI(0)

ρn
+ (1− ρ)

(
1− φJ(0)− φI(0)

ρn

)
>

φJ(0)− φI(0)

ρn
> η.
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This together with (2.10) yields that 1 > ρ−(n−1)(φJ ′(0)− φI′(0)) > η, contradicting the
minimality of n. Hence (i) can not happen, and (ii) must occur. Since (i, j) 6= (m, 0), we
have

bj − bi ≥ min{b1 − bm, b0 − bm−1} = min{b1 − (1− ρ), −bm−1}.

This together with (2.9) yields

φJ ′(0)− φI′(0) ≤ ρn − ρn−1 ·min{b1 − (1− ρ), −bm−1}
= ρn−1 ·max{1− b1, 1− (bm − bm−1)}
= ρn−1(1− γ).

(2.13)

Now (2.11) follows from (2.12) and (2.13).
According to (2.11) and the claim in Step 1, we have ρ−(n−1)|φJ ′(0) − φI′(0)| ∈ Γγ .

Then by (2.9),

ρ−n(φJ(0)− φI(0)) = ρ−n(φJ ′(0)− φI′(0)) + ρ−1(bj − bi)
∈ ρ−1(±Γγ +B).

This together with (2.8) yields ρ−n(φJ(0) − φI(0)) ∈ ρ−1(±Γγ + B) ∩ [0, 1). By the
definition of η, we have ρ−n(φJ(0) − φI(0)) ≤ η, which contradicts (2.8). This proves
(2.7).

Step 3. Let η ∈ [0, 1) be defined as in Step 2. Combining (2.7) with the claim in Step
1, we have for any n ∈ N and I, J ∈ {0, 1, . . . ,m}n,

either ρ−n|φI(0)− φJ(0)| ≥ 1 or ρ−n|φI(0)− φJ(0)| ∈ Γ1−η,

where Γ1 := {0}. Hence Φ satisfies the finite type condition. This finishes the proof of
Theorem 1.11.

3 Final remarks and open questions

3.1

It is worth mentioning a connection between the topological property of Ym(q) and the
following famous unsolved question: suppose q > 1 is such that ‖λqn‖ → 0 as n → ∞
for some real number λ > 0, can we assert that q is a Pisot number? here ‖x‖ denotes
the absolute value of the difference between x and the nearest integer. It was answered
positively by Pisot [20] (see also [21]) if one of the following conditions is satisfied in
addition: (i) ‖λqn‖ tends to 0 rapidly enough so that

∑∞
n=1 ‖λqn‖2 < ∞, or (ii) q is an

algebraic number.
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We remark that Theorem 1.2 (also Bugeaud’s result in [3]) implies the following
weaker result:

∞∑
n=1

‖λqn‖ <∞ =⇒ q is a Pisot number. (3.1)

To see it, assume that
∑∞

n=1 ‖λqn‖ <∞. Pick a positive integer m > q − 1. Take a large
integer N so that

∑
n≥N ‖λqn‖ < 1/(3m). Then ‖y‖ < 1/3 for any real number y in the

set F =
{∑n+N

i=N εiλq
i : εi ∈ {0,±1, . . . ,±m}, n = 0, 1, . . .

}
. Hence F is not dense in

R. Note that Ym(q) = F/(λqN). So Ym(q) is not dense in R. Therefore by Theorem 1.2,
q is a Pisot number.

As pointed out by an anonymous referee, using Theorem 1.2, the implication (3.1) also
follows from the following inequality

`1(q) ≥ (λqN)−1
(

1−
∞∑
n=N

‖λqn‖
)

if
∞∑
n=N

‖λqn‖ < 1

q + 1
.

This inequality is only formulated in [8, Theorem 1] in the case when λ = 1, but it extends
to λ > 0 with the identical proof.

3.2

We remark that the proof of Theorem 1.9 implies the following result, which is of interest
in its own right.

Proposition 3.1. Under the assumptions of Theorem 1.11, there exists k ∈ N such that
for any n ∈ N, I, J ∈ {0, 1, . . . ,m}n, if ρ−n|φI(0) − φJ(0)| < 1, then there exist
I ′, J ′ ∈ {0, 1, . . . ,m}k such that φII′(0) = φJJ ′(0).

As a corollary, we have

Corollary 3.2. Assume thatm ∈ N and q is a Pisot number in (1,m+1]. Then there exists
k ∈ N so that if

∣∣∑n−1
i=0 εiq

i
∣∣ < m

q−1
for some n ∈ N and ε0, . . . , εn−1 ∈ {0,±1, . . . ,±m},

then there exist εn, . . . , εn+k−1 ∈ {0,±1, . . . ,±m} such that

n+k−1∑
i=0

εiq
i = 0.

Similar to Pisot numbers, there is certain separation property about Salem numbers.
Recall that a number q > 1 is called a Salem number if it is an algebraic integer whose
algebraic conjugates all have modulus no greater than 1, with at least one of which on the
unit circle. It follows from Lemma 1.51 in Garsia [11] that if q is a Salem number and
m ∈ N, then there exist c > 0 and k ∈ N (c, k depend on q and m) such that

Y n
m(q) ∩

(
−cn−k, cn−k

)
= {0}, ∀ n ∈ N, (3.2)
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where Y n
m(q) :=

{∑n−1
i=0 εiq

i : εi ∈ {0,±1, . . . ,±m}
}

. We end the paper by posing the
following questions.

• For m ∈ N and a non-Pisot number q ∈ (1,m + 1), does the property (3.2) imply
that q must be a Salem number?

• Does Theorem 1.11 still hold without the assumption (1.2)?
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