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PART II: GENERAL MATRICES

DE-JUN FENG

Abstract. We continue the study in [11, 14] on the upper Lyapunov exponents for prod-
ucts of matrices. Here we consider general matrices. In general, the variational formula
about Lyapunov exponents we obtained in part I does not hold in this setting. Anyway we
focus our interest on a special case where the matrix function M(x) takes finite values M1,
. . ., Mm. In this case we prove the variational formula under an additional irreducibility
condition. This extends a previous result of the author and Lau [14]. As an application,
we prove a new multifractal formalism for a certain class of self-similar measures on R with
overlaps. More precisely, let µ be the self-similar measure on R generated by a family of
contractive similitudes {Sj = ρx + bj}`j=1 which satisfies the finite type condition. Then
we can construct a family (finite or countably infinite) of closed intervals {Ij}j∈Λ with
disjoint interiors, such that µ is supported on

⋃
j∈Λ Ij and the restricted measure µ|Ij of µ

on each interval Ij satisfies the complete multifractal formalism. Moreover the dimension
spectrum dimH Eµ|Ij (α) is independent of j.

1. Introduction

The present paper is a continuation of our work in [11, 14] for studying the upper Lyapunov
exponents for products of matrices. Here we consider general matrices. An application will be given
to multifractal analysis of self-similar measures with overlaps.

First we recall some basic notation. Let σ be the shift map on Σ = {1, 2, . . . ,m}N (m ≥ 2 an
integer). Endow Σ with the metric d(x, y) = m−n for x = (xj)∞j=1 and y = (yj)∞j=1 where n is the
largest integer such that xj = yj (1 ≤ j ≤ n). Let M be a continuous function defined on Σ taking
values in the set of d× d matrices with non-negative entries. The upper Lyapunov exponent λM (x)
of M at x is defined by

(1.1) λM (x) = lim
n→∞

1
n

log ‖M(x)M(σx) . . .M(σn−1x)‖,

when the limit exists. Here ‖ · ‖ denotes the matrix norm defined by ‖A‖ := 1τA1, where 1 is the
d-dimensional column vector each coordinate of which is 1. The pressure function of M is defined
by

PM (q) = lim
n→∞

1
n

log
∑
ω∈Σn

sup
x∈[ω]

‖M(x)M(σx) . . .M(σn−1x)‖q, q ∈ R,
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where Σn denotes the set of all words of length n over {1, . . . ,m}; for ω = ω1 . . . ωn ∈ Σn, [ω] denotes
the cylinder set {x = (xj)∞j=1 ∈ Σ: xj = ωj , 1 ≤ j ≤ n}. The limit in the above definition always
exists for q > 0. This can be shown by a subadditive argument. With some additional conditions on
M (e.g., M is strictly positive), the limit exists for q ∈ R. Let Mσ(Σ) be the set of all σ-invariant
Borel probability measures on Σ. The matrix function M induces a map M∗:Mσ(Σ)→ R∪ {−∞}
given by

M∗(µ) = lim
n→∞

1
n

∫
log ‖M(y)M(σy) . . .M(σn−1y)‖dµ(y), µ ∈Mσ(Σ).

The limit exists because of the subadditivity of the integral. In [18] Furstenberg and Kesten proved
that for each ergodic measure µ on Σ,

λM (x) = M∗(µ), µ a.s. x ∈ Σ.

To study the point-wise property of λM (·) more delicately, we define

(1.2) LM = {α ∈ R : α = λM (x) for some x ∈ Σ}

and

(1.3) EM (α) = {x ∈ Σ: λM (x) = α} (α ∈ LM ).

The following theorem was proved in [11]:

Theorem A ([11]). Suppose M is a continuous function defined on Σ taking values in the set of
d× d matrices with strictly positive entries. Then LM is an interval and for any α ∈ LM ,

dimH EM (α) = dimP EM (α)

=
1

logm
inf
q∈R
{−αq + PM (q)}

=
1

logm
sup{h(µ): µ ∈Mσ(Σ), M∗(µ) = α},

where dimH and dimP denote the Hausdorff dimension and the packing dimension, respectively,
and h(µ) denotes the measure-theoretic entropy of µ. Moreover, dimH EM (α) is a concave and
continuous function of α on LM .

Theorem A extends the corresponding results for the Birkhoff averages of scalar functions, for
which one is referred to, e.g., [1, 2, 3, 9, 10, 16, 35, 38, 40, 41, 47]. However since Theorem A depends
very much on the positivity of M , for certain purposes of application (e.g., the multifractal analysis
of self-similar measures with overlaps) we would like to consider the case that the matrix function
M is only assumed to be non-negative. However under this general non-negative assumption, the
result of Theorem A is no longer valid. The following is a counter-example.

Example 1.1 Set Σ = {1, 2, 3, 4}N. Let the matrix function M(x) on Σ be defined as M(x) = Mx1

for x = (xj)∞j=1, where Mi (1 ≤ i ≤ 4) are four diagonal matrices given by

M1 = M2 = diag(1, 2, 0, 0), M3 = diag(1, 0, 3, 0), M4 = diag(1, 0, 0, 4).

It is easily checked that

PM (q) =
{
q log 4, if q ≥ 1,
log 4, otherwise.

However LM = {0, log 2, log 3, log 4}, and

dimH EM (log 3) = 0 < 1− log 3
log 4

=
1

log 4
inf
q∈R
{−q log 3 + PM (q)}.
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For the above reason, we shall impose more conditions on M :

(H1) M(x) = Mi if x ∈ [i], i = 1, . . . ,m;
(H2) M is irreducible in the following sense: there exists r > 0 such that

(1.4)
r∑

k=1

(
m∑
i=1

Mi

)k
> 0.

In this case, the pressure function PM (q) can be defined by

(1.5) PM (q) = lim
n→∞

1
n

log
∑
J∈Nn

‖MJ‖q, ∀q ∈ R,

where Nn = {J ∈ Σn : MJ 6= 0} and MJ = Mj1 · · ·Mjn . It was proved in [14] that the limit exists
for any q ∈ R (we include a proof in section 2 for the convenience of the reader). The first result of
this paper is the following:

Theorem 1.1. Suppose that M is a function on Σ taking values in the set of all d× d non-negative
matrices. Assume M satisfies the conditions (H1) and (H2). Then LM is an interval and for any
α ∈ LM ,

(1.6) dimH EM (α) = dimP EM (α) =
1

logm
inf
q∈R
{−αq + PM (q)} .

Moreover dimH EM (α) is a concave and continuous function of α on LM .

Under the setting of this theorem, some partial results were obtained by Feng and Lau in [14]. It
was shown that for each q > 0, there exists a unique ergodic probability measure µq on Σ satisfying
the following Gibbs property:

(1.7) C−1 ≤ µq([J ])
exp(−nPM (q)) · ‖MJ‖q

≤ C, ∀n ∈ N, J ∈ Σn

where C > 0 is a constant (see [14, Theorem 3.2]). The measure µq on Σ is called the Gibbs
measure associated with M and q. Using this Gibbs property, we proved that PM (q) is always
differentiable on (0,∞) and (1.6) holds for any α = P ′M (q) with q > 0 (see [14, Theorems 3.3 and
3.4]). Unfortunately, the existence of the Gibbs measure can not be extended to the case q < 0;
actually we can construct a matrix function M satisfying (H1) and (H2) such that PM (q) is not
differentiable at some point q < 0 (see Example 6.6). Hence some new idea is needed to prove (1.6)
for all α ∈ LM .

Now we outline the idea for proving Theorem 1.1. Under the condition of the theorem, there
is a constant C > 0 such that for any I ∈ Σn and J ∈ Σ` there exists K ∈

⋃r
k=1 Σk such that

‖MIKJ‖ ≥ C‖MI‖‖MJ‖. Using this property and modifying our proof in [11] delicately, we set
up a formal formula for dimH EM (α) similar to that in [11]. To show the variational relationship
between dimH EM (α) and PM (q), we use a new idea. In fact we first give such a relationship between
dimH E

(`)
M (α) and PM (`, q) (` = 1, 2, . . .), where

E
(`)
M (α) =

(xi)∞i=1 ∈ Σ : lim
n→∞

1
n`

log

 n∏
j=1

‖Mx(j−1)`+1x(j−1)`+2···xj`‖

 = α

 , α ∈ R

and PM (`, q) = 1
` log (ΣJ∈N`‖MJ‖q) . Then we prove the theorem by showing that dimH E

(`)
M (α)

and PM (`, q) converge to dimH EM (α) and PM (q) respectively, as ` tends to infinity.
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We point out that an essentially identical proof shows that the result of Theorem 1.1 remains
true if we remove the non-negativity assumption of {Mi}mi=1, but instead of (H2) we assume directly
the more general condition (H2)’: there exist a constant C > 0 and r ∈ N such that for any I ∈ Σn
and J ∈ Σ` there exists K ∈

⋃r
k=1 Σk such that ‖MIKJ‖ ≥ C‖MI‖‖MJ‖. Here we use the standard

matrix norm. For instance, this assumption (H2)’ is fulfilled if the family {Mi}mi=1 of d× d complex
matrices satisfies the following type of irreducibility: there is no proper non-zero linear subspace V
of Cd such that Mi(V ) ⊆ V for any 1 ≤ i ≤ m (cf. [6, p. 48]). For a proof, see Proposition 2.8. In
this situation, the left endpoint of LM may be −∞.

Theorem 1.1 has an important application in the multifractal analysis for a class of self-similar
measures with overlaps. Actually, this is part of our original motivation for developing the multi-
fractal theory for products of matrices. Before stating the result, we recall some notation and
background. Let ν be a finite Borel measure on Rn with compact support. For q ∈ R, the Lq-
spectrum of ν is defined by

τ(q) = τ(ν, q) = lim infδ↓0
log (sup

∑
i ν(Bδ(xi))q)

log δ
,

where the supremum is taken over all the families of disjoint balls Bδ(xi) of radius δ and center
xi ∈ supp(ν). Denote by

Lν =
{
α ∈ R : lim

δ↓0

log ν(Bδ(x))
log δ

= α for some x ∈ supp(ν)
}

and

Eν(α) =
{
x ∈ supp(ν) : lim

δ↓0

log ν(Bδ(x))
log δ

= α

}
.

We say that ν satisfies the complete multifractal formalism if the following two conditions are satis-
fied:

(i) Lν = [αmin, αmax], where

αmin = lim
q→+∞

τ(q)
q
, αmax = lim

q→−∞

τ(q)
q
.

(ii) For any α ∈ Lν , dimH Eν(α) = inf{αq − τ(q) : q ∈ R}.

For the framework of multifractal analysis of general measures, one may see, e.g., [4, 7, 8, 21,
24, 25, 26, 37, 39, 42, 44]. It is well known that if µ is the self-similar measure defined by a
family of contractive similitudes {Sj}`j=1 which satisfies the open set condition [28], τ(q) can be
calculated by an explicit analytic formula and µ satisfies the complete multifractal formalism (see
[8, 37]). However, if the family {Sj}`j=1 does not satisfy any separation condition, it is much
hard to obtain a formula for τ(q) and there are few results on the validity of the multifractal
formalism. Some partial results have been obtained in the case that the family {Sj}`j=1 satisfies some
separation conditions weaker than the open set condition. In [31] Lau and Ngai introduced a weak
separation condition, which is strictly weaker than the open set condition. They proved that a partial
multifractal formalism will hold under this condition, i.e., dimH Eµ(α) = inf{αq − τ(q) : q ∈ R}
for all those α ∈ {τ ′(t) : t > 0 and τ ′(t) exists}. It is unknown whether τ is always differentiable
for t > 0 under the weak separation condition. Nevertheless, in [12], the author proved that τ(q)
is differentiable on (0,∞) whenever the family {Sj}`j=1 has the same contractive ratio on R and
satisfies the finite type condition. Recall that a family of similitudes

Sj(x) = ρx+ bj , 0 < ρ < 1, bj ∈ R, j = 1, . . . , `
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satisfies the finite type condition if there is a finite set Γ ⊂ R+ such that for each integer n > 0 and
any two indices J = j1 . . . jn and J ′ = j′1 . . . j

′
n,

(1.8) either ρ−n|SJ(0)− SJ′(0)| > c or ρ−n|SJ(0)− SJ′(0)| ∈ Γ,

where SJ denotes the composition Sj1 ◦ . . . ◦ Sjn and

c = (1− ρ)−1( max
1≤j≤`

bj − min
1≤i≤`

bi).

The finite type condition was introduced by Ngai and Wang [33]. It is substantially weaker than the
open set condition, but a little stronger than the weak separation condition (see [34]). The finite type
condition is satisfied by many interesting overlap cases, such as the Bernoulli convolutions associated
with Pisot numbers. Combining the results in [12] and [31], under the finite type condition, we have
dimH Eµ(α) = inf{αq − τ(q) : q ∈ R} for all those α ∈ {τ ′(t) : t > 0}. Recently this result was
extended by Testud [49] to a special class of self-similar measures which satisfy the weak separation
condition. Now a natural question arises as to whether or not the complete multifractal formalism
holds in the setting of the finite type condition. To answer the question it suffices to consider the case
t < 0. Some special examples have been considered towards this direction. In [13], the author proved
that for the Erdös measure µ (i.e., the Bernoulli convolution associated with the golden ratio), the
function τ(q) is not differentiable at some point q < 0. It is rather surprising. Nevertheless, the
multifractal formalism (for all α ∈ int(Lµ)) of such a measure is proved to be valid by Feng and
Olivier [17], which extended the partial results in [30, 43]. For Bernoulli convolutions associated
with other Pisot numbers, see [13] and [36]. In [27] Hu and Lau studied another interesting measure
µ, which is the three-fold convolution of the standard Cantor measure, and they found that the
set Lµ is not an interval (actually it is a union of an interval and an isolated point). That is also
a very strange fact (it shows that the complete multifractal formalism can fail for a self-similar
measure satisfying the finite type condition). Later on this measure was extensively studied in
[15, 32]. Similarly its Lq-spectrum τ(q) has a non-differentiable point in (−∞, 0) [32], whilst an
adjusted multifractal formalism still holds [15]. More interesting examples with similar phenomena
were found and studied by Shmerkin [46] and Testud [49]. For a general self-similar measure µ on R
satisfying the finite type condition, the author proved in [12] that for a class of intervals J , µ(J) are
controlled by products of a family of non-negative matrices (see Proposition 5.1 and §6 for details).
Applying this result and Theorem 1.1, we will prove the following general result:

Theorem 1.2. Let µ be the self-similar measure on R satisfying

(1.9) µ =
∑̀
j=1

pjµ ◦ S−1
j ,

where Sjx = ρx+bj, pj > 0 and
∑`
j=1 pj = 1. Assume that {Sj}`j=1 satisfies the finite type condition.

Then we can construct a family (finite or countably infinite) of closed intervals Ij with disjoint
interiors, such that µ is supported on

⋃
j Ij and the restricted measure µ|Ij of µ on each interval

Ij satisfies the complete multifractal formalism. Moreover the dimension spectrum dimH Eµ|Ij (α) is
independent of j.

For the global property of µ, we remark that under the condition of Theorem 1.2, we do have
dimH Eµ(α) = infq∈R{αq − τ(q)} for all α ∈ [τ ′(+∞), τ ′(0−)], where τ ′(+∞) := limq→+∞ τ ′(q).
This extends slightly the aforementioned result in [12, 31] (which says the formula holds for all
α = τ ′(t) with t > 0). Furthermore if the equality τ(µk, q) = τ(q) holds for all q < 0 (for instance,
this holds for the Erdös measure), then the complete multifractal formalism holds for µ. For details,
see Remark 5.3.
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2. Some basic lemmas

Let M(x) be a non-negative matrix-valued function defined on Σ = {1, . . . ,m}N satisfying the
assumptions (H1) and (H2). For n ∈ N, let Σn denote the set of all words of length n over {1, . . . ,m}.
Denote Σ∗ =

⋃∞
n=1 Σn.

Lemma 2.1. There exists a constant C > 0 such that

(i) for any I ∈ Σn, J ∈ Σ`, there exists K ∈
⋃r
k=1 Σk such that ‖MIKJ‖ ≥ C‖MI‖ ‖MJ‖.

(ii) for any I ∈ Σn and ` ∈ N, there exists K ∈ Σ` such that ‖MIK‖ ≥ C`‖MI‖.
(iii) for any I ∈ Σn, J ∈ Σ`, there exist 1 ≤ k ≤ r, K1 ∈ Σk and K2 ∈ Σ2r−k such that

‖MIK1JK2‖ ≥ C‖MI‖ ‖MJ‖.
(iv) for any I1, I2, . . . , In ∈ Σ`, there exist K1,K2, . . . ,K2n ∈

⋃2r−1
j=1 Σj such that∑2n

j=1 |Kj | = 2nr and

(2.1) Cn
n∏
j=1

‖MIj‖ ≤ ‖MI1(K1I2K2)(K3I3K4)...(K2n−3InK2n−2)K2n−1K2n‖ ≤ C
−n

n∏
j=1

‖MIj‖.

Proof. Assume I ∈ Σn, J ∈ Σ`. Since
∑r
k=1H

k > 0, we have

r∑
k=1

∑
K∈Σk

‖MIKJ‖ =

∥∥∥∥∥MI

(
r∑

k=1

Hk

)
MJ

∥∥∥∥∥
≥ D‖MI‖ ‖MJ‖

for some constant D > 0. It follows that there exists K ∈
⋃r
k=1 Σk such that

‖MIKJ‖ ≥
D

# {
⋃r
k=1 Σk}

‖MI‖ ‖MJ‖,

where # denotes the cardinality. This finishes the proof of part (i).

To prove part (ii) we can assume MI 6= 0. By induction it suffices to prove part (ii) in the case
` = 1. Choose j ∈ {1, . . . ,m} so that Mj 6= 0. By (i), there exist 1 ≤ k ≤ r and i1i2 . . . ik ∈ Σk such
that

‖MIi1i2...ikj‖ ≥ C1‖MI‖ ‖Mj‖ > 0

for some constant C1 > 0. Since ‖MIi1‖ ‖Mi2...ikj‖ ≥ ‖MIi1i2...ikj‖, we have

‖MIi1‖ ≥
C1‖Mj‖
‖Mi2...ikj‖

‖MI‖.

This completes the proof of part (ii).

Part (iii) follows immediately from part (i) and part (ii).

To see part (iv), using part (iii) inductively, we may find K1, . . . ,K2n−2 with |K2j−1|+ |K2j | = 2r
for 1 ≤ j ≤ n− 1, such that

‖MI1(K1I2K2)(K3I3K4)...(K2n−3InK2n−2)‖ ≥ Cn−1
n∏
j=1

‖MIj‖.
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Using part (ii) we may find K2n−1K2n ∈ Σ2r such that the first inequality of (2.1) holds. Note that
the second inequality also holds since

‖MI1(K1I2K2)...(K2n−3InK2n−2)K2n−1K2n‖ ≤

 n∏
j=1

‖MIj‖

 2n∏
j=1

‖MKj‖


≤

 n∏
j=1

‖MIj‖

( max
1≤i≤m

‖Mi‖
)2nr

.

This finishes the proof of the lemma. �

Lemma 2.2. The limit in defining PM (q) in (1.5) exists for any q ∈ R. Moreover, PM (q) is a
convex function.

Proof. Here we adopt a proof from [14]. Denote by sn =
∑
J∈Nn ‖MJ‖q.

We first consider the case q ≥ 0. Since ‖MIJ‖ ≤ ‖MI‖‖MJ‖ for any I ∈ Nn and J ∈ N`, the
sequence {sn} is sub-multiplicative. Thus the limit limn→∞

log sn
n exists.

Now assume q < 0. By part (i) of Lemma 2.1, there is a constant C > 0 such that for any I ∈ Nn
and J ∈ N`, there exists K ∈

⋃r
k=1 Σk satisfying

(2.2) 0 < ‖MIKJ‖ ≤ C‖MI‖‖MJ‖.
It implies sns` ≤ C−q

∑r
k=1 sn+`+k. From (2.2) we also deduce that for any I ∈ Σ∗, there exists

i ∈ Σ1 such that MIi 6= 0; Since ‖MIi‖ ≤ C1‖MI‖ for some constant C1 > 0, we have sn ≤ C−q1 sn+1

for any integers n, `. It follows that sns` ≤ C ′sn+`+r for some constant C ′ > 0 (depending on q),
which implies that an = 1

C′ sn−r is super-multiplicative in the sense that an+` ≥ ana` for all n, ` > r.
Hence the limit limn→∞

log sn
n exists.

The convexity of PM (q) follows by a standard argument. �

Let LM and EM (·) be defined as in (1.2) and (1.3) respectively. It is clear that LM = {α ∈ R :
EM (α) 6= ∅}. Define

(2.3) αM = lim
n→∞

1
n

min
I∈Nn

log ‖MI‖, βM = lim
n→∞

1
n

max
I∈Nn

log ‖MI‖.

Lemma 2.3. (i) The above limits in defining αM and βM exist. Moreover, αM , βM ∈ R.
(ii) LM = [αM , βM ].
(iii) αM = limq→−∞

PM (q)
q and βM = limq→+∞

PM (q)
q .

Proof. Denote un = maxI∈Nn ‖MI‖ and vn = minI∈Nn ‖MI‖ for any n ∈ N. It is clear that the
sequence {un} is sub-multiplicative. Thus the limit in defining βM exists. On the other hand by
(2.2), there is a constant C > 0 such that for any n,m ∈ N, there exists k between 1 and r such that

(2.4) vn+m+k ≤ Cvnvm.
Using (2.2) again we deduce that for any I ∈ Nn there exists i ∈ Σ1 such that ‖MIi‖ 6= 0. Since
‖MIi‖ ≤ C1‖MI‖ for some constants C1 > 0, we have vn+1 ≤ C1vn. This fact together with (2.4)
yields vn+m+r ≤ C ′vnvm for some constants C ′ > 0. It implies that the sequence {C ′vn−r}n is
sub-multiplicative. Thus the limit in defining αM exists. To see αM , βM ∈ R, we only need to
observe that

tn ≤ vn ≤ un ≤
(

max
1≤i≤m

‖Mi‖
)n

,
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where t is the smallest non-zero entry appearing in the matrices Mi, 1 ≤ i ≤ m. This finishes the
proof of part (i).

To see (ii), by the definitions of LM , αM and βM we have LM ⊆ [αM , βM ] immediately. Thus to
complete the proof of part (ii), we only need to show that for any s ∈ [αM , βM ], there exists y ∈ Σ
such that λM (y) = s. Now fix s ∈ [αM , βM ] and write s = pαM + (1− p)βM for some p ∈ [0, 1]. For
n ∈ N, construct a sequence of words {ωn}∞n=1 such that ωn ∈ Nn and

‖Mω2n‖ = u2n, ‖Mω2n−1‖ = v2n−1.

Construct a sequence of positive integers {Nn} by

Nn =
{

[[pn+ log n]], if n is odd,
[[(1− p)n+ log n]], otherwise,

where [[x]] denotes the integral part of x. It can be checked directly that

(2.5) lim
n→∞

Nn =∞, lim
n→∞

nNn∑n
i=1 iNi

= 0, lim
n→∞

∑n
i=1(2i− 1)N2i−1∑2n

j=1 jNj
= p.

Now define a sequence of words in the following way:

ω1, . . . , ω1︸ ︷︷ ︸
N1

, ω2, . . . , ω2︸ ︷︷ ︸
N2

, . . . , ωn, . . . , ωn︸ ︷︷ ︸
Nn

, . . . .

We label this sequence as {νn}. Using Lemma 2.1 (i) inductively, we can find a sequence of words
{Kn} such that Kn ∈

⋃r
k=1 Σk and

‖Mν1K1ν2K2...ν`K`‖ ≥ C`
∏̀
k=1

‖Mνk‖, ∀` ∈ N,

where C is the constant in Lemma 2.1. Note that the left-hand side of the above inequality is not
greater than Dr`

∏`
k=1 ‖Mνk‖, where D = max{1,max1≤i≤m ‖Mi‖}. Define y ∈ Σ by

y = ν1K1ν2K2 . . . ν`K` . . . .

One can check directly that λM (y) = s by using (2.5) and the above two inequalities about
‖Mν1K1ν2K2...ν`K`‖. This finishes the proof of (ii).

To see (iii), note that for each n ∈ N,{
(un)q ≤

∑
I∈Nn ‖MI‖q ≤ mn(un)q, ∀ q ≥ 0

(vn)q ≤
∑
I∈Nn ‖MI‖q ≤ mn(vn)q, ∀ q < 0

which implies that

(2.6)
{
qβM ≤ PM (q) ≤ logm+ qβM , ∀ q ≥ 0
qαM ≤ PM (q) ≤ logm+ qαM , ∀ q < 0

By taking the limits we obtain the desired result. �

For any α ∈ R, n ∈ N and ε > 0, define

F (α;n, ε) =
{
I ∈ Σn :

∣∣∣∣ 1n log ‖MI‖ − α
∣∣∣∣ ≤ ε}

and f(α;n, ε) = #F (α;n, ε). Moreover for ` ∈ N, define

F`(α;n`, ε) =

i1 . . . in` ∈ Σn` :

∣∣∣∣∣∣ 1
n`

log
n∏
j=1

‖Mi(j−1)`+1i(j−1)`+2...ij`‖ − α

∣∣∣∣∣∣ ≤ ε

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and f`(α;n`, ε) = #F`(α;n`, ε).

Lemma 2.4. For any α ∈ R, ε > 0, there exists δ > 0 such that if n, ` ∈ N satisfy `/n < δ, then
f(α;n+ `, 2ε) ≥ f(α;n, ε).

Proof. By Lemma 2.1, there is a constant C > 0 such that for any I ∈ F (α;n, ε) and ` ∈ N, there
exists K ∈ Σ` satisfying ‖MIK‖ ≥ C`‖MI‖. Meanwhile it is obvious that ‖MIK‖ ≤ C`1‖MI‖, where
C1 = max1≤i≤m ‖Mi‖. By these two inequalities, we have

1
n+ `

(` logC + log ‖MI‖) ≤
1

n+ `
log ‖MIK‖ ≤

1
n+ `

(` logC1 + log ‖MI‖).

Thus there exists δ > 0 such that if `/n < δ then∣∣∣∣ log ‖MIK‖
n+ `

− α
∣∣∣∣ < 2ε.

This implies f(α;n+ `, 2ε) ≥ f(α;n, ε). �

Lemma 2.5. There is a constant D > 0 such that for any ε > 0, there exists N > 0 (depending on
ε) such that for any α ∈ LM ,

(2.7) f(α; p(`+ 2r), 2ε) ≥ Dpf`(α; p`, ε) ≥ Dp (f(α; `, ε))p , ∀p ∈ N, ∀` > N.

Proof. It is obvious that for any I1, . . . , Ip ∈ F (α; `, ε), I1 . . . Ip ∈ F`(α; p`, ε). It implies that
f`(α; p`; ε) ≥ (f(α; `; ε))p. Thus the second inequality in (2.7) always holds.

To prove the first inequality, let I1, . . . , Ip ∈ Σ` be any words with I1 . . . Ip ∈ F`(α; p`, ε). By part
(iv) of Lemma 2.1, there exist K1, . . . ,K2p ∈

⋃2r−1
j=1 Σj such that

∑2p
j=1 |Kj | = 2pr and

Cp
p∏
j=1

‖MIj‖ ≤ ‖MI1(K1I2K2)(K3I3K4)...(K2p−3IpK2p−2)K2p−1K2p‖ ≤ C
−p

p∏
j=1

‖MIj‖,

where C is a constant. Hence if ` > ε−1(| logC|+ 2rmax{|β| : β ∈ LM}), then

I1(K1I2K2)(K3I3K4) . . . (K2p−3IpK2p−2)K2p−1K2p ∈ F (α; p(`+ 2r), 2ε).

Note that when I1 . . . Ip is taken over the set F`(α; p`, ε), by the pigeon hole principle, we get at
least #(

2r−1⋃
j=1

Σj)

−2p

f`(α; p`, ε)

many different elements of form I1(K1I2K2)(K3I3K4) . . . (K2p−3IpK2p−2)K2p−1K2p which belong to

F (α; p(`+ 2r), 2ε). Here
(

#(
⋃2r−1
j=1 Σj)

)2p

is an upper bound of the number of all possible different

elements (K1, . . . ,K2p). Taking D =
(

#(
⋃2r−1
j=1 Σj)

)−2

, we have f(α; p(`+2r), 2ε) ≥ Dpf`(α; p`, ε).
This finishes the proof of the lemma. �

Fix ` ∈ N. Define

(2.8) E
(`)
M (α) =

(xi)∞i=1 ∈ Σ : lim
n→∞

1
n`

log

 n∏
j=1

‖Mx(j−1)`+1···xj`‖

 = α

 , α ∈ R

and

(2.9) PM (`, q) =
1
`

log (ΣJ∈N`‖MJ‖q) , q ∈ R.
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Proposition 2.6. If α = P ′M (`, q) for some q ∈ R, then E
(`)
M (α) 6= ∅ and

(2.10) dimH E
(`)
M (α) =

1
logm

(PM (`, q)− αq).

The proof of the above result is based on the following theorem of Billingsley:

Proposition 2.7. (c.f. [19], P. 99, see also [5, 50]). Let (X, d) be a metric space (Rn or Σ). Let µ
be a Borel probability measure on X. For a Borel set E ⊂ X, we have a ≤ dimH E ≤ b if

µ(E) > 0, E ⊂
{
x ∈ X : a ≤ lim inf

r→0

logµ(Br(x))
log r

≤ b
}
.

Proof of Proposition 2.6. Assume α = P ′M (`, q) for some q ∈ R. Then

α =
1
`
e−`PM (`,q)

∑
J∈N`

‖MJ‖q log ‖MJ‖.

Define a product-like measure µ on Σ such that

(2.11) µ([x1x2 . . . xn`]) = e−n`PM (`,q)
n∏
j=1

‖Mx(j−1)`+1···xj`‖
q

for any n and any cylinder [x1x2 . . . xn`] with x(j−1)`+1 · · ·xj` ∈ N` for each 1 ≤ j ≤ n. It is clear µ is
σ`-invariant and σ`-ergodic. By the Birkhoff’s ergodic theorem, we have for µ a.e. x = (xi)∞i=1 ∈ Σ,

lim
n→∞

logµ([x1x2 . . . xn`])
logm−n`

= lim
n→∞

−n`PM (`, q) +
∑n
j=1 q log ‖Mx(j−1)`+1···xj`‖
−n` logm

=
1

logm

(
PM (`, q)− q`−1e−`PM (`,q)

∑
J∈N`

‖MJ‖q log ‖MJ‖

)

=
1

logm
(PM (`, q)− αq).

Note also that

(xi)∞i=1 ∈ E
(`)
M (α)⇐⇒ lim

n→∞

logµ([x1x2 . . . xn`])
logm−n`

=
1

logm
(PM (`, q)− αq).

This proves the proposition by using the Billingsley theorem. �

Proposition 2.8. Let {Mi : i = 1, . . . ,m} be a family of d×d complex matrices which is irreducible
in the following sense: there is no proper linear subspace V of Cd such that MiV ⊆ V for all
1 ≤ i ≤ m. Then there exist C > 0 and k ∈ N such that for any words I, J ∈ Σ∗ =

⋃∞
n=1{1, . . . ,m}n,

there exists a word K ∈
⋃k
n=1{1, . . . ,m}n such that

‖MIKJ‖ ≥ C‖MI‖‖MJ‖,
where ‖ · ‖ denotes the standard matrix norm.

Proof. We prove the proposition by contradiction. Assume that the proposition is not true. Then
for any δ > 0 and n ∈ N, there exist I, J ∈ Σ∗ such that MI ,MJ 6= 0 and

‖MIKJ‖ ≤ δ‖MI‖‖MJ‖, ∀ K ∈ Σ∗ with |K| ≤ n,
where |K| denotes the length of K. Let uI be a unit row vector and vJ a unit column vector in Cd
such that

‖MI‖ = ‖uIMI‖, ‖MJ‖ = ‖MJvJ‖.
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Define ũI = uIMI

‖MI‖ and ṽJ = MJvJ
‖MJ‖ . Then

|ũIMK ṽJ | ≤ δ, ∀ K ∈ Σ∗ with |K| ≤ n.

Take two sequences {δ`} ↓ 0 and {n`} ↑ ∞. Then for each `, there are unit column vectors w`,1 and
w`,2 such that

|wt`,1MKw`,2| ≤ δ`, ∀ K ∈ Σ∗ with |K| ≤ n`.
Let (w1, w2) be a limit point of {(w`,1, w`,2)}`∈N. Then we have

|wt1MKw2| = 0, ∀ K ∈ Σ∗.

Let V be the linear space spanned by {MKw2 : K ∈ Σ∗}. It is clear that MiV ⊆ V for all 1 ≤ i ≤ m.
However V is perpendicular to w1, which means that V is a proper subspace of Cd. This contradicts
the irreducibility of {Mi : 1 ≤ i ≤ m}. �

We remark that the above result and its extension for singular value functions for matrix products
were independently obtained by Falconer and Sloan [22]. They also obtained partial results on the
multifractal analysis of norms of matrix products [23].

3. A dimension formula for EM (α)

In this section we give a dimensional formula for the set EM (α).

Proposition 3.1. For α ∈ LM , we have

lim
ε→0

lim inf
n→∞

log f(α;n, ε)
logmn

= lim
ε→0

lim sup
n→∞

log f(α;n, ε)
logmn

(=: ΛM (α)).

The function ΛM : LM → [0, 1] is concave and continuous.

Proof. The proposition follows from Lemma 2.4 and Lemma 2.5 by a standard argument. For a
similar approach, see the proof of Proposition 3.2 in [11]. �

Proposition 3.2. For α ∈ LM , we have

dimH EM (α) = dimP EM (α) = ΛM (α).

Furthermore, for any word ξ ∈ Σ∗ with Mξ 6= 0, there exists Γ = Γ(ξ) ⊂ EM (α) such that dimH Γ =
ΛM (α) and for any x = (xj)∞j=1 ∈ Γ, there exists a sequence of positive integers {nk(x)}∞k=1 ↑ ∞
such that n1(x) = 1, limk→∞

nk+1(x)
nk(x) = 1, and ξ appears in (xj)∞j=1 at each position nk(x) (here we

say ξ = u1 . . . us appears in (xj)∞j=1 at position n if xnxn+1 . . . xn+s−1 = ξ).

Proof. We divide the proof into two small steps.

Step 1. dimP EM (α) ≤ ΛM (α), ∀α ∈ LM .

The proof of this step is standard. Let

G(α; k, ε) =
∞⋂
n=k

{
x = (xi)∞i=1 ∈ Σ:

∣∣∣ 1
n

log ‖Mx1 · · ·Mxn‖ − α
∣∣∣ < ε

}
.

It is clear that for any ε > 0,

EM (α) ⊂
∞⋃
k=1

G(α; k, ε).
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Notice that if n ≥ k, G(α; k, ε) is covered by the union of all cylinders [ω] with ω ∈ F (α;n, ε) whose
total number is f(α;n, ε). Therefore we have the following estimate

dimBG(α; k, ε) ≤ lim sup
n→∞

log f(α;n, ε)
logmn

(∀ε > 0,∀k ≥ 1),

where dimB denotes the upper box dimension (see [20]). On the other hand, by using the σ-stability
of the packing dimension, we have

dimP EM (α) ≤ dimP

( ∞⋃
k=1

G(α; k, ε)

)
≤ sup

k
dimP G(α; k, ε)

≤ sup
k

dimBG(α; k, ε) ≤ lim sup
n→∞

log f(α;n, ε)
logmn

.

Taking ε→ 0, we obtain the desired result.

Step 2. For any given ξ ∈ Σ∗ with Mξ 6= 0 and δ > 0, there exists Γ ⊂ EM (α) such that
dimH Γ > ΛM (α) − δ and for any x = (xj)j≥1 ∈ Γ, there exists a sequence of positive integers

{nk(x)}∞k=1 ↑ ∞ such that n1(x) = 1, limk→∞
nk+1(x)
nk(x) = 1 and ξ appears in (xj)j≥1 at each position

nk(x).

We first construct for any index (i, j) ∈ {1, 2, . . . , d}2, a word η(i, j) ∈ Σ∗ such that ξ appears
in η(i, j) as a subword and the (i, j)-th entry of Mη(i,j) is positive. To achieve this purpose, we
fix an index (s, t) such that the (s, t)-th entry of Mξ is positive. By the assumption (H2), for any
1 ≤ i, j ≤ d, there exist words I1, I2 ∈ Σ∗ such that the (i, s)-th entry of MI1 and the (t, j)-th entry
of MI2 are positive. Set η(i, j) = I1ξI2. Then η(i, j) satisfies the desired property.

By Proposition 3.1, there are `j ↑ ∞ and εj ↓ 0 such that

f(α; `j , εj) > m`j(ΛM (α)− δ2 ).

Define a new sequence {`∗j} in the following manner

`1, . . . , `1︸ ︷︷ ︸
N1

; `2, . . . , `2︸ ︷︷ ︸
N2

; . . . ; `j , . . . , `j︸ ︷︷ ︸
Nj

; . . .

where Nj is defined recursively by

Nj = 2`j+1+Nj−1 (j ≥ 2); N1 = 1.

Set ε∗j = εi when `∗j = `i. By the pigeon hole principle, for each j, there exist an index (sj , tj) and a
subclass Gj of F (α; `∗j , ε

∗
j ) such that #Gj ≥ d−2f(α; `∗j , ε

∗
j ) and for any I ∈ Gj , the (sj , tj)-th entry

of MI is greater than or equal to d−2‖MI‖.
Define

Θ∗ =
∞∏
j=1

Gj .

Observe that Θ∗ is a homogeneous Moran set in Σ (see, e.g., [11]). More precisely Θ∗ is constructed
as follows. At level 0, we have only the initial cylinder Σ. In step j, cut a cylinder of level j− 1 into
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m`∗j cylinders and pick up #Gj ones. Thus we have (see, e.g., [11, Proposition 3.1])

dimH Θ∗ ≥ lim inf
k→∞

log
∏k
j=1 #Gj

log
∏k+1
j=1 m

`∗j

≥ lim inf
k→∞

log
∏k
j=1(d−2f(α; `∗j , ε

∗
j ))

log
∏k+1
j=1 m

`∗j

≥ ΛM (α)− δ.

Now for any y∗ = I1I2 . . . ∈ Θ∗ with Ij ∈ Gj , we define

y∗∗ = ξη(t, s1)I1 η(t1, s2) I2 η(t2, s3) . . . Ij η(tj , sj+1) . . . .

Define Θ∗∗ ⊂ Σ as the set of sequences y∗∗. By considering the map y∗ 7→ y∗∗ which is nearly
bi-Lipschitz, we have dimH Θ∗∗ = dimH Θ∗. On the other hand a direct check shows Θ∗∗ ⊂ EM (α).
Set Γ = Θ∗∗. Then Γ satisfies the desired property. This finishes the proof of the proposition. �

4. Proof of Theorem 1.1

To prove Theorem 1.1, we need the following

Proposition 4.1. [11, Propostion 2.5]. Let f be a convex real-valued function on R. Denote

(4.1) a = lim
x→−∞

f(x)
x

, b = lim
x→∞

f(x)
x

.

(i) Suppose that {fn}∞n=1 is a sequence of differentiable convex functions converging to f point-
wise. Then for any c ∈ (a, b), there exist N > 0 and a uniformly bounded sequence of real
numbers {xn}n≥N such that f ′n(xn) = c.

(ii) Assume −∞ < a < b <∞. Then we have

lim
z↑b

inf
x∈R
{−zx+ f(x)} ≥ inf

x∈R
{−bx+ f(x)}, lim

z↓a
inf
x∈R
{−zx+ f(x)} ≥ inf

x∈R
{−ax+ f(x)}.

Proof of Theorem 1.1. We divide the proof into 2 steps:

Step 1. dimP EM (α) ≤ 1
logm (−αq + PM (q)) ∀α ∈ LM ,∀q ∈ R.

For any α ∈ LM , ε > 0 and n ∈ N, let f(α;n, ε) be defined as in Section 2. Then∑
I∈Nn

‖MI‖q ≥
{
f(α;n, ε) exp(nq(α− ε)), if q ≥ 0,
f(α;n, ε) exp(nq(α+ ε)), if q < 0,

which implies that for any q ∈ R,

PM (q) ≥ qα+ lim
ε→∞

lim inf
n→∞

log f(α;n, ε)
n

.

Applying Propositions 3.1 and 3.2 gives

PM (q) ≥ αq + (logm) dimP EM (α).

Step 2. For all α ∈ LM ,

(4.2) dimH EM (α) ≥ 1
logm

inf
q∈R
{−αq + PM (q)}.
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To show the above inequality, we at first consider a trivial case: αM = βM , where αM and βM
are defined as in (2.3). In this case, λM (x) = αM for all x ∈ Σ. Thus by (2.6), we have

dimH EM (αM ) = dimH Σ = 1 ≥ 1
logm

inf
q∈R
{−αMq + PM (q)}.

In the following part we assume αM 6= βM .

First we consider α ∈ (αM , βM ). The case α = αM or βM will be treated later. Let PM (`, q) and
E

(`)
M (α) be defined as in (2.9) and (2.8) respectively. By Lemma 2.2, the sequence {PM (`, q)}∞`=1

converges to PM (q) pointwisely. Thus by Proposition 4.1, there exists N > 0 such that there is a
uniformly bounded sequence of real number {q`}`≥N such that P ′M (`, q`) = α. By Proposition 2.6,

dimH E
(`)
M (α) = PM (`, q`)− αq`, ∀` ≥ N.

Note that for any ε > 0 and n ∈ N, the collection {[J ] : J ∈ F`(α;n`, ε)} is a m−n`-cover of E(`)
M (α).

This implies

lim inf
n→∞

log f`(α;n`, ε)
n` logm

≥ dimH E
(`)
M (α) = PM (`, q`)− αq`.

Combining it with (2.7) yields

lim inf
n→∞

log f(α;n`+ 2nr, 2ε)
(n`+ 2nr) logm

≥ `

`+ 2r
· 1

logm
(PM (`, q`)− αq`), ∀ε > 0.

Hence by Proposition 3.2, we have

(4.3) dimH EM (α) ≥ `

`+ 2r
· 1

logm
(PM (`, q`)− αq`), ∀` ≥ N.

Since the sequence {q`}`≥N is uniformly bounded, there exists a subsequence {q`i} which converges
to a finite point q∞. We are going to show

(4.4) lim
i→∞

(PM (`i, q`i)− αq`i) = PM (q∞)− αq∞.

Denote t = max{‖Mi‖ : 1 ≤ i ≤ m}, and define a new matrix function M̃ := 1
tM . It is easily

checked that

(4.5) PM (`, q) = q log t+ PM̃ (`, q), PM (q) = q log t+ PM̃ (q).

Since ‖M̃i‖ ≤ 1 for all 1 ≤ i ≤ m, PM̃ (`, q) and PM̃ (q) are monotone decreasing functions of q. Now
for any ε > 0, we can find a, b ∈ R with a < q∞ < b such that

PM̃ (a) < PM̃ (q∞) + ε, PM̃ (b) > PM̃ (q∞)− ε.
When i is large enough, q`i ∈ (a, b), and thus

PM̃ (`i, b) ≤ PM̃ (`i, q`i) ≤ PM̃ (`i, a).

It follows that
lim sup
i→∞

PM̃ (`i, q`i) ≤ lim
i→∞

PM̃ (`i, a) = PM̃ (a) < PM̃ (q∞) + ε.

and
lim inf
i→∞

PM̃ (`i, q`i) ≥ lim
i→∞

PM̃ (`i, b) = PM̃ (b) > PM̃ (q∞)− ε.

Since ε > 0 is arbitrary, we have

lim
i→∞

PM̃ (`i, q`i) = PM̃ (q∞).
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Combining it with (4.5), we obtain limi→∞ PM (`i, q`i) = PM (q∞), which implies (4.4). Thus by
(4.3), we have

dimH EM (α) ≥ 1
logm

(PM (q∞)− αq∞).

This establishes (4.2).

Now we consider the case α = αM (the case α = βM can be treated in an identical way). By
Proposition 3.2 and 3.1, the function dimH EM (x) of x is continuous on LM . Consequently,

dimH EM (αM ) = lim
z↓αM

dimH EM (z),

and thus
dimH EM (αM ) ≥ 1

logm
lim
z↓αM

inf
q∈R
{−zq + PM (q)}.

By Proposition 4.1 (ii), we have

dimH EM (αM ) ≥ 1
logm

inf
q∈R
{−αMq + PM (q)},

which finishes the proof of (4.2). �

5. Proof of Theorem 1.2

Let Sjx = ρx + bj (j = 1, 2, . . . , `) satisfy the finite type condition. That is, there exists a finite
set Γ of non-negative numbers such that for each integer n ∈ N and any two indices J = j1 . . . jn
and J ′ = j′1 . . . j

′
n,

(5.1) either ρ−n|SJ(0)− SJ′(0)| > c or ρ−n|SJ(0)− SJ′(0)| ∈ Γ,

where SJ denotes the composition Sj1 ◦ . . . ◦ Sjn and c = (1− ρ)−1(max1≤j≤` bj −min1≤i≤` bi). Let
µ be the self-similar measure generated by {Sj}`j=1 with the probability weight {pj}`j=1, i.e., µ is
the unique Borel probability measure on R satisfying the following relation:

(5.2) µ =
∑̀
j=1

pjµ ◦ S−1
j .

Let K denote the self-similar set generated by {Sj}`j=1, i.e., K is the unique non-empty compact set
satisfying K =

⋃`
j=1 Sj(K).

The following proposition describes the local structure of µ:

Proposition 5.1. Let the family {Sj}`j=1 and the self-similar measure µ be given as above. Then
there exist two positive integers m and d, an m × m irreducible 0-1 matrix A = (Aij)1≤i,j≤m, m
d× d non-negative matrices Mi (1 ≤ i ≤ m), such that

(a)
∑m
j=1Mj is irreducible.

(b) Mj1Mj2 . . .Mjn 6= 0 if and only if the word J = j1j2 . . . jn is A-admissible (i.e., Ajkjk+1 = 1
for k = 1, . . . , n− 1).

(c) Let ΣA denote the set {(xi)∞i=1 ∈ Σ : Axixi+1 = 1 for all i ≥ 1}. Then there exists a family
(finite or countably infinite) of closed intervals {Ik}k∈Λ with disjoint interiors such that the
endpoints of Ik belong to K for all k ∈ Λ, µ(

⋃
k∈Λ Ik) = 1, and for each k ∈ Λ there exists

a surjective map πk : ΣA ∩ [1]→ K ∩ Ik such that there are C1, C2 > 1 (only depending on
k), such that for any n ∈ N and A-admissible word i1i2 . . . in with i1 = 1,
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(c.1) 1
C1
ρn ≤ diam πk(ΣA ∩ [i1i2 . . . in]) ≤ C1ρ

n.
(c.2) 1

C2
‖Mi1 . . .Min‖ ≤ µ(πk(ΣA ∩ [i1i2 . . . in])) ≤ C2‖Mi1 . . .Min‖.

(c.3) The subintervals conv(πk(ΣA∩[i1i2 . . . inin+1])) (where in+1’s are taken so that Ainin+1 =
1) have disjoint interiors. Here conv(Y ) denotes the convex hull of Y . Moreover if
we set [a, b] := conv(πk(ΣA ∩ [i1i2 . . . in])) and [c, d] := conv(πk(ΣA ∩ [i1i2 . . . inin+1])),
then the ratios d−c

b−a and d−a
b−a only depend on in and in+1.

Most parts of the above proposition were proved or implicit in [12]. However for the convenience
of the readers and for completeness, we will provide a detailed constructive proof in the next section.

Proposition 5.2. Let m, Mi(1 ≤ i ≤ m) and {Ik}k∈Λ be given as in the above proposition. Let
(Σ, σ) be the full shift space over the alphabet {1, . . . ,m}. For any k ∈ Λ denote µk = µ|Ik, i.e. µk
is the restriction of the measure µ on Ik. Then for any q ∈ R,

(5.3) τ(µk, q) = PM (q)/ log ρ, ∀k ∈ Λ,

where PM (q) is defined as in (1.5). Moreover τ(µk, q) = τ(µ, q) for all q ≥ 0.

Proof. The proof is identical to that of Proposition 5.7 and Lemma 5.3 in [12]. �

Proof of Theorem 1.2. We use the same notion as in Proposition 5.1. Fix one index k ∈ Λ and
consider the measure µk. For t ∈ R, define

Et =
{
y ∈ R : lim

δ→0

logµk([y − δ, y + δ])
log δ

= t

}
.

To prove Theorem 1.2, we shall prove the following two statements respectively:

(S1) Et 6= ∅ ⇐⇒ t ∈ [αmin, αmax], where

αmin := lim
q→+∞

τ(µk, q)
q

= lim
q→+∞

PM (q)
q log ρ

and

αmax := lim
q→−∞

τ(µk, q)
q

= lim
q→−∞

PM (q)
q log ρ

(S2) For any t ∈ [αmin, αmax],

dimH Et = inf
q∈R
{tq − τ(µk, q)} = − 1

log ρ
inf
q∈R
{−tq log ρ+ PM (q)}.

By Lemma 2.3 and Proposition 5.2, we have

lim
q→+∞

τ(µk, q)
q

= lim
q→+∞

PM (q)
q log ρ

=
βM
log ρ

, lim
q→−∞

τ(µk, q)
q

= lim
q→−∞

PM (q)
q log ρ

=
αM
log ρ

To prove (S1), we shall present some notation at first. For convenience, we denote
R(i1 . . . in) := conv(πk(ΣA ∩ [i1 . . . in])) for each A-admissible word i1 . . . in of length n with i1 = 1,
and call it an n-th net interval. By Proposition 5.1(c), 1

C1
ρn ≤ diam(R(i1 . . . in)) ≤ C1ρ

n and
1
C2
‖Mi1 . . .Min‖ ≤ µk(R(i1 . . . in)) ≤ C2‖Mi1 . . .Min‖.

Now take any y ∈ suppµk. For any integer n > 0 and δ ∈ [C1ρ
n, C1ρ

n−1), notice that the interval
[y−δ, y+δ] contains at least one n-th net interval and intersects at most 2C1ρ

n−1

(1/C1)ρn +1 = 2(C1)2ρ−1+1
many different n-th net intervals. It follows that

1
C2

min
i1···in

‖Mi1 . . .Min‖ ≤ µk([y − δ, y + δ]) ≤ C2(2(C1)2ρ−1 + 1) max
i1···in

‖Mi1 . . .Min‖,
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where the minimum and the maximum are taken over the set of A-admissible words of length
n. Applying (2.3) and Lemma 2.3 gives lim supδ→0

log µk([y−δ,y+δ])
log δ , lim infδ→0

log µk([y−δ,y+δ])
log δ ∈

[ βMlog ρ ,
αM
log ρ ] = [αmin, αmax]. Thus we have

(5.4) Et 6= ∅ =⇒ t ∈ [αmin, αmax].

This proves the “=⇒” part of (S1). To prove the other part, take any t ∈ [αmin, αmax] and let
α = t log ρ. Then α ∈ [αM , βM ]. Pick an A-admissible word ξ = u1u2 . . . us with u1 = 1 such that
the net interval R(u1 . . . us) is strictly contained in the interior of the interval R(u1) = Ik. This
choice is always possible since µ contains no atoms. By Proposition 3.2, there exists a non-empty
set Γ = Γ(ξ) ⊂ EM (α) such that dimH Γ = dimH EM (α), and for any x = (xj)∞j=1 ∈ Γ, there exists

a sequence of positive integers {np(x)}∞p=1 ↑ ∞ such that n1(x) = 1, limp→∞
np+1(x)
np(x) = 1, and ξ

appears in (xj)∞j=1 at each position np(x). We shall finish the proof of (S1) by showing that

(5.5) πk(Γ) ⊂ Et.
To show (5.5), let x = (xi)∞i=1 ∈ Γ. Then x1 = 1 and by Proposition 5.1 (b), the words x1 . . . xn are
A-admissible for all n. Notice that for each n, diam(R(x1 . . . xn)) ≤ C1ρ

n, hence we have [πkx −
C1ρ

n, πkx+C1ρ
n] ⊃ R(x1 . . . xn). It follows that µk([πkx−C1ρ

n, πkx+C1ρ
n]) ≥ µk(R(x1 . . . xn)) ≥

1
C2
‖Mx1 . . .Mxn‖. Consequently we have

lim sup
δ→0

logµk([πkx− δ, πkx+ δ])
log δ

= lim sup
n→∞

logµk([πkx− C1ρ
n, πkx+ C1ρ

n])
log(C1ρn)

≤ lim sup
n→∞

log( 1
C2
‖Mx1 . . .Mxn‖)
log(C1ρn)

=
α

log ρ
= t.(5.6)

To see the other direction, notice that the interval R(u1 . . . us) is contained in the interior of R(u1).
Thus there exists γ > 0 such that [y − γ, y + γ] ⊂ R(u1) for each y ∈ R(u1 . . . us). By Proposition
5.1(c.3), for each p ∈ N, the relative position of R(x1 . . . xnp(x) . . . xnp(x)+s−1) in R(x1 . . . xnp(x)) is
the same as that of R(xnp(x)xnp(x)+1 . . . xnp(x)+s−1) in R(xnp(x)), i.e., that of R(u1 . . . us) in R(u1).
Therefore for each y ∈ R(x1 . . . xnp(x) . . . xnp(x)+s−1),

(5.7)
[
y − γ|R(x1 . . . xnp(x)−1)|, y + γ|R(x1 . . . xnp(x)−1)|

]
⊂ R(x1 . . . xnp(x)).

Now for any large ` ∈ N, there is an integer p such that
γ|R(x1 . . . xnp+1(x)−1)| ≤ ρ` < γ|R(x1 . . . xnp(x)−1)|. Therefore by (5.7),[

πkx− ρ`, πkx+ ρ`
]
⊂

[
πkx− γ|R(x1 . . . xnp(x)−1)|, πkx+ γ|R(x1 . . . xnp(x)−1)|

]
⊂ R(x1 . . . xnp(x)).

In the meantime,
ρ` ≥ γ|R(x1 . . . xnp+1(x)−1)| ≥ γ

C1
ρnp+1(x).

These two inequalities imply

logµk(
[
πkx− ρ`, πkx+ ρ`

]
)

log ρ`
≥

logµk(R(x1 . . . xnp(x)))
log( γ

C1
ρnp+1(x))

≥
log(C2‖Mx1 . . .Mxnp(x)‖)

log γ
C1

+ np+1(x) log ρ
.

Let `→∞. Since np+1(x)/np(x) tends to 1 as p→∞, we obtain

lim inf
δ→0

logµp([πkx− δ, πkx+ δ])
log δ

= lim inf
`→∞

logµk([πkx− ρ`, πkx+ ρ`])
` log ρ

≥ lim inf
p→∞

log ‖Mx1 . . .Mxnp(x)‖
np(x) log ρ

= t.(5.8)
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By (5.6) and (5.8), we obtain (5.5). This finishes the proof of (S1).

To show (S2), by (5.5) we have dimH Et ≥ dimH πk(Γ). Later we shall prove that

(5.9) dimH πk(F ) =
logm
− log ρ

dimH F, ∀F ⊂ ΣA ∩ [1].

Applying (5.9) we have dimH Et ≥ dimH πk(Γ) = logm
− log ρ dimH Γ = logm

− log ρ dimH EM (α). Hence using
Theorem 1.1, we have

dimH Et ≥
1

− log ρ
inf
q∈R
{PM (q)− αq}

= inf
q∈R

{
PM (q)
− log ρ

− α

− log ρ
q

}
= inf

q∈R
{−τ(µk, q) + tq}.

However, since Et 6= ∅, the upper bound dimH Et ≤ infq∈R{−τ(µk, q)+tq} is generic, not depending
on the special property of µk (see, e.g., [7, Theorem 1] or [31, Theorem 4.1]). This finishes the proof
of (S2).

Now we prove (5.9). Actually the proof is quite standard. Since 1
C1
ρn ≤ diam(Ri1...in) ≤ C1ρ

n

for any n-th net interval Ri1...in , we have

|πkx− πky| ≤ C1(d(x, y))
− log ρ
logm , ∀x, y ∈ ΣA ∩ [1].

This implies (for a proof, see, e.g., [20, Proposition 2.2].)

(5.10) H−s logm/ log ρ(πkF ) ≤ (C1)−s logm/ log ρHs(F ), ∀s ≥ 0, F ⊂ ΣA ∩ [1],

where Hu denotes the u-dimensional Hausdorff measure. On the other hand, for each s ≥ 0 and
F ⊂ ΣA ∩ [1], let {∆n}∞n=1 be a family of intervals such that diam(∆n) ≤ diam(Ik), ∆n ∩ πkF 6= ∅
and

⋃
n≥1 ∆n ⊃ πkF . Then for each n set

Gn = {A-admissible words i1 . . . ip : i1 = 1, Ri1...ip ∩∆n 6= ∅, ρp ≤ diam(∆n) < ρp−1}.

By the net property, #Gn ≤ C1
ρ + 1, and furthermore the family {ΣA ∩ [η] : η ∈

⋃
n≥1Gn} is a

cover of F with ∑
η∈
⋃
n≥1Gn

diam([η] ∩ ΣA)s ≤
(
C1

ρ
+ 1
)∑
n≥1

diam(∆n)−s logm/ log ρ.

Thus we have

H−s logm/ log ρ(πkF ) ≥ (C1/ρ+ 1)−1Hs(F ), ∀s ≥ 0, F ⊂ ΣA ∩ [1].

Combining it with (5.10) yields (5.9). This finishes the proof of Theorem 1.2. �

Remark 5.3. Applying Theorem 1.2 and Proposition 5.2, we can deduce a global property of µ,
that is,

(5.11) dimH Eµ(α) = inf
q∈R
{αq − τ(q)}, ∀α ∈ [τ ′(+∞), τ ′(0−)],

where τ(q) = τ(µ, q). To see this, since τ(q) is concave, we have for α ∈ [τ ′(+∞), τ ′(0−)],
infq∈R{αq − τ(q)} = infq≥0{αq − τ(q)}. By Proposition 5.2, τ(µk, q) = τ(q) for all q ≥ 0 and



LYAPUNOV EXPONENTS FOR PRODUCTS OF MATRICES 19

k ∈ Λ. Thus by Theorem 1.2, for α ∈ [τ ′(+∞), τ ′(0−)],

inf
q∈R
{αq − τ(q)} = inf

q≥0
{αq − τ(q)} = inf

q≥0
{αq − τ(µk, q)}

= inf
q∈R
{αq − τ(µk, q)} = dimH Eµk(α).

Since dimH Eµ(α) ≥ dimH Eµk(α) and dimH Eµ(α) ≤ infq∈R{αq−τ(q)}, the equality (5.11) follows.

Furthermore if the equality τ(µk, q) = τ(q) holds for all q < 0, then we have a strong result:
The measure µ itself satisfies the complete multifractal formalism. To see it, we have for all α ∈
[τ ′(+∞), τ ′(−∞)],

inf
q∈R
{αq − τ(q)} = inf

q∈R
{αq − τ(µk, q)} = dimH Eµk(α).

Since dimH Eµ(α) ≥ dimH Eµk(α) and dimH Eµ(α) ≤ infq∈R{αq − τ(q)}, we have

(5.12) dimH Eµ(α) = inf
q∈R
{αq − τ(q)}, ∀α ∈ [τ ′(+∞), τ ′(−∞)],

On the other hand, Eµ(α) 6= ∅ implies α ∈ [τ ′(+∞), τ ′(−∞)]. To see it, denote aε = supx∈supp(µ) µ([x−
ε, x+ε]) and bε = infx∈supp(µ) µ([x−ε, x+ε]). Denote τ(ε, q) := sup

∑
i µ(Bε(xi))q, where the supre-

mum is taken over all the families of disjoint balls Bε(xi) of radius ε and center xi ∈ supp(µ). Then
we have {

(aε)qτ(ε, q) ≤ ε−1(aε)q, if q ≥ 0,
(bε)qτ(ε, q) ≤ ε−1(bε)q, if q < 0.

Since by definition τ(q) = lim infε→0 log τ(ε, q)/ log ε, we have{
q lim infε→0

log aε
log ε − 1 ≤ τ(q) ≤ q lim infε→0

log aε
log ε , if q ≥ 0,

q lim supε→0
log bε
log ε − 1 ≤ τ(q) ≤ q lim supε→0

log bε
log ε . if q < 0.

This implies

lim inf
ε→0

log aε
log ε

= lim
q→+∞

τ(q)/q = τ ′(+∞), lim sup
ε→0

log bε
log ε

= lim
q→−∞

τ(q)/q = τ ′(−∞).

Thus Eµ(α) 6= ∅ implies α ∈ [τ ′(+∞), τ ′(−∞)]. This fact, together with (5.12), shows that µ
satisfies the complete multifractal formalism.

6. The structure of self-similar measures satisfying the finite type condition

In this section we will outline the structure of self-similar measures satisfying the finite type
condition and provide a constructive proof of Proposition 5.1. Especially we shall take the Erdös
measure as an example. Almost all the results involved come from [12] and [13].

Let Sjx = ρx + bj (j = 1, 2, . . . , `) satisfy the finite type condition, i.e., {Sj} satisfies (5.1). Let
µ be the self-similar measure generated by {Sj}`j=1 with the probability weight {pj}`j=1. Let K be
the corresponding self-similar set. Without loss of generality, here and afterwards we always assume

0 = b1 < b2 < . . . < b` = 1− ρ.

Under this assumption, the convex hull of K is just the interval [0, 1].

Write A = {1, . . . , `}. For n ∈ N let An denote the collection of all indices j1 . . . jn of length n over
A. For σ = j1 . . . jn ∈ An write Sσ = Sj1 ◦ . . . ◦ Sjn . We define two families of sets P 0

n , P
1
n (n ≥ 0)

in the following way: P 0
0 = {0}, P 1

0 = {1}, and P 0
n = {Sσ(0) : σ ∈ An}, P 1

n = {Sσ(1) : σ ∈ An}
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for n ≥ 1. Define Pn = P 0
n

⋃
P 1
n for n ≥ 0. Let h1, . . . , hsn be all the elements of Pn ranked in the

increasing order. Define

Fn = {[hj , hj+1] : 1 ≤ j < sn, (hj , hj+1) ∩K 6= ∅} .
Each element in Fn is called an n-th basic net interval. The following facts about basic net intervals
can be checked easily: (i)

⋃
∆∈Fn ∆ ⊃ K for any n ≥ 0; (ii) For any ∆1,∆2 ∈ Fn with ∆1 6= ∆2,

int(∆1) ∩ int(∆2) = ∅; (iii) For any ∆ ∈ Fn (n ≥ 1), there is a unique element ∆̂ ∈ Fn−1 such that
∆̂ ⊃ ∆.

For each ∆ = [a, b] ∈ Fn (n ≥ 0), we will define a positive number `n(∆), a vector Vn(∆) and a
positive integer rn(∆). If ∆ = [0, 1] ∈ F0, we define `0(∆) = 1, V0(∆) = 0 and r0(∆) = 1. Otherwise
for n ≥ 1, we define `n(∆) and Vn(∆) directly by

`n(∆) = ρ−n(b− a)

and
Vn(∆) = (a1, . . . , ak).

where a1, . . . , ak (ranked in the increasing order) are all the element of the following set

{ρ−n(a− Sσ(0)) : σ ∈ An, Sσ(K) ∩ (a, b) 6= ∅}.
Denote by vn(∆) the dimension of Vn(∆), that is, vn(∆) = k. We define rn(∆) in the following
way: let ∆̂ be the unique interval in Fn−1 containing ∆, and ∆1, . . . ,∆k (ranked in the increasing
order) be all the elements in Fn satisfying ∆j ⊂ ∆̂, `n(∆j) = `n(∆), Vn(∆j) = Vn(∆) for 1 ≤ j ≤ k.
Define rn(∆) to be the integer r so that ∆r = ∆. For convenience, we call the triple

Cn(∆) := (`n(∆);Vn(∆); rn(∆))

the n-th characteristic vector of ∆, or simply characteristic vector of ∆. The vector Cn(∆) contains
the information about the length and neighborhood relation of ∆. Define

(6.1) Ω = {Cn(∆) : n ≥ 0, ∆ ∈ Fn}.
For any α ∈ Ω, we write for simplicity

(6.2) `(α) = `n(∆), V (α) = Vn(∆), v(α) = vn(∆), r(α) = rn(∆),

if ∆ ∈ Fn and Cn(∆) = α.

Lemma 6.1. (i) For a given ∆ ∈ Fn(n ≥ 0), let ∆1, . . . ,∆k (ranked in the increasing order)
be all the elements in Fn+1 which are subintervals of ∆. Then the number k, the vectors
Cn+1(∆i) (1 ≤ i ≤ k) are determined by `n(∆) and Vn(∆) (thus they are determined by
Cn(∆)).

(ii) The set Ω is finite.

Proof. See [12, Lemma 2.1 and Lemma 2.3]. �

Let Ω∗ denote the collection of all finite words over Ω. For any α ∈ Ω, pick n and ∆ ∈ Fn such
that α = Cn(∆). Let ∆1, . . . ,∆k (ranked in the increasing order) be all the elements in Fn+1 which
are subintervals of ∆. Write αj = Cn+1(∆j) for 1 ≤ j ≤ k. By Lemma 6.1, the word α1 . . . αk
depend only on α (independent of the choice of n and ∆). We define ζ : Ω→ Ω∗ by

ζ(α) = α1 . . . αk.

Define a 0-1 matrix A on Ω× Ω in the following way:

(6.3) Aα,β =
{

1 if β is a letter of ζ(α),
0 otherwise.
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A word β1 . . . βn ∈ Ω∗ is called admissible if Aβj ,βj+1 = 1 for 1 ≤ j < n.

Now we would like to associate each basic net interval with a unique admissible word. For each
∆ ∈ Fn (n ≥ 0), we list the intervals

∆0,∆1, . . . ,∆n

such that ∆n = ∆, and ∆j (j = 0, . . . , n − 1) is the unique element in Fj such that ∆j ⊃ ∆j+1.
The word α0α1 . . . αn, where αi = Ci(∆i) for 0 ≤ i ≤ n, is called the symbolic expression for
∆. The introduction of the third term in a characteristic vector guarantees that two different net
intervals have different symbolic expressions. Each admissible word of length n + 1 starting from
γ0 := C0([0, 1]) is a symbolic expression of some n-th basic net interval.

Now we analyze the distribution of µ on basic net intervals. Let ∆ = [a, b] be an n-th basic net
interval. Write Vn(∆) = (a1, . . . , avn(∆)). Iterating (5.2) n times we obtain

µ(∆) =
∑
σ∈An

pσµ(S−1
σ (∆)),

where pσ denotes the product pj1 . . . pjn for σ = j1 . . . jn. Since µ is a non-atomic measure supported
on K, we have

µ(∆) =
∑

σ∈An: Sσ(K)∩(a,b) 6=∅

pσµ(S−1
σ (∆))

=
vn(∆)∑
i=1

∑
σ∈An: ρ−n(a−Sσ(0))=ai

pσµ(S−1
σ (∆))

=
vn(∆)∑
i=1

µ([ai, ai + `n(∆)])
∑

σ∈An: Sσ(0)=a−ρnai

pσ.(6.4)

Define a vn(∆)-dimensional row vector Qn(∆) = (q1, . . . , qvn(∆)) by

(6.5) qi = µ([ai, ai + `n(∆)])
∑

σ∈An: Sσ(0)=a−ρnai

pσ, i = 1, . . . , vn(∆).

We call Qn(∆) the vector form of µ on ∆. By (6.4), µ(∆) = ‖Qn(∆)‖ :=
∑vn(∆)
i=1 qi. Moreover,

Qn(∆) is always a positive vn(∆)-dimensional vector for any n ≥ 0 and ∆ ∈ Fn.

For any ∆ ∈ Fn (n ≥ 1), denote by ∆̂ the unique element in Fn−1 so that ∆̂ ⊃ ∆. Assume
∆ = [a, b] and ∆̂ = [c, d]. Write Vn(∆) = (a1, . . . , avn(∆)) and Vn−1(∆̂) = (c1, . . . , cvn−1(∆̂)). Define

for any i ∈ {1, . . . , vn(∆)} and j ∈ {1, . . . , vn−1(∆̂)},

wj,i =
{
ps ∃s ∈ A so that c− ρn−1cj + ρn−1bs = a− ρnai,
0 otherwise.

Define a vn−1(∆̂)× vn(∆) matrix T (Cn−1(∆̂), Cn(∆)) = (tj,i) by

tj,i =
wj,iµ ([ai, ai + `n(∆)])

µ
(

[cj , cj + `n−1(∆̂)]
) , 1 ≤ j ≤ vn−1(∆̂), 1 ≤ i ≤ vn(∆).

We have
Qn(∆) = Qn−1(∆̂)T (Cn−1(∆̂), Cn(∆)).

Since ρ−n(c − a) depends only on Cn−1(∆̂) and Cn(∆), so does (wj,i). Thus T (Cn−1(∆̂), Cn(∆))
depends only on Cn−1(∆̂) and Cn(∆). Hence we have
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Proposition 6.2. ([12, Theorem 3.3]) Let T (α, β) (α, β ∈ Ω, Aα,β = 1) be a family of non-negative
matrices defined as above, then for any ∆ ∈ Fn,

Qn(∆) = T (γ0, γ1) . . . T (γn−1, γn),

where γ0 . . . γn is the symbolic expression of ∆. �

Moreover we can express precisely the entries of the product T (α1, α2) . . . T (αn−1, αn) for a given
admissible word α1 . . . αn. To see this, choose t ∈ N and ∆ = [a, b] ∈ Ft so that Ct(∆) = α1. As-
sume that the symbolic expression of ∆ is γ0 . . . γt−1α1. Then there is a unique ∆′ = [e, f ] ∈ Ft+n−1

whose symbolic expression is γ0 . . . γt−1α1 . . . αn. Write Vt(∆) = (a1, . . . , avt(∆)) and Vt+n−1(∆′) =
(e1, . . . , evt+n−1(∆′)). Denote for simplicity X = T (α1, α2) . . . T (αn−1, αn). Then from the construc-
tion of T (α, β), we have by induction that

Proposition 6.3. ([12, Proposition 3.5]) For any 1 ≤ j ≤ vt(∆), and 1 ≤ i ≤ vt+n−1(∆′),

Xj,i =
µ([ei, ei + `t+n−1(∆′)]
µ([aj , aj + `t(∆)])

·
∑

ξ∈An−1: a−ρtaj+ρtSξ(0)=e−ρt+n−1ei

pξ.

A non-empty subset Ω̂ of Ω is said to be an essential class of Ω if it satisfies: (i) {β ∈ Ω : Aα,β =
1} ⊂ Ω̂ for any α ∈ Ω̂; (ii) for any α, β ∈ Ω̂, there exist γ1, . . . , γn ∈ Ω̂ such that γ1 = α, γn = β and
Aγi,γi+1 = 1 for 1 ≤ i ≤ n− 1. The existence of at least one essential class is well known (see, e.g.,
Lemma 1.1 of [45]). In the following we prove

Lemma 6.4. (i) Ω has exactly one essential class Ω̂.
(ii) For any α ∈ Ω, k ∈ {1, . . . , v(α)} and η ∈ Ω̂, there exists an admissible word α1 . . . αj

with j ≥ 2 such that α1 = α, αj = η and all the entries of the k-th row of the matrix
T (α1, α2) . . . T (αj−1, αj) are positive.

(iii) There exist two constants N ∈ N and C > 0 such that for any ∆ ∈ Fn and any η ∈ Ω̂, there
exist s ≤ N and ∆̂ ⊂ ∆ with ∆̂ ∈ Fn+s and Cn+s(∆̂) = η such that µ(∆̂) ≥ Cµ(∆).

Proof. We adopt a similar method used in the proof of Lemma 4.4 in [12]. To show that Ω has
exactly one essential class, it suffices to prove that there exists an element γ in Ω such that for any
α ∈ Ω, there is an admissible word beginning with α and ending by γ. Equivalently, one needs
to show that for any n and ∆1 ∈ Fn, there exists ∆2 ⊂ ∆1 with ∆2 ∈ Fn′ for some n′ > n and
Cn′(∆2) = γ.

To achieve this, we pick β ∈ Ω such that (i) `(β) = min{`(η) : η ∈ Ω}; (ii) v(β) = max{v(η) :
η ∈ Ω, `(η) = `(β)}, where v(·) and `(·) are defined as in (6.2). Fix an element γ ∈ Ω such that
Aβ,γ = 1. Choose q ∈ N and ∆ = [c, d] ∈ Fq such that Cq(∆) = β. Write Vq(∆) = (c1, . . . , cvq(∆)).

Choose arbitrarily n ∈ N and ∆1 = [a, b] ∈ Fn. Write Vn(∆1) = (a1, . . . , avn(∆1)). Fix k ∈
{1, . . . , vn(∆1). By the definition of Vn(∆1), there exists σ ∈ An with Sσ(0) = a − ρnak and
Sσ(K)∩ (a, b) 6= ∅. Find a large integer l and φ ∈ Al so that Sσφ(K) ⊂ (a, b) and thus Sσφ([0, 1]) ⊂
(a, b), where σφ denotes the concatenation of σ and φ.

Denote ∆̂ = Sσφ(∆). It is clear ∆̂ ⊂ (a, b) since Sσφ([0, 1]) ⊂ (a, b). We claim that ∆̂ ∈ Fn+l+q

with Vn+l+q(∆̂) = Vq(∆) and `n+l+q(∆̂) = `q(∆). First we show ∆̂ ∈ Fn+l+q and `n+l+q(∆̂) =
`q(∆). To see this, we observe that the two endpoints of ∆̂ belong to the set Pn+l+q since those of ∆
belong to Pq. In the meantime int(∆̂)∩K 6= ∅ since int(∆)∩K 6= ∅. Therefore, ∆̂ contains at least
one element in Fn+l+q. On the other hand the minimality of `(β) shows that each (n + l + q)-th
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basic net interval has length at least ρn+l+q`(β), i.e., the length of ∆̂. Combining these two facts we
have ∆̂ ∈ Fn+l+q and `n+l+q(∆̂) = `(β) = `q(∆). To show Vn+l+q(∆̂) = Vq(∆), by the maximum
of v(β) it suffices to show each coordinate of the vector Vq(∆) is a coordinate of Vn+l+q(∆̂). To
prove this, note that for any 1 ≤ u ≤ vq(∆), there exists ψ ∈ Aq such that Sψ(0) = c − ρqcu and
Sψ(K) ∩ (c, d) 6= ∅. Therefore, Sσφψ(0) = Sσφ(c)− ρn+l+qcu and Sσφψ(K) ∩ int(Sσφ(∆)) 6= ∅. Note
that ∆̂ = Sσφ(∆) and Sσφ(c) is the left endpoint of ∆̂. By the definition of Vn+l+q(∆̂), cu is a
coordinate of Vn+l+q(∆̂). Thus the claim follows. Since the first two terms of Cn+l+q(∆̂) are the
same as Cq(∆) = β and Aβ,γ = 1, by Lemma 6.1, there exists an (n+ l+ q+ 1)-th basic net interval
∆2 ⊂ ∆̂ such that Cn+l+q+1(∆2) = γ. This finishes the proof of part (i) of the lemma.

To show part (ii), we use the same notation as in the above proof. Denote by γ0 . . . γn−1α the sym-
bolic expression of ∆1. Since ∆̂ ∈ Fn+l+q and ∆̂ ⊂ ∆1, we can denote by γ0 . . . γn−1αγn+1 . . . γn+l+q

the symbolic expression of ∆̂. Especially as proved above, γn+l+q satisfies V (γn+l+q) = V (β) and
`(γn+l+q) = `(β). Denote

X = T (α, γn+1)T (γn+1, γn+2) . . . T (γn+l+q−1, γn+l+q).

By Proposition 6.3, for any 1 ≤ u ≤ v(β) = v(γn+l+q),

(6.6) Xk,u =
µ([cu, cu + `(β)])
µ([ak, ak + `(α)])

·
∑

ξ∈Al+q : a−ρnak+ρnSξ(0)=Sσφ(c)−ρn+l+qcu

pξ.

Recall that we have proved in last paragraph that for each 1 ≤ u ≤ v(β), there exists ψ ∈ Aq such
that Sσφψ(0) = Sσφ(c)− ρn+l+qcu. Note that

Sσφψ(0) = Sσ(0) + ρnSφψ(0) = a− ρnak + ρnSφψ(0).

By (6.6), Xk,u > 0. Therefore

(6.7) ekT (α, γn+1)T (γn+1, γn+2) . . . T (γn+l+q−1, γn+l+q) > 0,

where ek denotes the v(α)-dimensional row vector whose k-th coordinate is 1 and all other coordi-
nates are 0.

Choose an admissible sequence η1 . . . ηt such that η1 = γ and ηt = η. By (6.7),

(6.8) ekT (α, γn+1) . . . T (γn+l+q−1, γn+l+q)T (γn+l+q, η1)T (η1, η2) . . . T (ηt−1, ηt) > 0,

That is, all the entries of the k-th row of the matrix

T (α, γn+1)T (γn+1, γn+2) . . . T (γn+l+q−1, γn+l+q)T (γn+l+q, η1)T (η1, η2) . . . T (ηt−1, ηt)

are positive, which completes the proof of part (ii).

Part (iii) follows from part (ii). To see it, by part (ii) we can construct a finite family of admissible
words {α1 . . . αj}α,k,η when α, k and η are taken over the set Ω, {v(1), . . . , v(α)} and Ω̂ respectively.
Let N denote the largest length of the words in this family. Let D denote the smallest non-zero
entry appear in the constructed matrices T (α1, α2) . . . T (αj−1, αj).

Now fix ∆ ∈ Fn and η ∈ Ω̂. Assume Cn(∆) = α. Choose k ∈ {1, . . . , v(α)} such that k-th entry of
Qn(∆) is larger than or equals to 1

v(α)‖Qn(∆)‖ = 1
v(α)µ(∆). Let α1 . . . αj be a constructed admissible

word beginning with α and ending by η, such that the k-th row of the matrix T (α1, α2) . . . T (αj−1, αj)
are positive. Let W be the symbolic expression of ∆. Then there exists a unique one ∆̂ ⊂ ∆ with
∆̂ ∈ Fn+j−1 such that symbolic expression of ∆̂ is Wα2 . . . αj . Then

µ(∆̂) = ‖Qn(∆)T (α1, α2) . . . T (αj−1, αj)‖ ≥
1

Dv(α)
µ(∆).
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This finishes the proof by letting C = infα∈Ω
1

Dv(α) . �

Let Ω̂ be the essential class of Ω. In what follows we always denote m := #Ω̂ and write Ω̂ =
{η1, . . . , ηm}. Set d =

∑m
i=1 v(ηi), where v(·) is defined as in (6.2). In the following we construct a

family of d× d matrices {Mi}mi=1. For any 1 ≤ i ≤ m, define Mi to be the partitioned matrix

Mi =


U i1,1 U i1,2 · · · U i1,m
U i2,1 U i2,2 · · · U i2,m

...
...

. . .
...

U im,1 U im,2 · · · U im,m

 ,
where for each 1 ≤ j, k ≤ m, U ij,k is a v(ηj)× v(ηk) matrix defined by

U ij,k =
{
T (ηj , ηi) if k = i and Aηj ,ηi = 1,
0 otherwise.

Let J0 ∈ Fn0 so that Cn0(J0) = η1. Denote Θ0 ∈ Ω∗ by Θ0 = γ0 . . . γn0−1η1 the symbolic
expression of J0. Given ∆ ∈ Fn (n ≥ n0) with ∆ ⊂ J0, define Q̂n(∆) to be the partitioned vector
(W1, . . . ,Wm), where Wi is a v(ηi)-dimensional row vector defined by

Wi =
{
Qn(∆) if ηi = Cn(∆),
0 otherwise.

It is clear that Q̂n(∆) is a d-dimensional row vector, which is called the uniform vector form of µ
on ∆. We have

Lemma 6.5. (i) The matrix H :=
∑m
i=1Mi is irreducible. That is, there exists an integer

r > 0 such that Hr > 0.
(ii) Given ∆ ∈ Fn0+n (n ≥ 1) with ∆ ⊂ J0, we have

Q̂n0+n(∆) = Q̂n0(J0)Mi1 . . .Min ≈ eM1Mi1 . . .Min ,

where Θ0ηi1 . . . ηik is the symbolic expression of ∆, e denotes the d-dimensional row vector
of which each entry equals 1, and the constant involved in “≈” only depends on J0. Hence
µ(∆) ≈ ‖M1Mi1 . . .Min‖.

(iii) Mi1 . . .Mik 6= 0 if and only if ηi1 . . . ηik is an admissible sequence.

Proof. See [12, Lemma 4.1 and Proposition 4.2]. �

Proof of Proposition 5.1. Let m, d and Mi (1 ≤ i ≤ m) be constructed as above. Without
confusion we define an m×m 0-1 matrix A = (Ai,j)1≤i,j≤m by

Ai,j = Aηi,ηj ,

whereAα,β (α, β ∈ Ω) is defined as in (6.3). Since Ω̂ is an essential class of Ω, the matrix (Ai,j)1≤i,j≤m
is irreducible. Then part (a) and (b) of Proposition 5.1 follows from Lemma 6.5 (i) and (ii). Define
Σ = {1, . . . ,m}N and ΣA = {(xi)∞i=1 ∈ Σ : Axi,xi+1 = 1 for i ≥ 1}. Moreover we define Λ ⊂ Ω∗ by

Λ = {A-admissible word α0α1 . . . αn : α0 = γ0, αn = η1, αi 6= η1 for 1 ≤ i < n}.

For any W = α0α1 . . . αn ∈ Λ, we denote by IW the n-th basic net interval whose symbolic expression
is W = α0α1 . . . αn. By the definition of Λ and the structure of basic net intervals, int(IW ) ∩
int(IW ′) = ∅ for different words W,W ′ ∈ Λ.
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Now we show µ(
⋃
W∈Λ IW ) = 1 by contradiction. Assume that µ(

⋃
W∈Λ) = t < 1. Then for any

ε > 0, there exists n ∈ N such that

t− ε ≤
∑

W∈Λ,|W |≤n

µ(IW ) ≤ t,

where |W | denotes the length of the word W . Let F ′n denotes the collection of all n-th basic net inter-
vals that have no intersection with the interior of

⋃
W∈Λ,|W |≤n IW . Then

⋃
∆∈F ′n

∪(
⋃
W∈Λ,|W |≤n IW ) ⊃

K, thus
∑

∆∈F ′n
µ(∆) ≥ 1 − t. By Lemma 6.4 (iii), for any ∆ ∈ F ′n there exists a corresponding

U ∈ Λ with |U | > n such that IU ⊂ ∆ and µ(IU ) ≥ Cµ(∆) for a constant C > 0 independent of n.
Therefore ∑

U∈Λ,|U |>n

µ(IU ) ≥ C
∑

∆∈F ′n

µ(∆) ≥ C(1− t),

which leads to a contradiction with the fact
∑
U∈Λ,|U |>n µ(IU ) ≤ ε, since ε can be taken arbitrarily

small.

Now for W = α0α1 . . . αn ∈ Λ we define the map πW : ΣA ∩ [1]→ K ∩ IW by

πW (x) =
∞⋂
k=2

∆W
x1x2...xk

, ∀x = (xi)∞i=1,

where ∆W
x1x2...xk

denotes the basic net interval whose symbolic expression is Wηx2 . . . ηxk . By the
structure of basic net intervals, conv(πW (ΣA∩ [x1x2 . . . xk]) = ∆W

x1x2...xk
. From this fact and Lemma

6.5 (ii), part (c) of Proposition 5.1 follows. This finishes the proof. �

Example 6.6. Let ρ =
√

5−1
2 and let µ be the self-similar measure generated by the family of maps

{S1x = ρx, S2x = ρx + 1 − ρ} and the probability weight {1/2, 1/2}. The measure µ, which is
also called the Erdös measure, is the well known Bernoulli convolution associated with the golden
ratio. The structure of this measure has been extensively studied in [13]. For this measure we have
Ω = {α1, α2, . . . , α7}, where

α1 = (1; 0; 1), α2 = (ρ; 0; 1), α3 = (1− ρ; (0, ρ); 1), α4 = (ρ; 1− ρ; 1),
α5 = (ρ; (0, 1− ρ); 1), α6 = (2ρ− 1; 1− ρ; 1), α7 = (1− ρ; (0, ρ); 2).

The map ζ : Ω→ Ω∗ is given by

ζ(α1) = α2α3α4, ζ(α2) = α2α3, ζ(α3) = α5, ζ(α4) = α3α4,

ζ(α5) = α3α6α7, ζ(α6) = α3, ζ(α7) = α5.

Let A be defined as (6.3). The matrices {T (α, β) : α, β ∈ Ω, Aα,β = 1} are given by

T (α1, α2) = 1/3, T (α1, α3) = [1/6, 1/6], T (α1, α4) = 1/3,
T (α2, α2) = 1/2, T (α2, α3) = [1/4, 1/4],

T (α3, α5) =
[

1 0
0 1

]
,

T (α4, α3) = [1/4, 1/4], T (α4, α4) = 1/2,

T (α5, α3) =
[

1/4 1/4
0 1/4

]
, T (α5, α6) =

[
1/4
1/4

]
, T (α5, α7) =

[
1/4 0
1/4 1/4

]
,

T (α6, α3) = [1/2, 1/2],

T (α7, α5) =
[

1 0
0 1

]
.
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The essential class of Ω is Ω̂ = {α3, α5, α6, α7}. For convenience we relabel the elements of Ω̂ by

1 := α3, 2 := α5, 3 := α6, 4 := α7.

The matrices Mi (1 ≤ i ≤ 4) are given by

M1 =



0 0 0 0 0 0 0
0 0 0 0 0 0 0

1/4 1/4 0 0 0 0 0
0 1/4 0 0 0 0 0

1/2 1/2 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


, M2 =



0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0


,

M3 =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1/4 0 0
0 0 0 0 1/4 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


, M4 =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 1/4 0
0 0 0 0 0 1/4 1/4
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


.

For this special case the Lq-spectrum τ(µ, q) of µ can be expressed explicitly [13, 30] and has a
non-differentiable point q0 < 0 [13]. In fact by using the same idea in [13], one can get the formula
for τ(µk, q) and prove τ(µk, q) = τ(q) for all q ∈ R and k ∈ Λ. Since PM (q) = (log ρ)τ(µk, q) for
q ∈ R, PM (q) has a non-differentiable point at q0.
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