LYAPUNOV EXPONENTS FOR PRODUCTS OF MATRICES AND
MULTIFRACTAL ANALYSIS.
PART II: GENERAL MATRICES

DE-JUN FENG

ABSTRACT. We continue the study in [11, 14] on the upper Lyapunov exponents for prod-
ucts of matrices. Here we consider general matrices. In general, the variational formula
about Lyapunov exponents we obtained in part I does not hold in this setting. Anyway we
focus our interest on a special case where the matrix function M (z) takes finite values My,

.., My,. In this case we prove the variational formula under an additional irreducibility
condition. This extends a previous result of the author and Lau [14]. As an application,
we prove a new multifractal formalism for a certain class of self-similar measures on R with
overlaps. More precisely, let u be the self-similar measure on R generated by a family of
contractive similitudes {S; = pz + b, }§:1 which satisfies the finite type condition. Then
we can construct a family (finite or countably infinite) of closed intervals {I;};ca with
disjoint interiors, such that u is supported on Uje/\ I; and the restricted measure p|r; of p
on each interval I; satisfies the complete multifractal formalism. Moreover the dimension
spectrum dim g Eu“j () is independent of j.

1. INTRODUCTION

The present paper is a continuation of our work in [11, 14] for studying the upper Lyapunov
exponents for products of matrices. Here we consider general matrices. An application will be given
to multifractal analysis of self-similar measures with overlaps.

First we recall some basic notation. Let o be the shift map on ¥ = {1,2,...,m}N (m > 2 an
integer). Endow ¥ with the metric d(z,y) = m™" for x = (7;)52; and y = (y;)52; where n is the
largest integer such that z; = y; (1 < j < n). Let M be a continuous function defined on ¥ taking
values in the set of d x d matrices with non-negative entries. The upper Lyapunov exponent \ys(x)
of M at x is defined by

1
(1.1) Ay (z) = lim —log | M(x)M(ox)... M(c™ tz)|,
n—oo N
when the limit exists. Here || - || denotes the matrix norm defined by ||A| := 17 A1, where 1 is the

d-dimensional column vector each coordinate of which is 1. The pressure function of M is defined
by

1
Par(q) = lim —log > sup |[M(z)M(oz)...M(c" '2)|?, qER,

weS,, z€[w]
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where X, denotes the set of all words of length n over {1,...,m}; forw = w; ...w, € 3, [w] denotes
the cylinder set {z = (2;)72; € ¥ z; =wj;, 1 <j < n}. The limit in the above definition always
exists for ¢ > 0. This can be shown by a subadditive argument. With some additional conditions on
M (e.g., M is strictly positive), the limit exists for ¢ € R. Let M, (X2) be the set of all o-invariant
Borel probability measures on X. The matrix function M induces a map M,: My (2) — RU{—oc0}
given by

M. (1) =n{ﬂ@l@%/logIIM(y)M(Uy)~-~M(0”‘1y)\|du(y)7 1€ My(X).

The limit exists because of the subadditivity of the integral. In [18] Furstenberg and Kesten proved
that for each ergodic measure p on 3,

A () = Mo (1), itas. €.
To study the point-wise property of Ajs(-) more delicately, we define

(1.2) Ly ={aeR: a=Ay(z) for some z € X}
and
(1.3) Ey(a) ={z € X: Ay(z) = a} (a € Lpyp).

The following theorem was proved in [11]:

Theorem A ([11]). Suppose M is a continuous function defined on ¥ taking values in the set of
d x d matrices with strictly positive entries. Then L), is an interval and for any « € Ly,

dil’IlH E]\/[(Oé) = dln’lp EM(Oé)

1
= i f - P
og m onf {—aa+ Pu(a)}
1
= h : o(2), M, = 5
og m Sup LAl € Mo (%), M.(u) = o}
where dimyg and dimp denote the Hausdorff dimension and the packing dimension, respectively,
and h(p) denotes the measure-theoretic entropy of p. Moreover, dimy Ey () Is a concave and

continuous function of o on L.

Theorem A extends the corresponding results for the Birkhoff averages of scalar functions, for
which one is referred to, e.g., [1,2, 3,9, 10, 16, 35, 38, 40, 41, 47]. However since Theorem A depends
very much on the positivity of M, for certain purposes of application (e.g., the multifractal analysis
of self-similar measures with overlaps) we would like to consider the case that the matrix function
M is only assumed to be non-negative. However under this general non-negative assumption, the
result of Theorem A is no longer valid. The following is a counter-example.

Example 1.1 Set ¥ = {1,2,3,4}N. Let the matrix function M(z) on ¥ be defined as M (x) = M,,
for z = (v;)52,, where M; (1 <i < 4) are four diagonal matrices given by

M, = My = diag(1,2,0,0), Mj = diag(1,0,3,0), My = diag(1,0,0,4).
It is easily checked that

| qlog4, ifg>1,
Pr(q) = { log 4, otherwise.

However Ly = {0,log 2,log 3,log4}, and

log 3 1
087 _ inﬂ%{—qlogB—kPM(Q)}.

dimy Ep(log3) =0 < 1— -
imy Ep(log3) =0 < log4 log4 qe
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For the above reason, we shall impose more conditions on M:

(H1) M(z)=M, ifxeli, i=1,...,m;
(H2) M is irreducible in the following sense: there exists » > 0 such that

(14) 3 (fj Ml—)k ~o.

k=1 \i=1
In this case, the pressure function Pys(q) can be defined by

.1
(1.5) Pu(g) = lim —log Y [Ms]%  VgeR,
n—oo n
JENy,
where N, = {J € £,,: M; # 0} and M; = M;, --- M, . It was proved in [14] that the limit exists
for any ¢ € R (we include a proof in section 2 for the convenience of the reader). The first result of
this paper is the following:

Theorem 1.1. Suppose that M is a function on 3 taking values in the set of all d X d non-negative
matrices. Assume M satisfies the conditions (H1) and (H2). Then Lys is an interval and for any
a € Ly,

: . 1.
(1.6) dimg Ep(a) = dimp Ep(a) = Togm ;gﬂg{—aq + Pun(q)}-

Moreover dimyg Ey () is a concave and continuous function of a on L.

Under the setting of this theorem, some partial results were obtained by Feng and Lau in [14]. It
was shown that for each ¢ > 0, there exists a unique ergodic probability measure p, on ¥ satisfying
the following Gibbs property:

-1 )

.7 O b CnPulg) e = ¢ e e

where C' > 0 is a constant (see [14, Theorem 3.2]). The measure p, on ¥ is called the Gibbs
measure associated with M and ¢. Using this Gibbs property, we proved that Pys(q) is always
differentiable on (0,00) and (1.6) holds for any oo = P;,(¢) with ¢ > 0 (see [14, Theorems 3.3 and
3.4]). Unfortunately, the existence of the Gibbs measure can not be extended to the case ¢ < 0;
actually we can construct a matrix function M satisfying (H1) and (H2) such that Pns(g) is not
differentiable at some point ¢ < 0 (see Example 6.6). Hence some new idea is needed to prove (1.6)
for all « € L.

Now we outline the idea for proving Theorem 1.1. Under the condition of the theorem, there
is a constant C' > 0 such that for any I € ¥, and J € ¥, there exists K € U;:1 ¥, such that
Mk sl = ClMi||||My||. Using this property and modifying our proof in [11] delicately, we set
up a formal formula for dimgy E)js(«) similar to that in [11]. To show the variational relationship
between dimgy Eps(«) and Pys(q), we use a new idea. In fact we first give such a relationship between

dim g E](é) (o) and Pps(4,q) (£ =1,2,...), where

1 -

E](W (a) = (‘Tl)?il eX: nh—{go ﬁ IOg H ”Mw(_y‘—1)z+1€1?(j—1)e+2'”wje” =« ’ aeR
j=1

and Ppr(€,q) = $1log (Xen,||[Ms||9). Then we prove the theorem by showing that dimpy El(\f[)(a)

and Pps(¢,q) converge to dimpg Fpr(a) and Pys(q) respectively, as ¢ tends to infinity.
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We point out that an essentially identical proof shows that the result of Theorem 1.1 remains
true if we remove the non-negativity assumption of {M;},, but instead of (H2) we assume directly
the more general condition (H2)’: there exist a constant C > 0 and r € N such that for any I € ¥,
and J € 3y there exists K € | J;,_, S such that | Mk ;| > C||M/||||M]|. Here we use the standard
matrix norm. For instance, this assumption (H2)’ is fulfilled if the family {M;}"; of d x d complex
matrices satisfies the following type of irreducibility: there is no proper non-zero linear subspace V'
of C¢ such that M;(V) C V for any 1 <i < m (cf. [6, p. 48]). For a proof, see Proposition 2.8. In
this situation, the left endpoint of Lj; may be —oo.

Theorem 1.1 has an important application in the multifractal analysis for a class of self-similar
measures with overlaps. Actually, this is part of our original motivation for developing the multi-
fractal theory for products of matrices. Before stating the result, we recall some notation and
background. Let v be a finite Borel measure on R™ with compact support. For ¢ € R, the L9-
spectrum of v is defined by

log (sup »; v(Bs(x:))?)
log o

7(q) = 7(v,q) = liminfs o ,
where the supremum is taken over all the families of disjoint balls Bs(z;) of radius § and center
x; € supp(v). Denote by

L, = {a €R: lim 28V B5@)

i Tog 6 = « for some z € Supp(y)}

and
B .. log v(Bs(z)) B
E,(a)= {ac € supp(v) : 161?8 Tog 6 =ap.

We say that v satisfies the complete multifractal formalism if the following two conditions are satis-
fied:

(1) LV = [amina amax], where

T T
Omin = 1 @7 max — 1 @
g—+oo q g——o0 (¢

(ii) For any a € L,, dimg E,(a) = inf{ag — 7(q) : ¢ € R}.

For the framework of multifractal analysis of general measures, one may see, e.g., [4, 7, 8, 21,
24, 25, 26, 37, 39, 42, 44]. It is well known that if p is the self-similar measure defined by a
family of contractive similitudes {Sj}§:1 which satisfies the open set condition [28], 7(q) can be
calculated by an explicit analytic formula and p satisfies the complete multifractal formalism (see
[8, 37]). However, if the family {S;}{_, does not satisfy any separation condition, it is much
hard to obtain a formula for 7(¢) and there are few results on the validity of the multifractal
formalism. Some partial results have been obtained in the case that the family {S; }§:1 satisfies some
separation conditions weaker than the open set condition. In [31] Lau and Ngai introduced a weak
separation condition, which is strictly weaker than the open set condition. They proved that a partial
multifractal formalism will hold under this condition, i.e., dimg E, (o) = inf{ag — 7(¢) : ¢ € R}
for all those aw € {7/(t) : t > 0 and 7/(¢) exists}. It is unknown whether 7 is always differentiable
for ¢ > 0 under the weak separation condition. Nevertheless, in [12], the author proved that 7(q)
is differentiable on (0, 00) whenever the family {S; }le has the same contractive ratio on R and
satisfies the finite type condition. Recall that a family of similitudes

Si(x) =pr+0b;, 0<p<l, bjeR, j=1,...¢
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satisfies the finite type condition if there is a finite set I' C R™ such that for each integer n > 0 and
any two indices J = j1...j, and J' =51 ... 4],

(1.8) either p "Ss(0) — Sy (0)] > ¢ or p "Ss(0) — Sy (0) €T,
where S; denotes the composition S;, o...0 5}, and

-1 .
c=(1-p) (g;@ bj — min bi).

The finite type condition was introduced by Ngai and Wang [33]. It is substantially weaker than the
open set condition, but a little stronger than the weak separation condition (see [34]). The finite type
condition is satisfied by many interesting overlap cases, such as the Bernoulli convolutions associated
with Pisot numbers. Combining the results in [12] and [31], under the finite type condition, we have
dimpg E,(a) = inf{aqg — 7(q) : ¢ € R} for all those o € {7/(¢) : t > 0}. Recently this result was
extended by Testud [49] to a special class of self-similar measures which satisfy the weak separation
condition. Now a natural question arises as to whether or not the complete multifractal formalism
holds in the setting of the finite type condition. To answer the question it suffices to consider the case
t < 0. Some special examples have been considered towards this direction. In [13], the author proved
that for the Erdos measure p (i.e., the Bernoulli convolution associated with the golden ratio), the
function 7(q) is not differentiable at some point ¢ < 0. It is rather surprising. Nevertheless, the
multifractal formalism (for all o € int(L,)) of such a measure is proved to be valid by Feng and
Olivier [17], which extended the partial results in [30, 43]. For Bernoulli convolutions associated
with other Pisot numbers, see [13] and [36]. In [27] Hu and Lau studied another interesting measure
1, which is the three-fold convolution of the standard Cantor measure, and they found that the
set L, is not an interval (actually it is a union of an interval and an isolated point). That is also
a very strange fact (it shows that the complete multifractal formalism can fail for a self-similar
measure satisfying the finite type condition). Later on this measure was extensively studied in
[15, 32]. Similarly its L9-spectrum 7(gq) has a non-differentiable point in (—oo,0) [32], whilst an
adjusted multifractal formalism still holds [15]. More interesting examples with similar phenomena
were found and studied by Shmerkin [46] and Testud [49]. For a general self-similar measure p on R
satisfying the finite type condition, the author proved in [12] that for a class of intervals J, u(J) are
controlled by products of a family of non-negative matrices (see Proposition 5.1 and §6 for details).
Applying this result and Theorem 1.1, we will prove the following general result:

Theorem 1.2. Let p be the self-similar measure on R satisfying
‘
(1.9) p="> pjposS;,

j=1

where S;x = px+b;, p; > 0 and Zle pj = 1. Assume that {S;}_, satisfies the finite type condition.
Then we can construct a family (finite or countably infinite) of closed intervals I; with disjoint
interiors, such that p is supported on Uj I; and the restricted measure u|;; of p on each interval
I; satisfies the complete multifractal formalism. Moreover the dimension spectrum dimpg Eulzj () is
independent of j.

For the global property of u, we remark that under the condition of Theorem 1.2, we do have
dimpg E,(a) = infger{ag — 7(q)} for all a € [7/(+00),7'(0—)], where 7/(400) := limg— 400 7(q).
This extends slightly the aforementioned result in [12, 31] (which says the formula holds for all
a = 7'(t) with ¢t > 0). Furthermore if the equality 7(ux,q) = 7(g) holds for all ¢ < 0 (for instance,
this holds for the Erdds measure), then the complete multifractal formalism holds for u. For details,
see Remark 5.3.
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2. SOME BASIC LEMMAS

Let M(z) be a non-negative matrix-valued function defined on ¥ = {1,...,m}" satisfying the
assumptions (H1) and (H2). For n € N, let X,, denote the set of all words of length n over {1,...,m}.
Denote X* = (77| Z,,.

Lemma 2.1. There exists a constant C > 0 such that

(i) for any I € £, J € Xy, there exists K € | J,_, Sk such that | Mk ;|| > C|| M| || M]|.
(ii) for any I € ¥,, and £ € N, there exists K € ¥y such that | Mrx|| > C*||M;]|.
(iii) for any I € ¥, J € Xy, there exist 1 < k < r, K1 € ¥ and Ko € Yo, such that
[Mik, g || = Cl[ M| | M ]|
(iv) for any I, Is,..., I, € Xy, there exist K1, Ka, ..., Ko, € Uj:ll Y; such that
Zle |K;| = 2nr and

(21) cr H HMI]‘ ” < ”Mh(K1I2K2)(K3]3K4)---(K2n—31nK2n—2)K2n—1K2n” <c™ H HMI]‘ ”
j=1 j=1

Proof. Assume I € ¥,,, J € ;. Since Y ;_, H* > 0, we have

S Ml = HM (;m) M,

k=1 KeXy

Y

D[ M| [[M.]|
for some constant D > 0. It follows that there exists K € [J;_, Xj such that

b
# U= Zn}

where # denotes the cardinality. This finishes the proof of part (i).

Mgyl > | M| | M ]|,

To prove part (ii) we can assume M; # 0. By induction it suffices to prove part (ii) in the case
¢ =1. Choose j € {1,...,m} so that M; # 0. By (i), there exist 1 < k < r and i145...%; € ¥}, such
that

| Mriyiy. sl = Coll M| [|M;]] >0

for some constant C1 > 0. Since | My, || || Mi,...injll = || Mriyis..insll, we have

Ch|| M|
M, || > ” I | M|

M, il

This completes the proof of part (ii).
Part (iii) follows immediately from part (i) and part (ii).

To see part (iv), using part (iil) inductively, we may find K7, ..., Kop_o with |Kg;_1|+|Ka;| = 2r
for 1 < j <n—1, such that

n
||MII(KII2K2)(K313K4)-~-(K2n73InK2n72)|| > Cn_l H HMIj ”
j=1
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Using part (ii) we may find Ko, _1 K3, € 3o, such that the first inequality of (2.1) holds. Note that
the second inequality also holds since

2n

n
< (TL1aas0 | { T 102,
j=1 j=1

||M11(K112K2)'~~(K21L73I'n.K27L72)K21L71K2n

IN

n 2nr
[Tl ) (mas, 1)
]:

This finishes the proof of the lemma. ]

Lemma 2.2. The limit in defining Pp(q) in (1.5) exists for any g € R. Moreover, Py(q) is a
convez function.

Proof. Here we adopt a proof from [14]. Denote by s, = >_ ;. [[My]|%.

We first consider the case ¢ > 0. Since ||My;|| < | M/|||M,]| for any I € N,, and J € Ny, the

sequence {s,} is sub-multiplicative. Thus the limit lim,, ., =55~ exists.

Now assume ¢ < 0. By part (i) of Lemma 2.1, there is a constant C' > 0 such that for any I € N,
and J € Ny, there exists K € |J,_, I satisfying

(2.2) 0 < [ M|l < CIM]|| M

It implies s,50 < C77Y ) _| Spte+k. From (2.2) we also deduce that for any I € X*, there exists
i € X such that My; # 0; Since || M;|| < Cy|| M| for some constant Cy > 0, we have s, < C| %s,41
for any integers n,¢. It follows that s,s; < C'$p4¢4r for some constant C’ > 0 (depending on ¢),
which implies that a,, = ésn,T is super-multiplicative in the sense that a,4¢ > anap for all n, £ > r.

1 .
2850 ayigts.
n

Hence the limit lim,, oo
The convexity of Pys(q) follows by a standard argument. a

Let Ly and Ejp(-) be defined as in (1.2) and (1.3) respectively. It is clear that Ly = {« € R :
En(a) # 0}. Define

1 1
2.3 = lim — min | M = lim — 1 Mryl|.
(2:3) ay = lim = min log||M;ll, A = lim - maxlog M
Lemma 2.3. (i) The above limits in defining any and Bar exist. Moreover, an, By € R.

(i) Lar = [aar, Bu]-

(if) s = limg_, _ o 222(0)

q

Par(q)
q

and By = limg— oo

Proof. Denote u,, = maxey, ||M;| and v, = minepn, | M| for any n € N. It is clear that the
sequence {u,} is sub-multiplicative. Thus the limit in defining By exists. On the other hand by
(2.2), there is a constant C' > 0 such that for any n, m € N, there exists k between 1 and r such that

(2.4) Untmik < CUpU.

Using (2.2) again we deduce that for any I € N,, there exists i € X; such that ||[My;|| # 0. Since
[|Mp;|| < Cyp||M|| for some constants Cy > 0, we have v,+1 < Cyv,. This fact together with (2.4)
yields vy ymar < C'vpu,, for some constants €7 > 0. It implies that the sequence {C'v,_,}, is
sub-multiplicative. Thus the limit in defining «ap; exists. To see ayr, By € R, we only need to
observe that

1<i<m

n
t" <wv, <wu, < < max ||Ml> ,
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where ¢ is the smallest non-zero entry appearing in the matrices M;, 1 < ¢ < m. This finishes the
proof of part (i).

To see (ii), by the definitions of Ly, apr and 8y we have Ly C [y, Sa] immediately. Thus to
complete the proof of part (ii), we only need to show that for any s € [aas, B, there exists y € ¥
such that Ay (y) = s. Now fix s € [an, Bur] and write s = pays + (1 — p)Bas for some p € [0, 1]. For
n € N, construct a sequence of words {w, }5°; such that w, € N,, and

[0,

on || = U2n, HM"J27L71 ” = U2n—1-

Construct a sequence of positive integers {N,,} by

N o— [pn + logn], if n is odd,
"7 [A—pn+logn], otherwise,

where [z] denotes the integral part of 2. It can be checked directly that

n, o (2 — 1)No;—
(2.5) lim N,, = oo, lim —7—— =0, lim iz S )Nai-1 =p
n—oo n—oo Zi:l ZNZ- n—oo Zj:l jN]
Now define a sequence of words in the following way:
Wy ooy Wy W2y e e s Wy ey Wiy e ooy Wiy e o e
—_———— ——— ——
Ny Ny Ny,

We label this sequence as {v, }. Using Lemma 2.1 (i) inductively, we can find a sequence of words
{K,} such that K,, € J,_, 3k and
¢
HMulKlung...ngH Z Ce H HMVIQH’ A4 S N,
k=1
where C' is the constant in Lemma 2.1. Note that the left-hand side of the above inequality is not
greater than D™ Hizl [|1M,, |, where D = max{1l, maxi<;<m ||M;||}. Define y € ¥ by

Yy = V1K1V2K2...V5Kg....

One can check directly that Ap(y) = s by using (2.5) and the above two inequalities about
|My, 5y v Ks...vn i, ||- This finishes the proof of (ii).

To see (iii), note that for each n € N,

(un)? < Z[e,/\/n [M][T <m™(un)?, ¥ q>0
(v5)7 < ZIeNn [ M9 < m™(vn)?, Vg<0

which implies that

’ qgons < Pp(q) <logm +qap, Vg<O0

By taking the limits we obtain the desired result. |

9

o 1 -
Folasnlye) =< 41 .. ipg € Lpe - ﬁlog H ||MZ-(J.71““1-(],71)“2,”1-].[|| —al<e

For any a € R, n € N and € > 0, define

1
F(a;n,e) = {IGEn : ‘nlogHMIH —a

and f(a;n,e) = #F(a;n,e). Moreover for ¢ € N, define

Jj=1
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and fe(a;nl,e) = #F;(a;nl,e).

Lemma 2.4. For any o € R, € > 0, there exists § > 0 such that if n,¢ € N satisfy £/n <, then
flosn+€,2€) > f(asn,e).

Proof. By Lemma 2.1, there is a constant C' > 0 such that for any I € F(«;n,€) and £ € N, there
exists K € ¥ satisfying | M| > C*||M;||. Meanwhile it is obvious that || M| < C%|| M|, where
C1 = maxi<i<m ||M;||. By these two inequalities, we have

1 1 1
—(¢1 log || M) < log |Mrk| < ——(¢log C1 + log || M ])).
— (Clog C -+ log | M) < —— Tog | Myc|| < ——(¢log Cy + log | My])
Thus there exists ¢ > 0 such that if £/n < ¢ then
1
log [Muxcll | 5.
n+/
This implies f(a;n+¢,2¢) > f(a;n,e). a

Lemma 2.5. There is a constant D > 0 such that for any € > 0, there exists N > 0 (depending on
€) such that for any o € Ly,

(2.7) fla;p(f+2r),2¢) > DP fy(a;plye) > DP (f(a;€,€))’, VpeN, V&> N.

Proof. It is obvious that for any I,...,I, € F(as¥,¢€), Iy ...I, € Fy(a;pl,e). It implies that
fe(a;ply€) > (f(a; l;€))P. Thus the second inequality in (2.7) always holds.

To prove the first inequality, let I1,. .., I, € ¥; be any words with I3 ... I, € Fy(o;pl,€). By part
(iv) of Lemma 2.1, there exist K1,..., K, € Uf:l ¥; such that Z?il |K;| = 2pr and

p p
cr H ”MIJH < HMh(K1Isz)(K313K4)...(sz,glpsz,g)sz,lep|| <c? H ”ijHv
j=1 j=1

where C' is a constant. Hence if £ > ¢ 1(|log C| + 2r max{|3| : 3 € Las}), then
Il(K1]2K2>(K3I3K4) e (szfg.[pKQI)fQ)Kprlep S F(Oé;p(f + 27")7 26).

Note that when I ...I, is taken over the set Fy(a;pl, €), by the pigeon hole principle, we get at
least )
2r—1 e
#(U =) fe(a; pl,€)
j=1

many different elements of form Iy (K112 K2)(K3I3Ky) . .. (Kop—31pKop_2)Koap—1 Kap which belong to

2
F(a;p(£+2r),2¢). Here (#(Uf;l Ej)) " is an upper bound of the number of all possible different

-2
elements (K1, ..., Ka,). Taking D = (#(U* 'S, , we have f(a;p(£+2r),2¢) > DP fy(a; pl,e).
P j

=1
This finishes the proof of the lemma. (]
Fix ¢ € N. Define

¢ oo . 1 -

(2.8) By (@) = § (@) € %: lim —log | [TIMeg oyl | =ap. €k
j=1
and
1

(2.9) Py (l,q) = ;log (Ssen.[IMs)?),  q€R.

14
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Proposition 2.6. If a = P;,(¢,q) for some q € R, then Ej(\f[)(oz) # 0 and

) ¢ 1
(2.10) dimpg E\)(a) = @(PMM, q) — aq).

The proof of the above result is based on the following theorem of Billingsley:
Proposition 2.7. (c.f. [19], P. 99, see also [5, 50]). Let (X,d) be a metric space (R™ or ¥). Let u
be a Borel probability measure on X. For a Borel set E C X, we have a < dimyg E <b if

log (B
W(E) >0, EC{xGX: aghminf‘)g“((“))gb}.
r—0 log r

Proof of Proposition 2.6. Assume a = Py, (¢, q) for some ¢ € R. Then
1

o= 5o PO S M 9 og | M.
JEN[
Define a product-like measure p on ¥ such that
(211) pllarza . and]) = e PED T Moy
j=1

for any n and any cylinder [z12 . .. 2] With 2(;_1)e41 - 250 € Ny foreach 1 < j < n. It is clear p is

o‘-invariant and o‘-ergodic. By the Birkhoff’s ergodic theorem, we have for p a.e. z = (;)32, € %,

. logu([z122 ... T0d]) . —nlPar(Cq) + 300 qlog [[Ma gy, |
lim = lim
n—0co logm—"n¢ n—0co —nllogm
1
= Pa(€,q) —qt ™t Prb0 % 7 ||M,]||qlog|MJ||>
logm < Jen,
1
ogm (Fm(6:a) = aq)
Note also that
o0 (0 . logp([rims .. ane]) 1
(z1)i21 € Eyf (o) <= nhjrgo log m—1% = logm(PM(& q) — aq).
This proves the proposition by using the Billingsley theorem. O
Proposition 2.8. Let {M;: i=1,...,m} be a family of dx d complex matrices which is irreducible

in the following sense: there is no proper linear subspace V. of C* such that M;V C V for all
1 <i < m. Then there exist C > 0 and k € N such that for any words I, J € ¥* =7 {1,...,m}",

there exists a word K € Uizl{l, ..., m}" such that
M| = ClIMil[[| My,

where || - || denotes the standard matriz norm.

Proof. We prove the proposition by contradiction. Assume that the proposition is not true. Then
for any § > 0 and n € N, there exist I, J € ¥* such that M, My # 0 and

M|l < OIM|[|Myll, VK € X" with [K| <n,

where | K| denotes the length of K. Let u; be a unit row vector and v; a unit column vector in cH
such that
[ Mrl| = llurMyll, | Myll = | Mol
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— ur M —~ Mjv
Define uy = HJIVII\II and vy = W Then

@i Mxvs| <6, VK e3* with |K]| < n.

Take two sequences {0} | 0 and {ng} T co. Then for each ¢, there are unit column vectors we1 and
wy, 2 such that

|w21Mng,2| < dy, V K € ¥* with |K| < ng.
Let (w1, wsz) be a limit point of {(we 1, we,2)}een. Then we have
|wi Mgws| =0, VK e€X*
Let V be the linear space spanned by { Mgws : K € ¥*}. Tt is clear that M;V C V forall 1 <14 < m.

However V is perpendicular to wy, which means that V is a proper subspace of C%. This contradicts
the irreducibility of {M; : 1 <i < m}. O

We remark that the above result and its extension for singular value functions for matrix products
were independently obtained by Falconer and Sloan [22]. They also obtained partial results on the
multifractal analysis of norms of matrix products [23].

3. A DIMENSION FORMULA FOR FEj/(«)

In this section we give a dimensional formula for the set Eps(a).

Proposition 3.1. For o € Ly, we have
1 ; 1 ;
lim lim inf log f(ain, €) = lim lim sup log f(ain, €) (= Ap(@)).
e—0 n—oo log mn e—0 noo log m™

The function Aps : Lyr — [0, 1] is concave and continuous.

Proof. The proposition follows from Lemma 2.4 and Lemma 2.5 by a standard argument. For a
similar approach, see the proof of Proposition 3.2 in [11]. ]

Proposition 3.2. For a € Ly, we have
dimH EM(O() = dimp EM(a) = A]\/[(Oé).

Furthermore, for any word £ € ¥* with M¢ # 0, there exists T' =T'(§) C En(a) such that dimy I' =
Ay () and for any x = (x;)52, € I, there exists a sequence of positive integers {ny(x)}g2, T oo
Nkt1(2)
ng ()

say £ = uy...us appears in (xj)g‘;l at position n if TpTpy1 ... Tpys—1 =E&).

such that ni(x) = 1, limg_, o =1, and § appears in (x;)32, at each position ny(x) (here we

Proof. We divide the proof into two small steps.
Step 1. dimp E]M(Oé) < AM(Oé), Vo € Lyy.
The proof of this step is standard. Let

~ 1
Glask,e) = — ()2 Z:‘—l M, --- M,
@ik = () {o = @iz, € 2| Loy, -0,

n=~k

—a‘<e}.

It is clear that for any € > 0,

Ey(a) C U G(as k,e€).
k=1
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Notice that if n > k, G(«; k, €) is covered by the union of all cylinders [w] with w € F(«;n,€) whose
total number is f(a;n,€). Therefore we have the following estimate

dimpG(a; k,€) < limsup W
n— 00 m

(Ve > 0,Vk > 1),

where dimp denotes the upper box dimension (see [20]). On the other hand, by using the o-stability
of the packing dimension, we have

dimp Ey(a) < dimp (U G(Q;k‘,e)) < supdimp G(a; k,€)
k
k=1
- 1 '
< supdmpG(ask,¢) < limsup 28 (B
k n— oo logmn

Taking ¢ — 0, we obtain the desired result.

Step 2. For any given { € ¥* with M¢ # 0 and § > 0, there exists I' C Ep(a) such that

dimgI' > Ap(a) — 6 and for any © = (z;);>1 € I', there exists a sequence of positive integers
Nkt (2)

{nk(x)}22, 1 oo such that ni(z) =1, limy_. e

ng(x).

We first construct for any index (i,5) € {1,2,...,d}?, a word 7n(i,j) € ¥* such that ¢ appears
in 7(i,7) as a subword and the (i, j)-th entry of M, ;) is positive. To achieve this purpose, we
fix an index (s,t) such that the (s,t)-th entry of M¢ is positive. By the assumption (H2), for any
1 <14,j <d, there exist words I, Is € ¥* such that the (4, s)-th entry of My, and the (¢, j)-th entry
of M, are positive. Set n(i,j) = I1£I5. Then (i, ) satisfies the desired property.

=1 and § appears in (z;);>1 at each position

By Proposition 3.1, there are £; T oo and ¢; | 0 such that
Flosty,ej) > mba(@=3),
Define a new sequence {/}} in the following manner

gl,...,fl;fg,...,fg;...;éj,...7gj;...
——— ——

N1 Na N;
where IN; is defined recursively by
Nj =24+ Ni- (5 >9), Ny =1.

Set €; = €; when {7 = {;. By the pigeon hole principle, for each j, there exist an index (sj,t;) and a

subclass G of F(a; (5, €;) such that #G; > d=?f(a; 5, €;) and for any I € Gj, the (s;,t;)-th entry
of Mj is greater than or equal to d—2||M;]|.

Define
o =[] ¢,
j=1

Observe that ©* is a homogeneous Moran set in ¥ (see, e.g., [11]). More precisely ©* is constructed
as follows. At level 0, we have only the initial cylinder X. In step j, cut a cylinder of level j — 1 into
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m'i cylinders and pick up #G; ones. Thus we have (see, e.g., [11, Proposition 3.1])

log [TF_, #G,
dimy ©* > liminf%
k—o0 log Hj:l mSi
k — * *
.. 10gHj:1(d 2f(a;€j7€j))
lim inf S EE
k=00 log Hj:l m-

AM(Oz) — 0.

v

v

Now for any y* = I1I... € ©* with I; € G}, we define

Yy =&n(t,s)hn(te, s2) Ian(te, ss) - Iy nty, sjp1) ...
Define ©** C 3 as the set of sequences y**. By considering the map y* +— y** which is nearly
bi-Lipschitz, we have dimy ©** = dimy ©*. On the other hand a direct check shows ©** C Ej/(«).
Set I' = ©**. Then I satisfies the desired property. This finishes the proof of the proposition. [

4. PROOF OF THEOREM 1.1

To prove Theorem 1.1, we need the following

Proposition 4.1. [11, Propostion 2.5]. Let f be a convex real-valued function on R. Denote

(4.1) a= lim M, b= lim M

r——0o0 I r—oo I

(i) Suppose that {152 is a sequence of differentiable convex functions converging to f point-
wise. Then for any c € (a,b), there exist N > 0 and a uniformly bounded sequence of real
numbers {x, }n>n such that f](z,) = c.

(ii) Assume —oo < a < b < co. Then we have

%igﬂf{{—zm + f(x)} = Jicg%{—bx + f(@)} %;gﬂg{—zx + f(x)} = giclelﬂf{{—ax + f(z)}.

Proof of Theorem 1.1. We divide the proof into 2 steps:

Step 1. dimp Ep(a) < +—2—(—aq+ Py(q)) Vo € Ly,Vq € R.

— logm
For any o € Ly, € > 0 and n € N, let f(a;n,€) be defined as in Section 2. Then

q f(a;n,e)exp(ngla—e)), ifqg>0,
Iezj\/n = { flasn, €) exp(ng(a+¢)), if g <0,

which implies that for any ¢ € R,

1 .
Pu(g) > ga+ lim liminf log flasm, )

E—O00 N—00 n

Applying Propositions 3.1 and 3.2 gives
Pr(q) > ag + (logm) dimp Eps(a).

Step 2. For all a € Ly,

. i > i - .
(4.2) dimgy Epy(a) > Togm inf{~aq+ Pu(q)}
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To show the above inequality, we at first consider a trivial case: ap; = [Bas, where aj; and Gy
are defined as in (2.3). In this case, Ay(z) = ayps for all 2 € X. Thus by (2.6), we have

1
dimpg Ep(apy) =dimg X =1 > Togm ;Iel]g{—an + PM((])}.

In the following part we assume ap; # Bas-

First we consider o € (apr, Bar). The case a = app or By will be treated later. Let Py (¢, q) and
E](\fl)(oz) be defined as in (2.9) and (2.8) respectively. By Lemma 2.2, the sequence {Pas(¢,q)}32,
converges to Pp(g) pointwisely. Thus by Proposition 4.1, there exists N > 0 such that there is a
uniformly bounded sequence of real number {g¢}¢>n such that Py, (¢,q,) = . By Proposition 2.6,

dim g Eg\f[)(oz) =Py (4, q0) — aqe, Y¢>N.

Note that for any € > 0 and n € N, the collection {[J] : J € Fy(a;nl,€)} is a m~"-cover of EJ(\? ().
This implies

oo fulsnlie) ¢
hnrr_l}olgf “llogm > dimg EJ(\/[) (o) = Pr(4, qo) — agp.
Combining it with (2.7) yields
log f(a;nl + 2nr, 2¢) 14 1

lim inf : Pu(l,q) — ag),  Ve>O0.
i (nl+2nr)logm — £+ 2r logm( w (6 qe) = age) ‘
Hence by Proposition 3.2, we have

L 1

(+2r logm

(43) dll’IlH E]w(a) Z (P]u(e7 qg) — Oé(]g), Vf Z N

Since the sequence {g;}¢>n is uniformly bounded, there exists a subsequence {qs, } which converges
to a finite point go.. We are going to show

Denote ¢t = max{||M;| : 1 <i < m}, and define a new matrix function M := M. 1t is easily
checked that
(4.5) Py(t,q) = qlogt+ Py (£,q),  Pa(q) = qlogt + Py (q).

Since ||M;|| <1 for all 1 < i < m, Py(f,q) and Pjy;(g) are monotone decreasing functions of . Now
for any € > 0, we can find a,b € R with a < g5 < b such that
Py(a) < Pyy(goc) + ¢, Ppy(b) > Pyp(gec) — €.
When ¢ is large enough, ¢, € (a,b), and thus
PM(Eiab) < PM(givq&) < PM(&’G)-

It follows that

limsup Py (£, ge,) < lim Py (4i,a) = Py(a) < Pyy(goo) + €.
and

limianM(fi,Qgi) > lim PM(&J)) = PM(b) > PM(qoo) — €.

Since € > 0 is arbitrary, we have
lim P]\?[(gm qfi,) - PM(qOO)

11— 00
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Combining it with (4.5), we obtain lim; oo Par(€:, qe;) = Pr(geo), which implies (4.4). Thus by
(4.3), we have

. 1
dimy Ey(a) > @(PM(QOO) — o).
This establishes (4.2).

Now we consider the case & = s (the case o = [ can be treated in an identical way). By
Proposition 3.2 and 3.1, the function dimyg Ejs(x) of x is continuous on Lj;. Consequently,

dimHEM(aM) = lllm dlmH EM(Z),
Z| QN

and thus

dimpy Ep(aps) > lim inf{—zq+ Pm(q)}.

ogMm zlan qeR
By Proposition 4.1 (ii), we have

inf {— P,
logm;gR{ avq+ Pu(q)},

which finishes the proof of (4.2). O

dimH E]u(O[M) Z

5. PROOF OF THEOREM 1.2

Let Sjz = pz+b; (j =1,2,...,¢) satisfy the finite type condition. That is, there exists a finite
set I' of non-negative numbers such that for each integer n € N and any two indices J = j1...7j,
and J' =j1...7],

(5.1) either p~"1S5(0) = Sy (0)] > ¢ or p "Ss(0)— Sy (0) €T,
where S denotes the composition Sj, o...05;, and ¢ = (1 — p)~(maxi<j<¢bj — minj<;<, b;). Let
pt be the self-similar measure generated by {S;}_, with the probability weight {p;}}_,, i.e., p is
the unique Borel probability measure on R satisfying the following relation:
¢

-1

(5:2) p="> pjpoS;".
j=1
Let K denote the self-similar set generated by {5} }§:17 i.e., K is the unique non-empty compact set
satisfying K = U§:1 S;(K).
The following proposition describes the local structure of u:

Proposition 5.1. Let the family {Sj}le and the self-similar measure p be given as above. Then
there exist two positive integers m and d, an m X m irreducible 0-1 matrix A = (Aij)1gi,jgm, m
d x d non-negative matrices M; (1 <i <m), such that

(a) E;"Zl M; is irreducible.

(b) M;, Mj, ... Mj;, # 0 if and only if the word J = j1ja ... jn is A-admissible (i.e., A;
fork=1,....,.n—1).

(c) Let ¥4 denote the set {(x;)2, € ¥: Age,,, =1 for alli > 1}. Then there exists a family
(finite or countably infinite) of closed intervals {Ix}rep with disjoint interiors such that the
endpoints of Iy, belong to K for all k € A, p(Upecp Ix) = 1, and for each k € A there exists
a surjective map my, : X4 N[1] — K N I such that there are Cy1,Cy > 1 (only depending on
k), such that for any n € N and A-admissible word iqis . . .1, with i, =1,

=1

kJk+1
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1) C%p” < diam 7 (X4 N [i1is ... i,]) < Cip".

C%HMl1 oM || < p(m(Ba N inds .. dn]) < Col| My, ... M ]

(c.3) The subintervals conv(my (X aN[itiz .. . inint1])) (whereiny1’s are taken so that A; i, ., =
1) have disjoint interiors. Here conv(Y) denotes the convex hull of Y. Moreover if
we set [a,b] := conv(mp(XaN[iriz...1,])) and [c,d] := conv(mi(BaN[itiz ... inint1])),

then the ratios Z:; and ‘;:Z only depend on iy and ipy1.

Most parts of the above proposition were proved or implicit in [12]. However for the convenience
of the readers and for completeness, we will provide a detailed constructive proof in the next section.

Proposition 5.2. Let m, M;(1 < i < m) and {I;}rea be given as in the above proposition. Let
(3, 0) be the full shift space over the alphabet {1,...,m}. For any k € A denote pp = u|ly, i.e. py
is the restriction of the measure u on I. Then for any q € R,

(5-3) (s 9) = Pu(q)/logp,  Vk €A,
where Pyr(q) is defined as in (1.5). Moreover (g, q) = 7(1,q) for all ¢ > 0.

Proof. The proof is identical to that of Proposition 5.7 and Lemma 5.3 in [12]. O

Proof of Theorem 1.2. We use the same notion as in Proposition 5.1. Fix one index k£ € A and
consider the measure py. For t € R, define

- {y eR: lim log i ([y — 6,y +4]) _ t}.

log 0

To prove Theorem 1.2, we shall prove the following two statements respectively:

(S1) Et # 0 <=t € [min, ¥max], Where

P
= lim T @) o Pala)
g—+oo g g—+oo qlogp
and .
o lim W) g Pula)
== ¢ g——o0 qlogp

(S2) For any t € [min, Qmax)

dimy E; = ;rel]g{tq —7(pk:q)} = “logp ;gﬂg{—tq log p+ Pr(q)}-

By Lemma 2.3 and Proposition 5.2, we have

i TR0 o Pula) _ Bu i T ) o Pul@) _ aw

= = 5 = m =
g—+oo g g—+oo qlogp logp’ g¢—=-o0 ¢ g—-o qlogp logp

To prove (S1), we shall present some notation at first. For convenience, we denote

R(iy...1n) :=conv(mp (X4 N[iy...0,])) for each A-admissible word 4; .. .4, of length n with iy =1,
and call it an n-th net interval. By Proposition 5.1(c), C%p” < diam(R(iy . ..14,)) < Cip™ and
S IMiy o M || < i (R(iy - i) < Col|[ M, ... M,

nH'

Now take any y € suppuy. For any integer n > 0 and 6 € [Cyp™, C1p" 1), notice that the interval
n—1
[y —§, y+08] contains at least one n-th net interval and intersects at most (210/10# +1=2(C1)%p 1 +1
many different n-th net intervals. It follows that
1

n 1D

o, min M, oo My, || < pal[y — 6,y +6]) < Ca(2(C1)*p~ + 1) max || M, ... M;
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where the minimum and the maximum are taken over the set of A-admissible words of length

log pk ([y—9,y+4]) log pux ([y—9,y=+96]) c

n. Applying (2.3) and Lemma 2.3 gives limsup;_,, Jliminfs g

log & log
[lfélp, lg‘é”p] = [Qmin, ®max|- Thus we have
(5.4) E; # 0 =t € [0min, Cmax]-

This proves the “=" part of (S1). To prove the other part, take any t € [Qmin, ¥max] and let
a = tlogp. Then « € [an, Bu]. Pick an A-admissible word £ = ujus ... us with uy = 1 such that
the net interval R(uy ...us) is strictly contained in the interior of the interval R(u;) = Ij. This
choice is always possible since p contains no atoms. By Proposition 3.2, there exists a non-empty
set ' =T'(§) C Enm(a) such that dimy I’ = dimy Ey (), and for any o = ()52, € T, there exists

j=1
a sequence of positive integers {n,(z)};2; T oo such that n;(z) = 1, lim,_ nff(lx) =1, and ¢
appears in (z;)32; at each position ny(x). We shall finish the proof of (S1) by showing that

(5.5) m(T) C Ey.

To show (5.5), let x = (2;)$2, € . Then x; = 1 and by Proposition 5.1 (b), the words z; ...z, are
A-admissible for all n. Notice that for each n, diam(R(z1 ...x,)) < C1p™, hence we have [mx —
Crp" mrx+C1p" D R(21 ... xy). It follows that py([rrz —Crp", mrz+Crp"]) > pr(R(xy ... xy)) >
C%HMI1 ..M, _||. Consequently we have

log p ([rrx — 8, T + d]) log pr ([rrx — C1p™, mpx + C1p"])

lim su = limsu
50 log 6 s log(C1p™)
log(A-|| My, ... M,
(5.6) < limsup 8z 1M, -1) -
n—oo log(C1p™) log p

To see the other direction, notice that the interval R(u; ...us) is contained in the interior of R(uy).
Thus there exists v > 0 such that [y — v,y + 7] C R(uy) for each y € R(u; ...us). By Proposition
5.1(c.3), for each p € N, the relative position of R(x1... 2, () - Tp,(@)+s—1) I B(T1 ... Ty (o)) 18
the same as that of R(2p,(2)Tn, (2)41 - - Tny(2)+s—1) 0 R(z ), i.e., that of R(uq...us) in R(uq).
Therefore for each y € R(x .. Ty (z) - - 'xnp(:x)+s—1)7

(57) [y - FY|R("E1 s xnp(w)—l)|a y+ ’}/|R(CC1 s Inp(x)—l)‘] - R(le s Inp(x))'
Now for any large ¢ € N, there is an integer p such that
VR @y, (1) < pF <YIR(z1... 25, (z)—1)|- Therefore by (5.7),

np ()

[mra — p, mex +pf]  C  [ma —y|R(21 ... Ty (@)—1)|s T + Y[ R(21 .. Ty (0)-1)]]
C R(wy1.. Ty (a))
In the meantime,
p' > R(@y . Ty ()—1)] > Cllp"P“(z).
These two inequalities imply
log i ([mrw — p°, mow + pf]) _ log p(R(@1 - Ty ) 108(C2l[May - Mo, ) )
log p* = log(gpmn®) T log g+ nppa(z)logp

Let £ — oo. Since npt1(x)/np(z) tends to 1 as p — oo, we obtain

log pp([mrx — 0, TR + 0]) log pux([mez — o, i + pf])

L inf i inf
gy log e llogp
log || Mg, ... M, .
(5.8) > lim inf 1M, P“H:t.

p—00 ny(x) log p
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By (5.6) and (5.8), we obtain (5.5). This finishes the proof of (S1).
To show (S2), by (5.5) we have dimy E; > dimpg 7, (T). Later we shall prove that

1
(5.9) dimg mp(F) = —2™ qimy F,  VF C San[l].
—logp
Applying (5.9) we have dimy F; > dimpy 7 (T) = iofi;”p dimygI' = _lolgognp dimpy Epr(a). Hence using

Theorem 1.1, we have

1
inf { Py (q) —
“og p;gR{ M (q) — aq}

. Pr(q) ol
= inf - q
g¢eR | —logp —logp

— inf{_ tq).
;QR{ 7(pk, q) + tq}

dimH Et Z

However, since E; # (), the upper bound dimpy Ey < inf,er{—7(1r, ¢)+tq} is generic, not depending
on the special property of uy (see, e.g., [7, Theorem 1] or [31, Theorem 4.1]). This finishes the proof
of (S2).

Now we prove (5.9). Actually the proof is quite standard. Since Cilp” < diam(R;, . 4,) < Cip™
for any n-th net interval R;, ., , we have

e = my| < Cu(d(e,y)) ™5, Va,y e San (i)
This implies (for a proof, see, e.g., [20, Proposition 2.2].)
(5.10) Hslosm/losp () < (C)) TSt/ e P s (F), Ws >0, F C Xan[l],

where H" denotes the u-dimensional Hausdorff measure. On the other hand, for each s > 0 and
FcXan(l], let {A,}52, be a family of intervals such that diam(A,,) < diam(Iy), A, N7 F # 0
and Un21 A,, D mpF'. Then for each n set

G, = {A-admissible words i1 ...7, : i1 =1, Ri, 5, N Ap # 0, pP < diam(A,,) < J

By the net property, #G,, < % + 1, and furthermore the family {¥4 N [n] : n € U5, Gn} is a
cover of F' with

S dwm 0507 < (D) X (s, e
n€U, 51 Gn P n>1
Thus we have
Hoslesm/losr (B > (Cy/p+ 1) "HA(F),  ¥s>0, FCSan(l].
Combining it with (5.10) yields (5.9). This finishes the proof of Theorem 1.2. 0

Remark 5.3. Applying Theorem 1.2 and Proposition 5.2, we can deduce a global property of p,
that is,

(5.11) dimy E,(a) = irelﬂf{{aq —7(q)}, Vae€[r'(+00),7'(0-)],
q
where 7(q) = 7(u,q). To see this, since 7(q) is concave, we have for a € [r'(+00),7(0—)],

infyep{ag — 7(¢)} = infy>0{aq — 7(q¢)}. By Proposition 5.2, 7(ur,q) = 7(q) for all ¢ > 0 and
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k € A. Thus by Theorem 1.2, for a € [7/(400), 7/(0-)],

inf{aq - 7(q)} Inf{aq —7(¢)} = inf{aq —7(u, 0)}

= inf{aq—7(uk,q)} = dimy E,, (o).
qeR

Since dimy E,(a) > dimg E,,, (o) and dimy E, (o) < infer{ag—7(¢)}, the equality (5.11) follows.

Furthermore if the equality 7(ux,q) = 7(¢) holds for all ¢ < 0, then we have a strong result:
The measure p itself satisfies the complete multifractal formalism. To see it, we have for all a €
[7'(+00), 7'(—00)],

inf{aq —7(q)} = inf{aq —7(uk, 9)} = dimpy By, (0).

Since dimy E, (o) > dimy E,, () and dimg E,, (o) < infier{ag — 7(q)}, we have
(5.12) dimy E,(a) = ig}%{aq -7(q)}, Vo€ [r'(+00), 7 (—00)],
q

On the other hand, E,(a) # () implies a € [7/(+00), 7/(—00)]. To see it, denote ac = SUP, cqupp () H([T—
€, x+¢€]) and be = inf,cgupp(u) 1([T —€,7+€]). Denote 7(€,q) :=sup ), pu(Be(x;))?, where the supre-
mum is taken over all the families of disjoint balls B.(x;) of radius € and center z; € supp(x). Then
we have
(CLE)q’r(e, Q) < eil(ae)qa if ¢ >0,
{ (be)i7(e,q) < e (b)), ifg<O.

Since by definition 7(g) = liminf. .o log 7 (e, ¢)/ log e, we have

| e—0 l(l)ge )
glimsup,_,, looggb; —1<7(q) < qlimsup,_, ﬁ)ggb;. if ¢ <0.

{ qliminf._q lffga; —1<7(q) < qliminf logac if g >0,

This implies

log a.

log b,
limipt =7 =l 7(q)/q = 7'(+00),  limsup l‘fg = lm_7(q)/q="7'(~c0).

Thus E, (o) # 0 implies o € [1/(4+00),7'(—00)]. This fact, together with (5.12), shows that x
satisfies the complete multifractal formalism.

6. THE STRUCTURE OF SELF-SIMILAR MEASURES SATISFYING THE FINITE TYPE CONDITION

In this section we will outline the structure of self-similar measures satisfying the finite type
condition and provide a constructive proof of Proposition 5.1. Especially we shall take the Erdos
measure as an example. Almost all the results involved come from [12] and [13].

Let Sjz = px +0b; (j =1,2,...,¢) satisfy the finite type condition, i.e., {S;} satisfies (5.1). Let
1 be the self-similar measure generated by {S; }?zl with the probability weight {p, }le. Let K be
the corresponding self-similar set. Without loss of generality, here and afterwards we always assume
0=b1 <bs<...<bp=1-—p.
Under this assumption, the convex hull of K is just the interval [0, 1].

Write A = {1,...,¢}. For n € Nlet A,, denote the collection of all indices ji ... j, of length n over
A. For o = ji...j, € A, write S, = Sj, 0...05; . We define two families of sets P2, P! (n > 0)
in the following way: PY = {0}, P} = {1}, and P? = {S,(0) : 0 € A,}, P} = {S,(1): 0 € A,}
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for n > 1. Define P, = P?J P! for n > 0. Let hy,...,hs, be all the elements of P, ranked in the
increasing order. Define
Fn=Alhj hjer] + 1< <sny (By, hja) N K # 0}

Each element in F,, is called an n-th basic net interval. The following facts about basic net intervals
can be checked easily: (i) UAe}‘n A D K for any n > 0; (ii) For any Ay, Ag € F,, with Ay # Ao,
int(Ay) Nint(Ay) = 0; (iii) For any A € F,, (n > 1), there is a unique element A € F,_; such that
ADA.

For each A = [a,b] € F,, (n >
positive integer r,, (A). If A [O
for n > 1, we define ¢,,(A) an

0), we will define a positive number ¢,,(A), a vector V,,(A) and a
1] € Fo, we define £5(A) =1, Vo(A) = 0 and ro(A) = 1. Otherwise
V. (A) directly by
(D) =p~"(b—a)
and
Vn(A) = (al, ey ak).
where aq,...,a; (ranked in the increasing order) are all the element of the following set

{p7"(a—55(0)): o€ An, S;(K)N(a,b) # 0}
Denote by v,(A) the dimension of V,,(A), that is, v,(A) = k. We define r,(A) in the following
way: let A be the unique interval in F,_1 containing A, and Ay, ..., Ag (ranked in the increasing
order) be all the elements in F,, satisfying A; C AL, (Aj) =L, (A), Vo (Aj) =V (A) for 1 < j < k.
Define r,(A) to be the integer r so that A, = A. For convenience, we call the triple
Cn(A) = (€n(A); Vi (A);mn(A))

the n-th characteristic vector of A, or simply characteristic vector of A. The vector C,(A) contains
the information about the length and neighborhood relation of A. Define

(6.1) Q={C,(A): n>0, A e F,}.

For any a € 2, we write for simplicity

(6.2) l(a) =L (A), V(a) = Vi(A), v(a) =va(A), r(a) =ra(A),

it A e F, and C,(A) = a.

Lemma 6.1. (i) For a given A € F,(n >0), let Ay,..., Ay (ranked in the increasing order)

be all the elements in Fny1 which are subintervals of A. Then the number k, the vectors
Crt1(A;) (1 < i < k) are determined by £,(A) and V,(A) (thus they are determined by
Cu(A)).

(ii) The set Q2 is finite.

Proof. See [12, Lemma 2.1 and Lemma 2.3]. |

Let ©* denote the collection of all finite words over ). For any a € €, pick n and A € F,, such
that a = C,(A). Let Aq,..., A (ranked in the increasing order) be all the elements in F,, 1 which
are subintervals of A. Write a; = Cp41(4;) for 1 < j < k. By Lemma 6.1, the word oy ...y
depend only on « (independent of the choice of n and A). We define ¢ : Q — Q* by

C(Oé) =1 ...0k.
Define a 0-1 matrix A on 2 x  in the following way:

1 if 3 is a letter of ((«),
(6.3) Aap = { 0 otherwise.
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A word By ..., € Q" is called admissible if Ag, 5., =1 for 1 <j <n.

Now we would like to associate each basic net interval with a unique admissible word. For each

A € F, (n>0), we list the intervals
AC AL AT

such that A" = A, and AJ (j = 0,...,n — 1) is the unique element in F; such that A7 > A+,
The word aga; ... a,, where a; = C;(A?Y) for 0 < i < n, is called the symbolic expression for
A. The introduction of the third term in a characteristic vector guarantees that two different net
intervals have different symbolic expressions. Each admissible word of length n + 1 starting from
~0 := Co([0, 1]) is a symbolic expression of some n-th basic net interval.

Now we analyze the distribution of x on basic net intervals. Let A = [a,b] be an n-th basic net
interval. Write V,,(A) = (a1,...,a,,(a)). Iterating (5.2) n times we obtain

p(A) = " pop(S, 1 (A)),
oeA,

where p, denotes the product pj, ...p;, for o = ji ... j,. Since p is a non-atomic measure supported
on K, we have

n(A) = > Poi(S5 1 (A))
€A, Sy (K)N(a,b)#0
vy (A)

>, >, Poi(S; (D))

=1 o€Ay,: p~"(a—S55(0))=a;

vn(A)
(6.4) = Z m([ai, ai + £n(A)]) Z Po-
i=1 c€EAL: S, (0)=a—pa;

Define a v, (A)-dimensional row vector Q,(A) = (q1,...,qy,(a)) by
(6.5) qi = p([as, a; + £,(A))]) Z Do i=1,...,0,(A).
o€A,: S,(0)=a—p™a;

We call Q,,(A) the vector form of p on A. By (6.4), u(A) = |Q.(Q)| = Zf;gA) gi- Moreover,
Qn(A) is always a positive v, (A)-dimensional vector for any n > 0 and A € F,.

For any A € F,, (n > 1), denote by A the unique element in F, 1 so that A O A. Assume
A = [a,b] and A = [¢,d]. Write V,(A) = (a1,...,ay,(a)) and V,,_1(A) = (c1,.. "Cun,l(ﬁ))' Define
for any ¢ € {1,...,v,(A)} and j € {1,... ,vn,l(ﬁ)},

s Js € A so that ¢ — p"“lej + p" by = a — p"ay,
Y= 0 otherwise.
Define a v,,_1(A) x v, (A) matrix T(Cn_1(A), Cn(A))
_ wyip ([ai, ai + 0 (A)])

tjﬂ' =
1 ([Cja cj + lo—1(A)]

Il
&
N

o
<

, 1<j<vp (D), 1<i<u,(A).

We have R R

@n(B) = Qu-1(A)T(Cr1(A), Cr(D)).
Since p~"(c — a) depends only on C,_1(A) and Cn(A), so does (w;;). Thus T(Co_1(A), Cp(A))
depends only on Cn,l(ﬁ) and Cp,(A). Hence we have
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Proposition 6.2. ([12, Theorem 3.3]) Let T'(cv, B) (o, B € Q, Ay g = 1) be a family of non-negative
matrices defined as above, then for any A € F,,

QTL( ) (70571) T(’)/n_l,’)/n%

where vy . .. Yn 8 the symbolic expression of A. O

Moreover we can express precisely the entries of the product T'(ay, ) ... T (ap—1, ) for a given
admissible word «; ...a,. To see this, choose t € N and A = [a,b] € F; so that C;(A) = a;. As-
sume that the symbolic expression of A is g ...7:—1a1. Then there is a unique A’ = [e, f] € Frin—1
whose symbolic expression is o ... 7101 ... an. Write Vi(A) = (a1, ..., a4,(a)) and Viyn_1(A) =
(€1, €y, 1(ar)). Denote for simplicity X = T'(a1,az2)...T(an—1,0,). Then from the construc-
tion of T'(a, B), we have by induction that

Proposition 6.3. ([12, Proposition 3.5]) For any 1 < j < v (A), and 1 <i < wvpppn_1(4A'),

e ei + bepn—1(A)] ]
M lag, a5+ G(A)) 2

De-
(€A, _1: a—plaj+ptSe(0)=e—pttn—le;

A non-empty subset Q of Q is said to be an essential class of € if it satisfies: (i) {3 € Q : Ay p =
1} C Q for any a € Q; (ii) for any o, 3 € Q, there exist v, ..., 7, € Q such that v; = a, 7, = 3 and

Ay, vy = 1for 1 <i<n—1. The existence of at least one essential class is well known (see, e.g.,
Lemma 1.1 of [45]). In the following we prove
Lemma 6.4. (i) © has ezactly one essential class €.

(ii) For any o € Q, k € {1,...,v(a)} and n € Q, there exists an admissible word «; ...

with j > 2 such that oy = o, a;j = 1 and all the entries of the k-th row of the matriz
T(aq,a)...T(aj_1,a;) are positive.

(iii) There exist two constants N € N and C > 0 such that for any A € F,, and anyn € (A), there
exist s < N and A C A with A € F,,, and CnJrs(ﬁ) =1 such that ,u(ﬁ) > Cu(A).

Proof. We adopt a similar method used in the proof of Lemma 4.4 in [12]. To show that  has
exactly one essential class, it suffices to prove that there exists an element v in 2 such that for any
a € €, there is an admissible word beginning with « and ending by . Equivalently, one needs
to show that for any » and A; € F,, there exists Ay C A; with Ay € F,,s for some n’ > n and
Cn'(AQ) =

To achieve this, we pick 8 € Q such that (i) (8) = min{l(n) : n € Q}; (i) v(B) = max{v(n) :
n € Q,l(n) = €(B)}, where v(-) and ¢(-) are defined as in (6.2). Fix an element v € Q such that
Ap~ = 1. Choose ¢ € N and A = [c,d] € F; such that C,(A) = 3. Write Vi(A) = (c1,. ., ¢y (a))-

Choose arbitrarily n € N and Ay = [a,b] € F,. Write V,,(A1) = (a1,...,0a,,(a,)). Fix k €
{1,...,v,(A1). By the definition of V,, (A1), there exists o € A, with S,(0) = a — p™ax and
SU(K) (a,b) # 0. Find a large integer [ and ¢ € A; so that S,(K) C (a,b) and thus S,4([0,1]) C
(a,b), where o¢ denotes the concatenation of o and ¢.

Denote A = Soe(A). Tt is clear A C (a,b) since Se([0,1]) C (a,b). We claim that A e Frtitq
with Vi pi4¢(A) = V4(A) and lh4144(A) = £4(A). First we show A € Frpiq and lyyiiq(A) =
¢4(A). To see this, we observe that the two endpoints of A belong to the set Pn+l+q since those of A

belong to P;. In the meantime mt(A) N K # () since int(A) N K # (. Therefore, A contains at least
one element in Frti+q- On the other hand the minimality of ¢(3) shows that each (n + 1+ ¢)-th
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basic net interval has length at least p"++9¢(3), i.e., the length of A. Combining these two facts we
have A € Fryisq and Ly y14q(A) = £(8) = £y(A). To show Vi 414 4(A) = V4(A), by the maximum
of v(f) it suffices to show each coordinate of the vector V;(A) is a coordinate of Vn+l+q(3). To
prove this, note that for any 1 < u < v,(A), there exists ¢ € A, such that S,(0) = ¢ — plc, and
Sy(K) N (c,d) # 0. Therefore, Sypy(0) = Spg(c) — p e, and Sypy(K) Nint(S,4(A)) # 0. Note
that A = Soe(A) and Sy4(c) is the left endpoint of A. By the definition of Vn+l+q(ﬁ), Cy s a
coordinate of Vn+l+q(£). Thus the claim follows. Since the first two terms of Cn+l+q(ﬁ) are the
same as Cq(A) = f and Ag, = 1, by Lemma 6.1, there exists an (n + 1+ ¢ + 1)-th basic net interval

A, C A such that Crnti+q+1(A2) =~. This finishes the proof of part (i) of the lemma.

To show part (ii), we use the same notation as in the above proof. Denote by 7g . .. v,—1c the sym-
bolic expression of A;. Since A € F, 4144 and A C Ay, we can denote by 7o ... Yh—10Yn+1 - - - Vn+i+q

the symbolic expression of A. Especially as proved above, vp444 satisfies V(vn4i44) = V(8) and
U Vnti+q) = £(08). Denote

X = T(OZ, r)/n—i-l)T(’Yn-i-lv 7n+2) cee T(’Yn-‘rl-‘rq—ly 77L+l+q)~
By Proposition 6.3, for any 1 < u < v(8) = v(Vntitq)

06) o = s 0. > e

’ ag,ar + 4(a
,u'([ ks Uk ( ) §€-Al+qi (l*p7"ak+p"LS§(0):S<7¢(C)7p“+l+qCu

Recall that we have proved in last paragraph that for each 1 < u < v(f), there exists ¢ € A, such
that Sy4y(0) = Sye(c) — p" T F4c,. Note that

Sogw(0) = S5(0) + p" Sy (0) = a — p"ak + p"Sgy (0).
By (6.6), Xk > 0. Therefore

(6.7) erT(a, Yn+1)T (Yt 1, Ynt2) - - - T(Yntidg—1, Yotitq) > 0,
where e denotes the v(«)-dimensional row vector whose k-th coordinate is 1 and all other coordi-
nates are 0.

Choose an admissible sequence 7 ...n; such that n; = and n; = 7. By (6.7),

(6.8) erT (o, Ynt1) - - - T(Vntirq—15 Yoti4a) T (Vntieg, m)T (1, m2) - .. T(ne—1,me) > 0,
That is, all the entries of the k-th row of the matrix

T, Y+ 1)T (Ynt1s Ynr2) - - TVnvirg—1, Yntirg) T (vntirgs 1) T (015m2) - T(1e—1,me)
are positive, which completes the proof of part (ii).
Part (iii) follows from part (ii). To see it, by part (ii) we can construct a finite family of admissible
words {1 ...a;}a,ky When o, k and n are taken over the set Q, {v(1),...,v(a)} and § respectively.

Let N denote the largest length of the words in this family. Let D denote the smallest non-zero
entry appear in the constructed matrices T'(a1, a2) ... T (o —1, ).

Now fix A € F,, and ) € Q. Assume C,,(A) = o. Choose k € {1,...,v(a)} such that k-th entry of
Qn(A) is larger than or equals to ﬁ 1Qn(A)|| = ﬁ,u(A). Let a1 ... a; be a constructed admissible

word beginning with o and ending by 7, such that the k-th row of the matrix T'(ov1, a2) . .. T'(cvj -1, )
are positive. Let W be the symbolic expression of A. Then there exists a unique one A C A with
A € Fy,yj—1 such that symbolic expression of A is Was ... ;. Then

H(B) = 1Qu(AIT (@, 0) .. T(ay1.05)]| = Fooosn(A).



24 DE-JUN FENG

This finishes the proof by letting C' = inf,cq ﬁ(a). ]

Let Q be the essential class of Q. In what follows we always denote m := #(AZ and write Q =
{m,....0m}. Set d =>"", v(n;), where v(-) is defined as in (6.2). In the following we construct a
family of d x d matrices {M;}™ ;. For any 1 < ¢ < m, define M; to be the partitioned matrix

% % 0
[]1.)1 Ul,2 Ul,m
% % )
U2,1 U2,2 T U2,m
M; = . . . . )
% i i
m,1 Um,2 Um,m

where for each 1 < j, k < m, U;,k is a v(n;) x v(nx) matrix defined by

Ui, — T(nj,m:) if k=diand A4,,,, =1,
PET0 otherwise.

Let Jo € F,, so that Cp,(Jp) = m1. Denote Oy € Q* by ©g = Y9...Vn,—171 the symbolic
expression of Jy. Given A € F,, (n > ng) with A C Jy, define Q,,(A) to be the partitioned vector
(W1,..., W), where W; is a v(n;)-dimensional row vector defined by

_ ] Qn(d) if n; = Cu(A),
Wi _{ . i

otherwise.

It is clear that @n(A) is a d-dimensional row vector, which is called the uniform vector form of u
on A. We have

Lemma 6.5. (i) The matriz H := Y. M; is irreducible. That is, there exists an integer
r > 0 such that H" > 0.
(il) Given A € Fpyin (n > 1) with A C Jy, we have

Q\noan(A) = Q\no (Jo)M“ N Min ~ eMlMil . Min;

where Ogmn;, ... 1, is the symbolic expression of A, e denotes the d-dimensional row vector
of which each entry equals 1, and the constant involved in “~” only depends on Jy. Hence
u(A) & || MM, ... M;, |

(iil) M, ... M;, # 0 if and only if n;, ... n;, is an admissible sequence.

Proof. See [12, Lemma 4.1 and Proposition 4.2]. O

Proof of Proposition 5.1. Let m, d and M; (1 < ¢ < m) be constructed as above. Without
confusion we define an m x m 0-1 matrix A = (A4; j)1<ij<m by

Aij = Aninys
where A, g (o, f € Q) is defined as in (6.3). Since Q is an essential class of , the matrix (Aij)i<ij<m
is irreducible. Then part (a) and (b) of Proposition 5.1 follows from Lemma 6.5 (i) and (ii). Define
Y={1,....mMNand T4 = {(2;)2, € X : A, =1 for ¢ > 1}. Moreover we define A C Q* by

Tit1
A = {A-admissible word agay ... an @ ag = Yo, = M, £ for 1 <i < n}.
For any W = agay ..., € A, we denote by Iy the n-th basic net interval whose symbolic expression

is W = apaq ...a,. By the definition of A and the structure of basic net intervals, int(ly/) N
int(Iyw) = 0 for different words W, W' € A.
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Now we show (U, cp Iw) = 1 by contradiction. Assume that u(lJycp) =t < 1. Then for any
€ > 0, there exists n € N such that

t—e< Y ulw) <t
WeA,|W|<n

where || denotes the length of the word W. Let F,, denotes the collection of all n-th basic net inter-
vals that have no intersection with the interior of Uy e p jw i<, Iw- Then Uacr UUwen jwi<n Iw) O

K, thus 3 .z pu(A) > 1 —t. By Lemma 6.4 (iii), for any A € F), there exists a corresponding
U € A with |U| > n such that Iy C A and p(ly) > Cu(A) for a constant C' > 0 independent of n.
Therefore
S wln)=C Y wa) -,
UeA,|U|>n AEF],
which leads to a contradiction with the fact ZUEA,\U|>n 1(Iy) < e, since € can be taken arbitrarily
small.

Now for W = agay ... a, € A we define the map 7y : X4 N[1] — KNIy by

oo
Ww(l‘) = ﬂ Aa‘v/‘iwz...xw Vo = (xi)'?il’
k=2
where A~ denotes the basic net interval whose symbolic expression is W, ...7,,. By the
structure of basic net intervals, conv(my (SaN[z122 ... 2x]) = AV, . . From this fact and Lemma
6.5 (ii), part (c) of Proposition 5.1 follows. This finishes the proof. |

Example 6.6. Let p = @ and let u be the self-similar measure generated by the family of maps
{S12 = px, Sex = pr + 1 — p} and the probability weight {1/2,1/2}. The measure p, which is
also called the Erdos measure, is the well known Bernoulli convolution associated with the golden
ratio. The structure of this measure has been extensively studied in [13]. For this measure we have
Q={a1,qs,...,a7}, where

a1 = (1;0;1), az=(p;0;1), az=(1-p;(0,p);1), as=(p;1—p;1),

as = (p;(0,1=p)i1), ag=(2p—1Li1=pil), ar=(1-p;(0,p);2).

The map ¢ : Q — Q* is given by
C(a1) = aazay, ((a2) = aas, ((az) =as, ((as) = azoy,
C(as) = azagar, (o) = as, ((ar) = as.

Let A be defined as (6.3). The matrices {T'(c, 8) : a, 5 € Q, Ay =1} are given by

T(Oél,ag):l/3, 1—‘(04170[3):[1/67 1/6]7 T(Oél,Oé4):1/3,
T(CVQ,OZQ) = ]._/2, T(a27a3) = [1/4, ]./4]7
T(Oég,Oég;) = (:; (1) )
T(ay,a3) = [:1/4/, 1/4]/, T(ay, ag) = 1/2/, /
1/4 1/4 1/4 1/4 0
Tlag,05) = L0 174 T(az, 00) = [ 1/4 ] Tz, a7) = [ 1/4 1/4 ]
T(a67a3) = [_1/271/2]7
T(az,a5) = é (1) )
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The essential class of 2 is ) = {as, a5, ag, ar}. For convenience we relabel the elements of Q by
l:=a3, 2:=a5, 3:=a, 4:=ar.

The matrices M; (1 <1 < 4) are given by

0 0 00000 0010000
0O 0 00000 0001000
1/4 1/4 0 0 0 0 0 0000O0TO0O
Mi=| 0 1/4 0 0 0 0 0|, M=|00000 0 0|,
1/2 1/2 0 0 0 0 0 0000O0TO0O
0O 0 00000 0010000
. 0 0 00 0 0 O L0 0010 0 0]
[0 000 0 0 0] [0 0 0 00 0 0]
0000 0 00 00000 0 0
0000 1/4 0 0 00000 1/4 0
Ms=|0 0 0 0 1/4 0 0|, Ms=|0 0 0 0 0 1/4 1/4
0000 0 00 00000 0 0
0000 0 00 00000 0 0
L0000 0 0 0| 00000 0 0 |

For this special case the Li-spectrum 7(u,q) of p can be expressed explicitly [13, 30] and has a
non-differentiable point ¢g < 0 [13]. In fact by using the same idea in [13], one can get the formula
for 7(uk,q) and prove 7(ug,q) = 7(q) for all ¢ € R and k € A. Since Py(q) = (log p)7 (1, q) for
q € R, Py(q) has a non-differentiable point at gq.
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