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Abstract. Let E,F ⊂ Rd be two self-similar sets, and suppose that F can be

affinely embedded into E. Under the assumption that E is dust-like and has a

small Hausdorff dimension, we prove the logarithmic commensurability between the

contraction ratios of E and F . This gives a partial affirmative answer to Conjecture

1.2 in [9]. The proof is based on our study of the box-counting dimension of a class

of multi-rotation invariant sets on the unit circle, including the αβ-sets initially

studied by Engelking and Katznelson.

1. Introduction

For A,B ⊂ Rd, we say that A can be affinely embedded into B if f(A) ⊂ B for

some affine map f : Rd → Rd of the form f(x) = Mx + a, where M is an invertible

d×d matrix and a ∈ Rd. In this paper, we investigate the necessary conditions under

which one self-similar set can be affinely embedded into another self-similar set.

Before formulating our result, we first recall some terminologies about self-similar

sets. Let Φ = {φi}`i=1 be an iterated function system (IFS) on Rd, that is, a finite

family of contractive mappings on Rd. It is well known (cf. [15]) that there is a unique

non-empty compact set K ⊂ Rd, called the attractor of Φ, such that

K =
⋃̀
i=1

φi(K).

Correspondingly, Φ is called a generating IFS of K. We say that Φ satisfies the open

set condition (OSC) if there exists a non-empty bounded open set V ⊂ Rd such that

φi(V ), 1 ≤ i ≤ `, are pairwise disjoint subsets of V . Similarly, we say that Φ satisfies

the strong separation condition (SSC) if φi(K) are pairwise disjoint subsets of K. The

strong separation condition always implies the open set condition ([15]). When all

maps in an IFS Φ are similitudes, the attractor K of Φ is called a self-similar set. By

a similitude we mean a map φ : Rd → Rd of the form φ(x) = ρPx + a, with ρ > 0,

a ∈ Rd and P an d× d orthogonal matrix. A self-similar set is called nontrivial if it

is not a singleton.

The problem of determining whether one self-similar set can be affinely embed-

ded into another self-similar set was first studied in [9], revealing some interesting
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connections to smooth embeddings and intersections of Cantors sets. It was shown

in [9] that, under the open set condition1, one nontrivial self-similar set F can be

embedded into another self-similar set E under a C1-diffeomorphism if and only if it

can be affinely embedded into E; moreover, if F can not be affinely embedded into

E, then there is a dimension drop in the intersection of E and any C1-image of F in

the sense that

dimH(E ∩ f(F )) < min{dimHE, dimH F},
where f is any C1-diffeomorphism on Rd, and dimH stands for Hausdorff dimension

(cf. [7, 17]).

The above affine embedding problem is also closely related to other investigations

on self-similar sets and measures, including classifications of self-similar subsets of

Cantor sets [10], structures of generating IFSs of Cantor sets [11, 3, 4], Hausdorff

dimension of intersections of Cantor sets [5, 12], Lipschitz equivalence and Lipschitz

embedding of Cantor sets [8, 2], geometric rigidity of ×m-invariant measures [13],

and equidistribution from fractal measures [14].

It is natural to expect that, if one nontrivial self-similar set can be affinely embedded

into another self-similar set which is totally disconnected, then the contraction ratios

of these two sets should satisfy certain arithmetic relations. The following conjecture

has been formulated from this view point.

Conjecture 1.1 ([9]). Suppose that E,F are two totally disconnected nontrivial self-

similar sets in Rd, generated by IFSs Φ = {φi}`i=1 and Ψ = {ψj}mj=1 respectively.

Let ρi, γj denote the contraction ratios of φi and ψj. Suppose that F can be affinely

embedded into E. Then for each 1 ≤ j ≤ m, there exist non-negative rational num-

bers ti,j such that γj =
∏`

i=1 ρ
ti,j
i . In particular, if ρi = ρ for all 1 ≤ i ≤ `, then

log γj/ log ρ ∈ Q for 1 ≤ j ≤ m.

We remark that the above arithmetic relations on ρi, γj do fulfil when E and F are

dust-like (i.e., Φ and Ψ satisfy the SSC) and Lipschitz equivalent [8]. Nevertheless, no

arithmetic conditions are needed for the Lipschitz embeddings. Indeed, it was shown

in [2] that if E,F are dust-like with dimH F < dimHE, then F can be Lipschitz

embedded into E.

So far Conjecture 1.1 has been considered in [9, 1, 19, 22] in the special case that

Φ is homogeneous, that is, ρi = ρ for all i. It was proved in [9] that the conjecture is

true under the additional assumptions that Φ is homogeneous satisfying the SSC and

dimHE < 1/2. Recently, Algom [1] showed that in the case that d = 1, the conjecture

holds under the SSC and homogeneity on Φ, the OSC on Ψ and an additional assump-

tion that dimHE− dimH F < δ, where δ is a positive constant depending on dimH F .

Very recently, Shmerkin [19] and Wu [22] independently obtained much sharper result

in the case that d = 1. Shmerkin [19] proved that Conjecture 1.1 holds under the

1Here we say that a self-similar set satisfies the open set condition if it has a generating IFS which

satisfies this condition.
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assumptions that d = 1, Φ is homogeneous satisfying the OSC and dimHE < 1. Wu

[22] proved the conjecture under almost the same assumptions, except for putting the

SSC on Φ instead of the OSC.

In this paper we consider the general case that Φ might not be homogeneous. Let

Q denote the set of rational numbers. For u1, . . . , uk ∈ R, set

spanQ(u1, . . . , uk) =

{
k∑
i=1

tiui : ti ∈ Q

}
.

Then spanQ(u1, . . . , uk) is a linear space over the field Q with dimension ≤ k.

Our main result is the following.

Theorem 1.2. Under the assumptions of Conjecture 1.1, suppose in addition that Φ

satisfies the SSC and dimHE < c, where

(1.1) c =

{
1/4, if ` = 2,

1/(2λ+ 2), if ` ≥ 3.

with λ = dim spanQ(log ρ1, . . . , log ρ`). Then the conclusion of Conjecture 1.1 holds.

The proof of Theorem 1.2 is based on our study of the box counting dimension of

certain multi-rotation invariant sets on the unit circle. To be more precise, we first

introduce some notation and definitions. Let T = R/Z denote the unit circle (which

can be viewed as the unit interval [0, 1] with the endpoints being identified). For

x ∈ R, let {x} and [x] denote the fractional part and integer part of x, respectively.

Let π : R→ T be the canonical mapping defined by x 7→ {x}.

Definition 1.3. Let α1, . . . , α` ∈ R with ` ≥ 2. A non-empty closed set K ⊂ T is

called an (α1, . . . , α`)-set if

K ⊂
⋃̀
i=1

(K − π(αi))

equivalently if, whenever x ∈ K, then there exists i ∈ {1, . . . , `} so that x+π(αi) ∈ K.

Moreover, a sequence (xn)∞n=0 of points in T is called an (α1, . . . , α`)-orbit if

xn+1 − xn ∈ {π(α1), . . . , π(α`)}

for all n ≥ 0.

Definition 1.4. Let α1, . . . , α` ∈ R with ` ≥ 1. Say that α1, . . . , α` are Q+-independent

(mod 1) if the following equation

t1α1 + . . .+ t`α` ≡ 0 (mod 1)

in the variables t1, . . . , t` has a unique solution (0, . . . , 0) in Q`
+, where Q+ stands for

the set of non-negative rational numbers.
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Similarly we can define Q-independence (mod 1) via replacing Q+ by Q in Defini-

tion 1.4. It is clear that the Q-independence (mod 1) implies the Q+-independence

(mod 1).

The study of (α1, . . . , α`)-sets has its origin in the early works of Engelking and

Katznelson [6, 16]. In 1961, Engelking [6] raised the question of existence of nowhere

dense (α, β)-sets (for short, αβ-sets), where α, β are Q-independent (mod 1). Finally

in 1979, Katznelson [16] gave an affirmative answer to this question. He showed that

for any such pair (α, β), there always exist nowhere dense αβ-sets; furthermore for

certain special pairs (α, β), there exist αβ-sets of Hausdorff dimension 0.

In contrast to Katznelson’s result, we prove the following result claiming that,

any (α1, . . . , α`)-orbit passing through infinitely many points has a large lower box-

counting dimension (cf. [7, 17] for the definition).

Theorem 1.5. Let α1, . . . , α` ∈ R with ` ≥ 2. Suppose that (xn)∞n=0 is an (α1, . . . , α`)-

orbit passing through infinitely many points. Write r = dim spanQ(1, α1, . . . , α`)− 1.

Let K be the closure of the set {xn : n ≥ 0}. Then the following statements hold.

(i) If r = 1, then K has nonempty interior.

(ii) If r = 2 and ` = 2, then either K −K = T or K has non-empty interior; in

particular,

dimBK ≥ 1/2,

where dimB stands for lower box-counting dimension.

(iii) If r ≥ 2 and ` ≥ 3, then

dimBK ≥ 1/(r + 1).

Notice that when α1, . . . , α` are Q+-independent (mod 1), xn 6= xm for different

n,m for any (α1, . . . , α`)-orbit (xn)∞n=0. Hence by Theorem 1.5, we have the following

corollary, saying that under the assumption of Q+-independence, every αβ-set or

more generally, every (α1, . . . , α`)-set has a large lower box-counting dimension.

Corollary 1.6. Let α1, . . . , α` ∈ R with ` ≥ 2. Assume that α1, . . . , α` are Q+-

independent (mod 1). Let K ⊂ T be an (α1, . . . , α`)-set. Then the statements (i), (ii)

and (iii) listed in Theorem 1.5 hold for K.

To our best knowledge, Theorem 1.5 seems to be new. It not only plays a key role

in our proof of Theorem 1.2, but is also interesting in its own right.

This paper is organized as follows. In Section 2 we prove Theorem 1.5. In Section 3

we prove Theorem 1.2. In Section 4, we pose several questions for further study.

2. Box-counting dimension of multi-rotation invariant sets

In this section, we prove Theorem 1.5. Let ` ∈ N, ` ≥ 2 and α1, . . . , α` ∈ R. Sup-

pose that (xn)∞n=0 is an (α1, . . . , α`)-orbit that takes infinitely many values. Without
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loss of generality, we assume that x0 = 0. Then by Definition 1.3, there exists a

sequence (ωn)∞n=1 with ωn ∈ {1, . . . , `} such that

(2.1) xn ≡
n∑
i=1

αωi
(mod 1), n = 1, 2, . . . .

Set X = {xn : n ≥ 0}. Then K = X, where X stands for the closure of X. Below

we prove parts (i), (ii) and (iii) of Theorem 1.5 separately.

First observe that dim spanQ(1, α1, . . . , α`) =: 1 + r > 1, otherwise α1, . . . , α` are

all rationals and hence X is a finite set, which leads to a contradiction. Therefore,

r ≥ 1.

Proof of Theorem 1.5(i). Assuming that r = 1, we shall show that K has non-empty

interior. Pick a suitable basis 1, β of spanQ(1, α1, . . . , α`) so that

(2.2) αi = piβ + ri for i = 1, . . . , `,

for some pi ∈ Z and ri ∈ Q. Clearly, β is irrational.

Pick q ∈ N such that all ri are the integral multiples of 1/q. Let p = max1≤i≤` |pi|.
Since the set X = {xn : n ≥ 1} is infinite, we have p ≥ 1 and moreover, by the

expression (2.2) of αi, it is not hard to see that

either

p⋃
i=−p

q⋃
j=−q

(
X + iβ +

j

q

)
⊃ {nβ : n ∈ N} (mod 1)

or

p⋃
i=−p

q⋃
j=−q

(
X + iβ +

j

q

)
⊃ {−nβ : n ∈ N} (mod 1).

Taking closure and applying the Baire category theorem, we see that K = X has

non-empty interior. �

Proof of Theorem 1.5(ii). Assume that r = 2 and ` = 2. It is enough to show that

either X −X is dense in T, or X has non-empty interior. As a direct consequence,

2 dimBK = 2 dimBX ≥ dimB(X −X) = 1,

where the second inequality follows from the simple fact that, if X can be covered by

k balls B1, . . . , Bk of radius δ, then X −X can be covered by Bi − Bj (1 ≤ i, j ≤ k)

and hence by k2 many balls of radius 3δ.

Suppose that X −X is not dense in T. Then there exists δ > 0 so that X −X is

not δ-dense in T. Notice that α2 − α1 /∈ Q since r = 2. Consequently, there exists a

positive integer N such that the set

{k(α2 − α1) : k = 1, . . . , N} (mod 1)

is δ-dense in T. Write τ(0) = 0 and

τ(n) = #{1 ≤ i ≤ n : ωi = 2} for n ≥ 1,
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where #A stands for the cardinality of A. We claim that

(2.3) sup
n,m∈N

|τ(n+m)− τ(n)− τ(m)| < N.

Suppose on the contrary that the claim is false, i.e.,

(2.4) |τ(n+m)− τ(n)− τ(m)| ≥ N for some n,m ∈ N.

Fix such n,m. Define

bj = τ(m+ j)− τ(j), j = 0, . . . , n.

Then |bn − b0| ≥ N by (2.4). A direct check shows that

bj+1 − bj = ωm+j+1 − ωj+1,

which implies |bj+1 − bj| ≤ 1. Since |bn − b0| ≥ N , we see that the set {b0, . . . , bn}
contains at least N consecutive integers, say t+1, . . . , t+N . Observe that for each k,

xk ≡
(
k − τ(k)

)
α1 + τ(k)α2 ≡ kα1 + τ(k)(α2 − α1) (mod 1).

Hence for j = 1, . . . , n,

xm+j − xj ≡ mα1 + (τ(m+ j)− τ(j))(α2 − α1)

≡ mα1 + bj(α2 − α1) (mod 1).

Therefore,

X −X ⊃ {xm+j − xj : j = 1, . . . n}
≡ {mα1 + bj(α2 − α1) : j = 1, . . . n}
⊃ {b′ + (α2 − α1), b

′ + 2(α2 − α1), . . . , b
′ +N(α2 − α1)} (mod 1),

where b′ = mα1 + t(α2 − α1). Consequently, X − X is δ-dense in T, leading to a

contraction. This proves (2.3).

Next we use (2.3) to show that X has non-empty interior. Indeed by (2.3), we have

τ(n+m) +N ≤ (τ(n) +N) + (τ(m) +N)

and

N − τ(n+m) ≤ (N − τ(n)) + (N − τ(m)),

that is, the two sequences (τ(n) +N)n≥1 and (N − τ(n))n≥1 are both subadditive. It

follows that the limit τ = limn→∞ τ(n)/n exists, and moreover,

τ = inf
n≥1

τ(n) +N

n
, − τ = inf

n≥1

N − τ(n)

n
.

That means |τ(n)− nτ | ≤ N for all n ≥ 1, and so

(2.5)
∣∣τ(n)− [nτ ]

∣∣ ≤ N for all n ≥ 1.

Set τ ′ = (1− τ)α1 + τα2, and let

yn = {nτ ′} − {nτ}(α2 − α1) (mod 1) for n ≥ 1.
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Then

yn ≡ n((1− τ)α1 + τα2)− {nτ}(α2 − α1)

≡ nα1 + [nτ ](α2 − α1)

≡ nα1 + τ(n)(α2 − α1) + zn

≡ xn + zn (mod 1),

where zn := ([nτ ]− τ(n))(α2 − α1). By (2.5), for all n ≥ 1,

zn ∈ {k(α2 − α1) : k ∈ Z and |k| ≤ N} =: Z.

Let Y = {yn : n ∈ N}; then Y ⊂ X+Z (mod 1). Since Z is finite, by Baire category

theorem, X has non-empty interior if so does Y .

It remains to show that Y has non-empty interior. Since r = 2, τ and τ ′ can not

be rational numbers simultaneously. Therefore,

W :=
{

({nτ}, {nτ ′}) : n ≥ 1
}

is an infinite compact subgroup of T2 = R2/Z2. Then it is either the whole group T2

or finitely many lines in T2 with rational slope (see, e.g. [21, Example 15.9, Theo-

rem 15.12 and Remark 16.15]). Notice that

Y =
{
{nτ ′} − {nτ}(α2 − α1) (mod 1) : n ≥ 1

}
,

which can be regarded as the image of W under certain projection along an irrational

direction since α2−α1 /∈ Q. Consequently, Y has non-empty interior and so does X.

This completes the proof of Theorem 1.5(ii). �

Before proving Theorem 1.5(iii), we first give two simple lemmas.

Lemma 2.1. Consider the following system of linear equations in the variables z1, . . . , z`:

(2.6)
∑̀
i=1

ai,jzi = bj, j = 1, 2, . . .

where ai,j, bj ∈ Q for all i, j. Suppose that the system has a real solution. Then it

must have a rational solution.

Proof. This is a classical result in linear algebra. �

Recall that the canonical mapping π : R→ T is defined by x 7→ {x}.

Lemma 2.2. For A ⊂ T and δ > 0, let Nδ(A) denote the smallest number of intervals

of length δ that are needed to cover A. Then for any positive integer p, we have

Npδ(π(pA)) ≤ Nδ(A).

Proof. Suppose that A can be covered by intervals I1, . . . , Ik. Then π(pA) can be

covered by the intervals π(pI1), . . . , π(pIk). This fact is enough to conclude the

lemma. �
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Proof of Theorem 1.5(iii). Now suppose that r ≥ 2 and ` ≥ 3. Pick a suitable basis

1, β1, . . . , βr of spanQ(1, α1, . . . , α`) so that

(2.7) αi =
r∑
j=1

pi,jβj + qi, i = 1, . . . , `,

for some pi,j ∈ Z and qi ∈ Q.

For i = 1, . . . , `, set

Ni(0) = 0, and Ni(n) = #{1 ≤ j ≤ n : ωj = i} for n ≥ 1.

Write

bj(n) =
∑̀
i=1

pi,jNi(n), 1 ≤ j ≤ r, n ≥ 0.

Then bj(n) ∈ Z, and moreover,

(2.8) bj(n+ 1)− bj(n) =
∑̀
i=1

pi,j(Ni(n+ 1)−Ni(n)) = pωn+1,j.

Clearly, we have

xn ≡
∑̀
i=1

Ni(n)αi

≡
∑̀
i=1

(( r∑
j=1

(pi,jNi(n)βj

)
+ qiNi(n)

)

≡
r∑
j=1

bj(n)βj +
∑̀
i=1

qiNi(n) (mod 1).

(2.9)

As qi ∈ Q, the term cn :=
∑`

i=1 qiNi(n) (mod 1) can take only finitely many differ-

ent values. However, by assumption, xn can take infinitely many different values, thus

the sequence (b1(n), . . . , br(n))n≥0 of integer vectors is unbounded. Therefore, there

exist r0 ∈ {1, . . . , r} and a strictly increasing sequence (ns)s≥1 of positive integers

such that

(2.10) |br0(ns)| = max
1≤j≤r

|bj(ns)| for all s ≥ 1, and lim
s→∞
|br0(ns)| =∞.

Choose a positive integer M so that M > 1 +
∑r

j=1 |βj|. Then define β∗1 , . . . , β
∗
r by

β∗j =

{
βj if j ∈ {1, . . . , r}\{r0},
βr0 +M if j = r0.

Correspondingly, set q∗i = qi −Mpi,r0 for 1 ≤ i ≤ `. Clearly {1, β∗1 , . . . , β∗r} is still a

basis of spanQ(1, α1, . . . , α`) and it satisfies the following relations:

(2.11) αi =
r∑
j=1

pi,jβ
∗
j + q∗i , i = 1, . . . , `.
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Similarly to (2.9), for n ≥ 0 we have

(2.12) xn ≡
r∑
j=1

bj(n)β∗j +
∑̀
i=1

q∗iNi(n) (mod 1)

Set

(2.13) B(n) =
r∑
j=1

bj(n)β∗j =
r∑
j=1

∑̀
i=1

pi,jNi(n)β∗j .

Then by (2.10), we have

|B(ns)| =
∣∣∣∣ r∑
j=1

bj(ns)βj + br0(ns)M

∣∣∣∣
≥ |br0(ns)| ·

(
M −

r∑
j=1

|βj|

)
≥ |br0(ns)|.

Hence, by (2.10) again, we see that

(2.14) lim
s→∞
|B(ns)| =∞,

and the sequence

(2.15)

(
b1(ns)

B(ns)
, . . . ,

br(ns)

B(ns)

)
s≥1

is bounded.

Now we define a new sequence (x̃n)n≥0 of points in T so that x̃0 = 0 and

(2.16) x̃n ≡ B(n) (mod 1) for n ≥ 1.

By (2.12) and (2.13), we see that

(2.17) xn − x̃n ≡
∑̀
i=1

q∗iNi(n) (mod 1),

which can only take finitely many different values.

Next we prove a key lemma about the distribution of the sequence (x̃n).

Lemma 2.3. There exists k0 ∈ N such that

sup
n≥1
‖kx̃n‖ ≥ 1/5

for all integers k ≥ k0, where ‖x‖ = inf{|x− z| : z ∈ Z}.

Proof. We prove the lemma by contradiction. Suppose that the lemma is false. Then

there exists a strictly increasing sequence (kl)l≥1 of positive integers so that

(2.18) ‖klx̃n‖ < 1/5 for all n, l ≥ 1.
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Recall that {x} and [x] denote the fractional part and integer part of the real

number x, respectively.

Since the sequence
(∑r

j=1 pi,j{klβ∗j }
)
l≥1 is bounded for every i ∈ {1, . . . , `}, by

taking a subsequence of (kl)l≥1 if necessary, we can assume that

(2.19)

∣∣∣∣ r∑
j=1

pi,j

(
{klβ∗j } − {kmβ∗j }

)∣∣∣∣ < 1/5 for 1 ≤ i ≤ ` and l,m ≥ 1.

For each l ≥ 1, define yl,0 = 0 and

(2.20) yl,n =
r∑
j=1

bj(n){klβj} =
r∑
j=1

∑̀
i=1

pi,jNi(n){klβj} for n ≥ 1.

By (2.16) and (2.13), we have yl,n ≡ klx̃n (mod 1), and so ‖yl,n‖ < 1/5 by (2.18). We

claim that

(2.21) |yl,n − ym,n| < 2/5 for all l,m ∈ N and n ≥ 0.

To see it, we proceed by induction on n. Clearly (2.21) holds for n = 0, since by

definition yl,0 = 0 for all l ≥ 1. Now suppose that |yl,n − ym,n| < 2/5 for all l,m ∈ N
and some n ≥ 0. Since ‖yl,n‖ < 1/5 and ‖ym,n‖ < 1/5, by (2.21) there exists z ∈ Z
such that

(2.22) yl,n, ym,n ∈ (z − 1/5, z + 1/5).

Observe that

|(yl,n+1 − yl,n)− (ym,n+1 − ym,n)|

=

∣∣∣∣∣
r∑
j=1

(bj(n+ 1)− bj(n))
(
{klβ∗j } − {kmβ∗j }

)∣∣∣∣∣ (by (2.20))

=

∣∣∣∣∣
r∑
j=1

pωn+1,j({klβ∗j } − {kmβ∗j })

∣∣∣∣∣ (by (2.8))

≤ 1/5 (by (2.19)).

(2.23)

Since ‖yl,n+1‖ < 1/5, we have |yl,n+1 − z′| < 1/5 for some z′ ∈ Z, and so by (2.22),

|yl,n+1 − yl,n − (z′ − z)| < 2/5.

Combining the above inequality with (2.23) yields that

|ym,n+1 − ym,n − (z′ − z)| < 3/5.

Thus, by (2.22), |ym,n+1 − z′| < 4/5. Combining this with ‖ym,n+1‖ < 1/5, we have

|ym,n+1 − z′| < 1/5. Consequently, |yl,n+1 − ym,n+1| < 2/5. This completes the proof

of (2.21).



AFFINE EMBEDDINGS OF CANTOR SETS AND DIMENSION OF αβ-SETS 11

By (2.20) and (2.21), ∣∣∣∣∣
r∑
j=1

bj(n)
(
{klβ∗j } − {kmβ∗j }

)∣∣∣∣∣ < 2

5
.

That is ∣∣∣∣∣(kl − km)B(n)−
r∑
j=1

bj(n)
(
[klβ

∗
j ]− [kmβ

∗
j ]
)∣∣∣∣∣ < 2

5
.

Replacing n by ns and dividing both sides by |(kl − km)B(ns)| gives

(2.24)

∣∣∣∣∣
r∑
j=1

bj(ns)

B(ns)
·

[klβ
∗
j ]− [kmβ

∗
j ]

kl − km
− 1

∣∣∣∣∣ < 2

5|(kl − km)B(ns)|
.

By (2.15), the sequence (
b1(ns)

B(ns)
, . . . ,

br(ns)

B(ns)

)
s≥1

is bounded and hence has an accumulation point, say (t1, . . . , tr). By (2.14) and

(2.24), we have

r∑
j=1

tj
[klβ

∗
j ]− [kmβ

∗
j ]

kl − km
= 1 for all distinct l,m ∈ N.

Since
[klβ

∗
j ]−[kmβ∗j ]
kl−km

∈ Q, by Lemma 2.1, there exist u1, . . . , ur ∈ Q such that

r∑
j=1

uj
[klβ

∗
j ]− [kmβ

∗
j ]

kl − km
= 1 for all distinct l,m ∈ N.

Finally, letting kl−km →∞, we have
∑r

j=1 ujβ
∗
j = 1, which contradicts the fact that

1, β∗1 , . . . , β
∗
r are Q-independent. This completes the proof of the lemma. �

Let us continue the proof of Theorem 1.5(iii). Write m = max1≤i≤`
∑r

j=1 |pi,j|. We

claim that for every n ∈ N, there exists kn ∈ {1, . . . , (mn)r} such that

(2.25) ‖knβ∗j ‖ ≤
1

mn
, j = 1, . . . , r.

To prove this claim, fix n ∈ N and partition the unit cube [0, 1]r into (mn)r sub-cubes

of side length 1
mn

. Consider the following (mn)r vectors

vk = (kβ∗1 , . . . , kβ
∗
r ) (mod 1), k = 1, . . . , (mn)r.

The claim follows if vk ∈ [0, 1
mn

)r for some k. Otherwise, such (mn)r vectors are

contained by the remaining (mn)r − 1 sub-cubes. By the pigeonhole principle, two

of them, say vk and vk′ , are contained in the same sub-cube, and thus vk − vk′ ∈
[− 1

mn
, 1
mn

]r. Then we have ‖(k′ − k)β∗j ‖ ≤ 1
mn

for all j ∈ {1, . . . , r}. The claim is

proved by taking kn = |k′ − k|. Moreover, it is easy to see that kn →∞ as n→∞.
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Pick q ∈ N such that all q∗i are the integral multiples of 1/q. By (2.11) and (2.25),

we have

(2.26) ‖knqαi‖ ≤
r∑
j=1

(q|pi,j| · ‖knβ∗j ‖) ≤ qm · 1

mn
=
q

n
, i = 1, . . . , `, n ≥ 1.

Define yn,s ∈ T so that

(2.27) yn,s ≡ knqxs (mod 1), n ≥ 1, s = 0, 1, . . . ,

and let Yn = {yn,s : s = 0, 1, . . .} ⊂ T. By (2.26) and the definition of xs, we have

‖yn,s+1 − yn,s‖ ≤ q/n for each s ≥ 0. It follows that

In :=
⋃
s≥0

[
yn,s −

q

2n
, yn,s +

q

2n

]
(mod 1)

is an interval in T containing yn,0 = 0.

By (2.17), we have qxn = qx̃n (mod 1) for each n ≥ 1. Therefore, by Lemma 2.3,

there exists k0 > 0 such that

a := inf
k≥k0

sup
s≥0
‖kqxs‖ = inf

k≥k0
sup
s≥0
‖kqx̃s‖ ≥

1

5
.

Hence by (2.27), for any n so that kn > k0, we have sups≥0 ‖yn,s‖ ≥ a > 0, and hence

the length of In is not less than a. It follows that

Nq/n(Yn) ≥ an/q,

where Nδ(A) stands for the smallest number of intervals of length δ that are needed

to cover A. Since Yn = knqX (mod 1), by Lemma 2.2, we have

N1/(nkn)(X) ≥ Nq/n(Yn) ≥ an/q.

Since kn ≤ (mn)r, we have

N1/(mrnr+1)(X) ≥ Nq/n(X) ≥ an/q.

Noticing that the above inequality holds for all n ∈ N and m, q, r are constant, we

have

dimBX ≥ lim inf
n→∞

log(an/q)

log(mrnr+1)
=

1

r + 1
.

Thus we have dimBK = dimBX ≥ 1/(r + 1). �

3. The proof of Theorem 1.2

We begin with a lemma about orthogonal groups. Let O(d) be the group of d× d
orthogonal matrices operated by matrix multiplication. It is well-known that O(d) is

a compact Lie group if we regard it as a subset of Rd2 with the usual topology.

Lemma 3.1. For every P ∈ O(d), there exists k ∈ N such that the closure of

{P kj : j ≥ 0} in O(d) is a connected subgroup of O(d).
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Proof. This result might be well known, however we are not able to find a reference,

so a proof is included for the reader’s convenience.

Let P ∈ O(d), and let W be the closure of {P j : j ≥ 0} in O(d). It is not hard to

see that W is a compact Abelian subgroup of O(d). Hence by the Cartan theorem

(cf. [18, Theorem 3.3.1]), W is also a Lie group. Let W0 be the connected component

of W containing the unit element I. Then W0 is a closed normal subgroup of W , and

it is also open in W (cf. [18, Lemma 2.1.4]). By the finite covering theorem, W has

only finitely many connected branches. It follows that the quotient group W/W0 is

finite.

Let Z0 = {j ∈ Z : P j ∈ W0}. Then Z0 is a subgroup of Z. Since W/W0 is finite,

there are distinct j1, j2 ∈ Z such that P j1 and P j2 both belong to a coset of W0. Hence

P j2−j1 ∈ W0, and consequently, Z0 contains a nonzero element j2 − j1. Therefore,

Z0 = kZ for some k ≥ 1. We claim that W0 is the closure of {P kj : j ≥ 0}, from

which the lemma follows since W0 is connected.

Clearly W0 contains the closure of {P kj : j ≥ 0}. Conversely, since W0 is open and

disjoint from {P j : k - j}, it is also disjoint from the closure of {P j : k - j}. Thus,

W0 is contained in the closure of {P kj : j ≥ 0}. This completes the proof of the

lemma. �

Proof of Theorem 1.2. For brevity, we write φI = φi1 ◦ · · · ◦ φin and ρI = ρi1 · · · ρin
for I = i1 . . . in ∈ {1, . . . , `}n. Similarly, we also use the abbreviations ψJ and γJ for

J ∈ {1, . . . ,m}n.

Since F can be affinely embedded into E, there exist an invertible real d×d matrix

M and b ∈ Rd such that

(3.1) M(F ) + b ⊂ E.

Without loss of generality, we only prove that the conclusion of Theorem 1.2 holds

for j = 1, that is, there exist non-negative rational numbers t1,i, i = 1, . . . , `, such

that

γ1 =
∏̀
i=1

ρ
t1,i
i .

This is equivalent to showing that α1, . . . , α` are not Q+-independent (mod 1), where

αi := − log ρi
log γ1

for i ∈ {1, . . . , `}.

Let P1 be the orthogonal part of ψ1. By Lemma 3.1, there exists l ∈ N such that

the closure of {P lj
1 : j ≥ 0} in O(d) is a connected subgroup of O(d). In what follows,

replacing ψ1 by ψl1 if necessary, we may always assume that the closure {P j
1 : j ≥ 0}

in O(d) is connected.
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Let x be the fixed point of ψ1. Then x ∈ ψn1 (F ) for any integer n ≥ 0. By (3.1),

we have

y := M(x) + b ∈ E,
and thus there exists a symbolic coding i1i2 · · · ∈ {1, . . . , `}N such that

(3.2) y = lim
n→∞

φi1...in(0).

Clearly y ∈ φi1...in(E) for each n ≥ 0, which implies that

(3.3) (M(ψk1(F )) + b) ∩ φi1...in(E) 6= ∅ for any k, n ≥ 0.

Since Φ satisfies the strong separation condition, we have

(3.4) δ := min
i 6=j

dist
(
φi(E), φj(E)

)
> 0.

Moreover, for each n ∈ N, we have

(3.5) dist
(
φi1...in(E), E \ φi1...in(E)

)
≥ ρi1...in−1δ > 0.

For k, n ≥ 0, by (3.3) and (3.5) we have

(3.6) M(ψk1(F )) + b ⊂ φi1...in(E) if diam((M(ψk1(F )) < ρi1...in−1δ.

Now for n ≥ 1, define

(3.7) sn = min
{
k ≥ 0: M(ψk1(F )) + b ⊂ φi1...in(E)

}
.

Then by (3.6), sn <∞. Write

‖M‖ = max{|Mv| : v ∈ Rd with |v| = 1},
[]M [] = min{|Mv| : v ∈ Rd with |v| = 1},

(3.8)

where | · | denotes the standard Euclidean norm.

By (3.7)-(3.8), we have

[]M []γsn1 diamF ≤ diamM(ψsn1 (F )) ≤ diamφi1...in(E) = ρi1...in diamE.

Thus, we have

(3.9)
γsn1
ρi1...in

≤ diamE

[]M [] diamF
for all n ≥ 1.

For the lower bound, we claim that

(3.10)
γsn1
ρi1...in

≥ γ1δ

ρ∗‖M‖ diamF
if sn ≥ 1,

where δ is defined as in (3.4) and ρ∗ := max1≤i≤` ρi. Indeed, suppose that (3.10) fails

for some n with sn ≥ 1. Then

diamM(ψsn−11 (F )) ≤ ‖M‖γsn−11 diamF < (ρ∗)−1ρi1...inδ ≤ ρi1...in−1δ.

By (3.6), M(ψsn−11 (F )) + b ⊂ φi1...in(E), which contradicts the definition of sn. This

completes the proof of (3.10).
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For 1 ≤ i ≤ `, let Oi be the orthogonal part of φi. From M(ψsn1 (F ))+b ⊂ φi1...in(E)

we have

(φi1···in)−1(M(ψsn1 (F )) + b) ⊂ E.

Hence

ρ−1i1...inγ
sn
1 Qn(F ) + bn ⊂ E

for some bn ∈ Rd, where Qn = (Oi1 ◦ · · · ◦ Oin)−1MP sn
1 . Taking algebraic difference,

we have

(3.11) ρ−1i1...inγ
sn
1 Qn(F − F ) ⊂ E − E, n ≥ 1.

Fix a nonzero vector v ∈ F − F . For any integer k ≥ 0, we have

γk1P
k
1 v ∈ ψk1(F )− ψk1(F ) ⊂ F − F.

Hence by (3.11),

(3.12) ρ−1i1...inγ
sn+k
1 Qn(P k

1 v) ∈ E − E, ∀ n ≥ 1, k ≥ 0.

Taking norm on both sides yields

(3.13) ρ−1i1...inγ
sn+k
1 |MP sn+k

1 v| ∈ {|x1 − x2| : x1, x2 ∈ E}, ∀ n ≥ 1, k ≥ 0.

Next we continue our arguments according to whether the sequence
(
|MP j

1 v|
)∞
j=0

is constant.

Case (i): the sequence (|MP j
1 v|)∞j=0 is constant.

In this case, applying (3.13) with k = 0 we obtain

U := {|x1 − x2| : x1, x2 ∈ E} ⊃ V :=
{
ρ−1i1...inγ

sn
1 a : n ≥ 1

}
,

where a is the positive constant |MP j
1 v|. Set b∗ = inf V and b∗ = supV . By (3.9)-

(3.10), 0 < b∗ ≤ b∗ <∞.

Define f : [b∗, b
∗] → T by f(t) = log t/ log γ1 (mod 1). Since b∗ > 0, f is Lipschitz

on [b∗, b
∗]. Hence we have

(3.14) dimB f(V ) ≤ dimB V ≤ dimB U ≤ dimB(E − E) ≤ dimBE × E = 2 dimHE.

where dimB stands for upper box-counting dimension (cf. [7]). Recall that αi =

− log ρi/ log γ1 for 1 ≤ i ≤ `. Clearly,

(3.15) dim spanQ(α1, . . . , α`) = dim spanQ(log ρ1, . . . , log ρ`) =: λ.

Let ω = i1i2 . . . ∈ {1, . . . , `}N, where i1i2 . . . is the symbolic coding of y (see (3.2)).

Define a sequence (xn(ω))∞n=1 ⊂ T so that

xn(ω) ≡
n∑
k=1

αik (mod 1) for n ≥ 1.
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Set X(ω) = {xn(ω) : n ∈ N}. Then we have

f(V ) ⊃ X(ω) +
log a

log γ1
(mod 1).

Combining this with (3.14) yields

(3.16) dimHE ≥ (1/2) dimBX(ω).

Now suppose on the contrary that γ1 6=
∏`

i=1 ρ
t1,i
i for any non-negative rational

numbers t1,1, . . . , t1,`. This is equivalent to the fact that α1, . . . , α` are Q+-independent

(mod 1). Notice that X(ω) is an (α1, · · · , α`)-set. By Corollary 1.6, we have

dimBX(ω) ≥

{
1/2, if ` = 2,

1/(r + 1), if ` ≥ 3,

where r = dim spanQ(1, α1, . . . , α`)− 1. By (3.15), λ = dim spanQ(α1, . . . , α`) ≥ r.

Hence by (3.16), we have

dimHE ≥
1

2
dimBX(ω) =

1

2
dimBX(ω) ≥

{
1/4, if ` = 2,

1/(2λ+ 2), if ` ≥ 3.

Therefore, dimHE ≥ c, where c is given as in (1.1). It contradicts the assumption

that dimHE < c. This completes the proof of Theorem 1.2 in Case (i).

Case (ii): the sequence (|MP j
1 v|)∞j=0 is not constant.

For any integer p ≥ s1, let n = np be the largest integer so that sn ≤ p, and define

(3.17) u1,p = ρ−1i1...inγ
p
1QnP

p−sn
1 v, u2,p = ρ−1i1...inγ

p+1
1 QnP

p+1−sn
1 v;

taking k = p− sn and p− sn + 1 in (3.12) respectively, we have

(3.18) u1,p, u2,p ∈ E − E.

By (3.17), we have

(3.19)
|u2,p|
γ1|u1,p|

=
|MP p+1

1 v|
|MP p

1 v|
for all p ≥ s1.

Furthermore, by (3.9)-(3.10), there exist two positive constants c1, c2 so that

(3.20) |u1,p|, |u2,p| ∈ [c1, c2] for all p ≥ s1.

Now let W denote the closure of {P p
1 : p ≥ 0} in O(d). As we have assumed, W is

a connected subgroup of O(d). Moreover, W is also the closure of {P p
1 : p ≥ s1} since

W = P s1
1 ·W .

Write

U∗ = {|x1 − x2| : x1, x2 ∈ E} ∩ [c1, c2].

Define

π1 : U∗ × U∗ → R, (u1, u2) 7→
u2
γ1u1
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and

π2 : W → R, g 7→ |MP1gv|
|Mgv|

.

It is clear that U∗ is a compact subset of [c1, c2] with c1 > 0, thus π1 is Lipschitz and

π1(U
∗ × U∗) is compact. Moreover, π2 is continuous. By (3.18)-(3.20) and the fact

that W is also the closure of {P p
1 : p ≥ s1}, we have

(3.21) π2(W ) ⊂ π1(U
∗ × U∗).

We claim that π2 is not a constant function. Otherwise, suppose that

|MP1gv|
|Mgv|

= a

for all g ∈ W . We have a 6= 1 since the sequence (|MP p
1 v|)∞p=0 is not constant. If

a < 1, then |MP p
1 v| → 0 as p → ∞, and so |Mgv| = 0 for some g ∈ W . This is

impossible since M is invertible. If a > 1, then |MP p
1 v| → ∞ as p→∞. This is also

impossible since |P p
1 v| = |v| for all p ≥ 0.

Due to the above claim and the connectedness of W , the set π2(W ) is connected

and contains at least two different elements, hence it is a non-degenerate interval.

Therefore by (3.21),

4 dimHE ≥ dimH U
∗ × U∗ ≥ dimH π1(U

∗ × U∗) ≥ dimH π2(W ) = 1.

Thus, dimHE ≥ 1/4 ≥ c, a contradiction again. Therefore Case (ii) can not occur.

This completes the proof of Theorem 1.2. �

4. Final questions

Here we pose several questions about Theorem 1.5:

(Q1) The lower bounds given in Theorem 1.5 on the lower box-counting dimension

of (α1, . . . , α`)-orbits might not be sharp. Are there any better or optimal

bounds? How about the packing dimension of the closure of these sets? 2

(Q2) It is easy to see that Theorem 1.5 can be extended to high dimensional tori.

Is it possible to extend the result to general compact Lie groups?
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