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Abstract. Let M = (M1, . . . ,Mk) be a tuple of real d × d matrices. Under

certain irreducibility assumptions, we give checkable criteria for deciding whether

M possesses the following property: there exist two constants λ ∈ R and C > 0

such that for any n ∈ N and any i1, . . . , in ∈ {1, . . . , k}, either Mi1 · · ·Min = 0 or

C−1eλn ≤ ‖Mi1 · · ·Min‖ ≤ Ceλn, where ‖ · ‖ is a matrix norm. The proof is based

on symbolic dynamics and the thermodynamic formalism for matrix products. As

applications, we are able to check the absolute continuity of a class of overlapping

self-similar measures on R, the absolute continuity of certain self-affine measures

in Rd and the dimensional regularity of a class of sofic affine-invariant sets in the

plane.

1. Introduction

In this paper, we consider Lyapunov exponents of matrix products. Let M =

(M1, . . . ,Mk) be a given tuple of real d× d matrices.

Definition 1.1. We say that M has a uniform Lyapunov exponent modulo 0 if

there exist C > 0 and λ ∈ R such that for any n ∈ N and any i1, . . . , in ∈ {1, . . . , k},

either Mi1 · · ·Min = 0 or C−1eλn ≤ ‖Mi1 · · ·Min‖ ≤ Ceλn, (1.1)

where ‖ · ‖ is a given matrix norm. Clearly the above property is independent of the

choice of matrix norm.
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Definition 1.2. (i) M is said to be irreducible if there is no non-zero proper

linear subspace V of Rd such that MiV ⊂ V for all 1 ≤ i ≤ k.

(ii) M is said to be positively irreducible if Mi are all non-negative matrices and

there exists ` ∈ N so that
∑`
j=1(

∑k
i=1Mi)

j is a strictly positive matrix.

We remark that the positive irreducibility does not imply the irreducibility. The

main problem we address in this paper is the following.

Question 1.3. Suppose that M is irreducible or positively irreducible. Can we

determine whether M has a uniform Lyapunov exponent modulo 0?

We remark that without any irreducibility assumption, there is no general

algorithm to check whether M has a uniform Lyapunov exponent modulo 0. This

follows from the result of Blondel and Tsitsiklis [4] that the boundedness of a matrix

semigroup is generally undecidable. For details, see Section 9.

Whilst Question 1.3 is of independent interest, our study is directly motivated

by several questions arising in fractal geometry and dynamical systems, although

their answers have been known or partially known. One is on the absolute

continuity of a class of overlapping self-similar measures on R, another one is on

the absolute continuity of certain self-affine measures on Rd, and the last one is on

the dimensional regularity of certain sofic affine-invariant sets on the 2-torus T2.

Below we describe them in more details.

First we state the question on self-similar measures. Let {Sj}mj=1 be a family of

contractive similitudes on R given by

Sj(x) = ρx+ bj , j = 1, . . . ,m, (1.2)

where m ≥ 2, 0 < ρ < 1 and b1 < · · · < bm. Given a probability vector (p1, . . . , pm),

let µ be the self-similar measure generated by {Sj}mj=1 and (p1, . . . , pm). That is,

µ is the unique Borel probability measure on R satisfying

µ =

m∑
j=1

pjµ ◦ S−1
j .

(see [22]). It is well known that µ is either absolutely continuous or purely singular

with respect to the Lebesgue measure on R. However, it remains a fundamental

and open problem to judge the type of µ in the above general setting (see e.g.

[53, 43, 51, 52] and the references therein). Below is a special restricted version

of this problem.

Question 1.4. Let µ be the self-similar measure generated by {Sj(x) = ρx+bj}mj=1

and a probability vector {pj}mj=1. Suppose that {Sj}mj=1 satisfies the finite type

condition (see Section 6 for the definition). Can we determine whether µ is

absolutely continuous?

There are many examples of iterated function systems which allow overlaps

but satisfy the finite type condition (see [38]). In [32, Theorem 1.3], Lau, Ngai
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and Rao provided a confirmative answer to Question 1.4. They proved that µ is

absolutely continuous if and only if certain constructed matrix has spectral radius ρ.

Alternatively, Protasov [45] provided an algorithm to check the absolute continuity

of µ by the Fourier analysis approach, in the special case when {Sj}mj=1 is an integral

iterated function system on R, i.e., Sj(x) = 1
N (x+dj) with N ≥ 2 being an integer

and dj ∈ Z (see Remark 7.2).

As an analogue of Question 1.4, the following problem is on certain self-affine

measures (see Section 7 for the definition).

Question 1.5. Let d ≥ 2. Let µ be the self-affine measure generated by a family

of affine maps {Sj(x) = A−1(x + dj)}mj=1 on Rd and a probability vector {pj}mj=1,

where A is a d×d expanding integer matrix and dj ∈ Zd. Can we determine whether

µ is absolutely continuous?

In [8], Deng, He and Lau investigated this question. They established a vector

representation for µ via matrix products, and showed that µ is absolutely continuous

if and only if the corresponding matrix products have certain limiting behaviors.

However there is no efficient algorithm to check these limiting behaviors directly

(see Remark 7.4). Alternatively, one can use the Fourier analysis approach to give

an equivalent condition for µ to be absolutely continuous (see Proposition 7.1(iii)).

Nevertheless, it is unlikely that Protasov’s algorithm in [45] can be extended to

check this condition (see Remark 7.2).

Next we address the question on sofic affine-invariant sets on the 2-torus

T2 = R2/Z2. Let m,n be positive integers with n > m. Let T be the affine

endomorphism on T2 represented by the 2× 2 diagonal matrix diag(n,m). Write

D = {0, . . . , n− 1} × {0, . . . ,m− 1}.

Define a map RT : DN → T2 by

RT ((xk, yk)∞k=1) :=

∞∑
k=1

(
n−k 0

0 m−k

)(
xk
yk

)
.

Let A = (aij)i,j∈D be a positively irreducible 0-1 matrix. Then A defines an

irreducible subshift of finite type ΣA ⊂ DN by

ΣA :=
{

(zk)∞k=1 : azkzk+1
= 1 for k ≥ 1

}
.

Now let KT (A) := RT (ΣA). Then KT (A) is a T -invariant subset of T2. This is

the model of sofic affine-invariant sets studied in [26, 27], which is a generalization

of the class of Bedford-McMullen carpets (cf. [2, 36]). A natural and important

question which arises here is that whether the Hausdorff dimension and the box-

counting dimension of KT (A) coincide. The reader is referred to [9, 35] for the

definitions of these dimensions.

In [26, 27], Kenyon and Peres gave implicit formulas of the Hausdorff and box-

counting dimensions of KT (A) in terms of some dynamical notions (e.g. topological
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entropy, pressure, and measure-theoretic entropy). They showed that these two

dimensions coincide if and only if the unique invariant measure of maximal entropy

on ΣA projects via π to the invariant measure of maximal entropy on the sofic shift

π(ΣA), where π is the projection map given by (xk, yk)∞k=1 7→ (yk)∞k=1. It leads to

the following.

Question 1.6. In the above setting, can one determine whether the unique

invariant measure of maximal entropy on ΣA projects via π to the invariant measure

of maximal entropy on the sofic shift π(ΣA)?

In [26, p. 161], Kenyon and Peres mentioned that the answer of Question 1.6 is

positive. However they did not give a detailed justification.

In this paper, we show that Questions 1.4-1.6 can be reduced to Question 1.3

(see Theorems 6.2, 7.5 and 8.1, respectively). Indeed, for each of Questions 1.4-1.6,

we can construct a tuple M = (M1, . . . ,Mk) of non-negative square matrices, so

that M is positively irreducible and the question is reduced to determining whether

M has a uniform Lyapunov exponent modulo 0.

Furthermore, we show that the answer to Question 1.3 is positive. This is done

by providing checkable criteria under the assumptions of irreducibility and positive

irreducibility, respectively. As a consequence, we are able to give affirmative answers

to Questions 1.4-1.6 using this new approach. Moreover, we can derive some new

properties of the self-similar/self-affine measures considered in Questions 1.4-1.5

(see Corollary 6.5, Theorem 7.6). For instance, we show that if these measures are

singular, then their Hausdorff dimensions are strictly less than the dimensions of

ambient spaces. Moreover for the self-similar measure µ considered in Question 1.4,

we give a checkable criterion for deciding the absolute continuity of µ with respect

to the s-dimensional Hausdorff measure Hs|K restricted on K, where s = dimH K,

and show that if µ is absolutely continuous with respect to the Lebesgue measure

on R then, restricted on certain open interval, the density function dµ
dx only takes

values in (c1, c2) for some positive constants c1 and c2.

To state our criteria for Question 1.3, we first consider the non-negative case.

Suppose that M = (M1, . . . ,Mk) is a tuple of non-negative d× d matrices and M

is positively irreducible. Set A = {1, . . . , k} and write

YM :=
{

(jn)∞n=1 ∈ AN : Mj1···jm 6= 0 for all m ≥ 1
}
, (1.3)

where we adopt the convention that Mj1···jm = Mj1 · · ·Mjm . Then YM is an

irreducible sofic shift over A (see Proposition 3.2). It is well known that the

topological entropy of a sofic shift is computable (see Section 2.2). Write

r(M) = exp(log ρ(M1 + · · ·+Mk)− htop(YM)), (1.4)

where ρ(A) stands for the spectral radius of A (i.e. the maximal modulus of

eigenvalues of A), and htop(YM) denotes the topological entropy of YM. Then

r(M) is computable.
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Set

J :=
{
j1 · · · jn ∈ An : 1 ≤ n ≤ d2, (Mj1···jn)1,1 6= 0

}
. (1.5)

Then J 6= ∅ (see Lemma 3.1). Define a d× d matrix B by

B =
1

#(J )

∑
J∈J

MJ , (1.6)

where the symbol # stands for the cardinality. The matrix B might not be

positively irreducible. Here we consider its irreducible decomposition. Indeed,

there exists a permutation matrix T such that T−1BT has the following block

upper triangular form:

T−1BT =


B(1) ∗ . . . ∗

0 B(2) ∗
...

...
. . . ∗

0 . . . 0 B(t)

 (1.7)

with square diagonal blocks of sizes di, i = 1, . . . , t,
∑t
i=1 di = d, so that for each

i = 1, . . . , t, either B(i) is positively irreducible or B(i) = 0.

Set

Λ = {i : 1 ≤ i ≤ t, B(i) 6= 0}. (1.8)

For i ∈ Λ, let vi, ui ∈ Rdi be the left and right positive eigenvectors of B(i)

corresponding to the eigenvalue ρ
(
B(i)

)
, satisfying v>i ui = 1, where the superscript

> stands for transpose. The existence of such eigenvectors is ensured by the Perron-

Frobenius theory (see e.g. [20, Theorem 8.4.4]).

For J ∈ J , partition T−1MJT into the form

T−1MJT =


M

(1)
J ∗ . . . ∗

∗ M
(2)
J ∗

...
...

. . . ∗
∗ . . . ∗ M

(t)
J

 (1.9)

with block sizes the same as in (1.7). By the definition of B, T−1MJT is also block

upper triangular for J ∈ J . Moreover, this is true for all J ∈ A∗ with (MJ)1,1 > 0

(see Lemma 3.8). For J ∈ J , we let |J | denote the length of J , i.e. |J | = n if

J = j1 · · · jn. Now we are ready to state one of our criteria for the non-negative

case.

Theorem 1.7. Suppose that M is positively irreducible. Then M has a uniform

Lyapunov exponent modulo 0 if and only if there exists i ∈ Λ such that

v>i M
(i)
J ui = r(M)|J| for all J ∈ J . (1.10)
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Since r(M) is computable and J is a finite set, the above theorem provides an

algorithm for deciding whether M has a uniform Lyapunov exponent modulo 0.

Next we consider the general case that M consists of real d × d matrices. For

q > 0, define

P (M, q) = lim
n→∞

1

n
log

∑
i1···in∈An

‖Mi1 · · ·Min‖q, q > 0. (1.11)

The existence of the above limit follows by subadditivity. We call P (M, ·) the

pressure function associated with M. In [56], Zhou proved that that P (M, q) is

computable for every even positive integer q; more precisely,

P (M, q) = log ρ

(
k∑
i=1

M⊗qi

)

for even q, where A⊗q = A⊗ · · · ⊗A is the q-fold Kronecker product of A.

The following is another checkable criterion for Question 1.3.

Theorem 1.8. Suppose that M is irreducible or positively irreducible. Then M

has a uniform Lyapunov exponent modulo 0 if and only if

P (M, 2) + P (M, 6) = 2P (M, 4). (1.12)

The above result is somehow unexpected since, for certain given tuple of general

matrices, it is even undecidable whether the zero matrix is in the semigroup

generated by these matrices (see [42] and also [3, 7]). This result might also

have potential applications in detecting the existence of L1-solutions for general

refinement equations in wavelet theory.

We remark that in the non-negative case, although the condition (1.12) looks

easier to check than (1.10), it provides less information in classifying those tuples

having a uniform Lyapunov exponent modulo 0.

Next we address some related works in the literature. Most related to the above

results (Theorems 1.7-1.8) are the recent works by Protasov and Voynov [47] and

Morris [37]. In [47], Protasov and Voynov studied when a matrix semigroup has

constant spectral radius, in the sense that the spectral radius of all its elements

is the same and non-zero. Among other things, Protasov and Voynov pointed

out that for an irreducible or positively irreducible tuple M = (M1, . . . ,Mk), the

multiplicative semigroup S(M) generated by M has constant spectral radius if and

only if

C−1 ≤ ‖M‖ ≤ C for some constant C > 0 and all M ∈ S(M). (1.13)

This fact follows from [40, Theorem 4.7] which says, for any irreducible matrix

semigroup S with constant spectral radius, there is a norm in Rd such that the

induced operator norm of all matrices from S is 1. Moreover, in the case when

M is positively irreducible, Protasov and Voynov proved that if A is an irreducible
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matrix in the convex hull of S(M) with ρ(A) = 1 and v is the right Perron-Frobenius

eigenvector of A, then (1.13) holds if and only if all matrices in S(M) have a

common invariant linear subspace that contains all vectors v −Mv, M ∈ S(M),

and does not contain v. Based on this criterion, they provided an efficient algorithm

for deciding whether (1.13) holds (see [47, Section 7.1]). In the general case

when M is irreducible, Protasov and Voynov proved (1.13) holds if and only if

P (M, 2) = P (M, 4) = log k (see [47, Section 7.3]). For some other studies on

matrix semigroups with constant spectral radius or multiplicative spectral radius,

one is referred to [40, 44].

In [37, Theorem 10], among other things, Morris proved that for an irreducible

tuple M of real matrices, P (M, q) is an affine function of q on (0,∞) if and only if

there exists λ ∈ R such that

ρ(Mi1 · · ·Min) ∈ {0, eλn} (1.14)

for any n ∈ N and i1, . . . , in ∈ {1, . . . , k}. It is easy to see that the property (1.1)

implies (1.14). Hence by Morris’ result, a necessary condition for the property (1.1)

is the affinity of P (M, q) on (0,∞).

In the remaining part of this section, we outline the main steps in our proofs of

Theorems 1.7-1.8. First suppose that M = (M1, . . . ,Mk) is positively irreducible.

It is clear that M has a uniform Lyapunov exponent modulo 0 if and only if that

for any c > 0, cM := (cM1, . . . , cMk) has this property. Multiplying M by the

scalar 1/r(M) if necessary, we may assume that M is normalized in the sense that

r(M) = 1 (see Lemma 3.6(i)). Now it is easy to show that M has a uniform

Lyapunov exponent modulo zero if and only if

C−1 ≤ ‖M‖ ≤ C for some constant C > 0 and all M ∈ S(M)\{0}. (1.15)

Comparing this with (1.13), the main difference lying here is that the zero matrix

is allowed to be included in S(M). Although the difference looks slight, it brings

significant difficulties to the study. To investigate when (1.15) holds, set

U :=
{
j1 · · · jn ∈ An : n ∈ N, (Mj1···jn)1,1 > 0

}
.

Then the collection {MJ : J ∈ U} becomes a semigroup. Using the positive

irreducibility assumption of M, we are able to show that (1.15) holds if and only

C−1 ≤ ‖MJ‖ ≤ C for some constant C > 0 and all J ∈ U . (1.16)

However, the semigroup {MJ : J ∈ U} might not be positively irreducible. For

instance, this is the case when

M =

{(
1 0

0 0

)
,

(
0 1

0 0

)
,

(
0 0

1 0

)
,

(
0 0

0 1

)}
.

As a key part of our proof, using symbolic dynamics and the thermodynamic

formalism for matrix products, we show that (1.16) holds if and only if there exists

i ∈ Λ such that

C−1 ≤ ‖M (i)
J ‖ ≤ C for some constant C > 0 and all J ∈ U , (1.17)
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where M
(i)
J is the i-th diagonal block in the partitioned matrix T−1MJT as in

(1.9). For i ∈ Λ, since B(i) is positively irreducible and B(i) lies in the convex hull

of {M (i)
J : J ∈ U}, applying the Perron-Frobenius theory of non-negative matrices,

we are able to show that (1.17) holds if and only if v>i M
(i)
J ui = 1 for all J ∈ U .

Finally, an additional argument shows that the latter condition is equivalent to

v>i M
(i)
J ui = 1 for all J ∈ J , from which Theorem 1.7 follows.

Next we outline the proof of Theorem 1.8. Suppose that M is irreducible or

positively irreducible. Applying the thermodynamic formalism of matrix products,

we are able to show that the following three properties are equivalent: (i) P (M, q)

is affine on (0,∞); (ii) P (M, q) is affine on (a, b) for some 0 < a < b; (iii) M has a

uniform Lyapunov exponent modulo 0. The proof of this part is somehow similar

to the argument in [37, Theorem 10]. Since the pressure function P (M, q) is always

convex, the condition (1.12) implies the affinity of P (M, q) on the interval [2, 6],

and hence implies that M has a uniform Lyapunov exponent modulo 0.

The paper is organized as follows: In Section 2, we give some notation and

preliminaries about symbolic dynamics and the thermodynamic formalism for

matrix products. In Section 3, we give further properties of matrix products.

The proofs of Theorems 1.7-1.8 are given in Sections 4-5. In Sections 6-8, we

consider Questions 1.4-1.6 respectively. In Section 9, we give some final remarks

and questions.

2. Notation and Preliminaries

In this section, we provide some necessary notation and preliminaries. For two

families of real numbers {ai}i∈I and {bi}i∈I , we write

ai ≈ bi if there is c > 0 such that c−1bi ≤ ai ≤ cbi for all i ∈ I;

ai < bi if there is c > 0 such that ai ≥ cbi for all i ∈ I;

ai 4 bi if there is c > 0 such that ai ≤ cbi for all i ∈ I.

2.1. Subshifts In this subsection, we introduce some basic notation and

definitions about subshifts. The reader is referred to [33] for the background and

more details.

Let A be a finite set of symbols which will be called the alphabet. Let

A∗ =

∞⋃
k=0

Ak

denote the set of all finite words with letters from A, including the empty word ε.

Denote the length of a word I by |I|, that is, |I| = k if I ∈ Ak. Let

AN = {(xi)∞i=1 : xi ∈ A for i ≥ 1}

denote the set of all infinite sequences of elements from A. Then AN is a compact
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metric space under the product topology, which can be induced by the metric

d(x, y) = 2− inf{k: xk 6=yk}, for x = (xi)
∞
i=1, y = (yi)

∞
i=1.

For n ∈ N and I ∈ An, set

[I] =
{

(xi)
∞
i=1 ∈ AN : x1 · · ·xn = I

}
(2.1)

and call it an n-th cylinder set in AN.

Define the shift transformation σ : AN → AN by (σx)i = xi+1 for all i ∈ N. Then

σ is a continuous self-map. The pair (AN, σ) is a topological dynamical system and

is called the one-sided full shift over A.

If X is a compact σ-invariant subset of AN, then the topological dynamical

system (X,σ) is called a one-sided subshift over A, or simply, a subshift. Sometimes

we write (X,σX) instead of (X,σ).

A word I ∈ A∗ is said to be admissible in a subshift X if it occurs as a consecutive

string in a sequence in X, that is, [I] ∩X 6= ∅. Note that the empty word ε is also

admissible. The language L(X) of X is the set of all admissible words in X, that

is,

L(X) = {I ∈ A∗ : I = x1 · · ·xn for some x = (xi)
∞
i=1 ∈ X and n ≥ 1} ∪ {ε}.

For n ≥ 0, denote

Ln(X) = {I ∈ L(X) : |I| = n}.

A subshift X over A is said to be a subshift of finite type if there is a matrix

A = (Aα,β)α,β∈A with entries 0 or 1 such that

X = {(xi)∞i=1 ∈ AN : Axi,xi+1
= 1 for all i ≥ 1}.

If the matrix A is positively irreducible (that is, for any α, β ∈ A, there is N > 0

such that (AN )α,β > 0), X is called an irreducible subshift of finite type. Very often

we use ΣA instead of X to denote the above subshift of finite type.

Let (X,σX) and (Y, σY ) be two subshifts over finite alphabets A and A′,
respectively. A continuous surjective map π : X → Y such that π ◦ σX = σY ◦ π is

called a factor map. In this case Y is said to be a factor of X.

A subshift Y is called to be a sofic shift if Y is a factor of a subshift of finite

type, say X. If further X is irreducible, then Y is called an irreducible sofic shift.

2.2. Entropies and Parry measures Let (X,σX) be a subshift over a finite

alphabet A. Denote by M(X) the set of all Borel probability measures on X.

Endow M(X) with the weak-star topology. Denote by M(X,σX) the set of all

σX -invariant Borel probability measures on X. The setsM(X) andM(X,σX) are

both non-empty, compact and convex (see e.g. [54]). An element µ ∈ M(X,σX)

is called ergodic if µ(A) = 1 or 0 for any Borel set A ⊂ X with σXA ⊂ A.
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Let L(X) and Ln(X) be defined as in the preceding subsection. For convenience,

for µ ∈M(X) and I ∈ L(X), we write

µ(I) := µ([I] ∩X),

where [I] denotes a cylinder set in AN defined as in (2.1).

Given µ ∈ M(X,σX), the measure-theoretic entropy of µ with respect to σX is

defined by

hµ(σX) := − lim
n→∞

1

n

∑
I∈Ln(X)

µ(I) logµ(I). (2.2)

The existence of the above limit follows by a standard sub-additivity argument.

The topological entropy of X with respect to σX is defined as

htop(X) = lim
n→∞

1

n
log #(Ln(X)), (2.3)

where # stands for cardinality. Again, the above limit exists by sub-additivity.

It is well known (cf. [54, Chapter 8.3]) that for any subshift X,

htop(X) = sup
µ∈M(X,σX)

hµ(σX),

and the supremum is attainable. Each µ ∈ M(X,σX) so that hµ(σX) = htop(X)

is called an invariant measure of maximal entropy.

The topological entropy of a subshift of finite type or sofic shift is computable.

More precisely, if X = ΣA is a subshift of finite type associated with a 0-1 matrix

A, then htop(X) = log ρ(A); and if X is a sofic shift, then htop(X) = log ρ(AG),

where AG is the incidence matrix of a right-resolving graph presentation of X. For

details, see [33, Chapter 4].

The following result is due to Parry. The reader is referred to [13, Theorem 5.5]

for certain generalization and a detailed proof.

Theorem 2.1 ([41]) Suppose that (X,σX) is an irreducible subshift of finite type,

or an irreducible sofic shift over a finite alphabet. Then

#(Ln(X)) ≈ enhtop(X) for n ∈ N. (2.4)

Moreover σX has a unique invariant measure of maximal entropy, say ν.

Furthermore, ν is ergodic and it is the unique invariant measure satisfying the

following property:

ν(I) ≈ e−nhtop(X) for n ∈ N, I ∈ Ln(X). (2.5)

The measure ν in the above theorem is called the Parry measure on X.

2.3. Lyapunov exponents and the thermodynamic formalism for matrix products

Let M = (M1, . . . ,Mk) be a tuple of real d×d matrices. Write A = {1, . . . , k}. Fix

a matrix norm ‖ · ‖ on Rd×d by ‖A‖ =
∑

1≤i,j≤d |ai,j | for A = (ai,j). The following

result follows from Kingman’s sub-additive ergodic theorem.
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10 D.-J. Feng, C.-H. Lo and S. Shen

Theorem 2.2 ([54], Theorem 10.1) For any ergodic measure µ on AN, one has

lim
n→∞

1

n
log ‖Mx1

· · ·Mxn‖ = λ(M, µ) for µ-a.e. x = (xn)∞n=1,

where

λ(M, µ) = lim
n→∞

1

n

∑
ii···in∈An

µ([i1 · · · in]) log ‖Mi1 · · ·Min‖.

We call λ(M, µ) the Lyapunov exponent of M with respect to µ.

Recall that the pressure function P (M, q) is defined as in (1.11). The following

result is a corollary of the sub-additive variational principle established in [6] (for

earlier results in the non-negative or invertible case, see [12, 25]).

Theorem 2.3. For any q > 0, we have

P (M, q) = sup{hµ(σ) + qλ(M, µ) : µ ∈M(AN, σ)}.

We say that µ is an equilibrium state for (M, q) if it attains the above supremum.

The following result describes the Gibbs property of matrix equilibrium states.

Theorem 2.4 ([15, 16]) Suppose that M is irreducible or positively irreducible.

Let q > 0. There exists a unique ν = νq ∈M(AN, σ) such that

ν([i1 · · · in]) ≈ exp(−nP (M, q))‖Mi1 · · ·Min‖q for n ∈ N, i1 · · · in ∈ An.

Moreover, ν is ergodic and it is the unique equilibrium state for (M, q).

2.4. Irreducible decompositions Let M = (M1, . . . ,Mk) be a tuple of non-

negative d × d matrices. Suppose that M is non-trivial in the sense that for

each n ∈ N there exists i1 · · · in ∈ {1, . . . , k}n such that Mi1 · · ·Min 6= 0. This

condition is equivalent to the statement that Mi1 · · ·Mid 6= 0 for at least one choice

of i1, . . . , id and is in turn equivalent to the statement that there does not exist

a basis in which all of the matrices Mi are upper triangular with zero diagonal

(see [24, Chap. 2.31]). It is possible that M is not positively irreducible. In such

situation, it is an elementary fact (see e.g. [15, Proposition 1.4]) that one can

always find a permutation matrix T , t ∈ {1, . . . , d} and positive integers d1, . . . , dt
with d1 + · · ·+ dt = d such that for each j ∈ {1, . . . , k}, T−1MjT has the following

block upper triangular form:

T−1MjT =


M

(1)
j ∗ . . . ∗

0 M
(2)
j ∗

...
...

. . . ∗
0 . . . 0 M

(t)
j

 (2.6)

with square diagonal blocks of sizes di, i = 1, . . . , t; moreover, for each i = 1, . . . , t,

the tuple M(i) :=
(
M

(i)
1 , . . . ,M

(i)
k

)
is either positively irreducible, or consisting

only of zero matrices 0.
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Let Γ := {1 ≤ i ≤ t : M(i) is positively irreducible}. The following property

plays a key role in our proof of Theorem 1.7.

Proposition 2.5 ([15], Proposition 1.4) For any ergodic measure µ on AN, we

have

λ(M, µ) = max
i∈Γ

λ
(
M(i), µ

)
,

where λ(M, µ) is the Lyapunov exponent of M with respect to µ (see Section 2.3).

We remark that the above proposition was only proved in [15] for different

irreducible decompositions. But the proof therein works well in our new setting.

3. Irreducible tuples of non-negative matrices

Throughout this section, let M = (M1, . . . ,Mk) be a tuple of non-negative d × d
matrices, and suppose that M is positively irreducible. We give several properties

of M, some of which will be needed in the proof of Theorem 1.7.

We begin with a simple fact.

Lemma 3.1 ([20], Lemma 8.4.1)
∑d
`=1(M1 + · · ·+Mk)` is a positive matrix.

Set A = {1, . . . , k} and let YM be defined as in (1.3).

Proposition 3.2. YM is an irreducible sofic shift over A. Moreover,

Ln(YM) = {J ∈ An : MJ 6= 0}, n ∈ N,

where Ln(YM) stands for the collection of admissible words of length n in YM (see

Section 2.1).

Proof. The result is most likely known, but we have not been able to find a reference

so a proof is given for the reader’s convenience.

Set D = {1, . . . , d}. Construct a subset F of D ×A by

F = {(i, j) ∈ D ×A : there exists l ∈ D such that (Mj)i,l > 0} .

Define a 0-1 matrix A = (Au,v)u,v∈F by

A(i,j),(i′,j′) =

{
1 if (Mj)i,i′ > 0,

0 otherwise.

Let ΣA be the subshift of finite type over F associated with A. We first show

that ΣA is irreducible. Fix (i, j), (i′, j′) ∈ F . By definition, (Mj)i,i1 > 0 for some

i1 ∈ D. Since M is positively irreducible, there exist n ∈ N and j1 · · · jn ∈ An such

that (Mj1···jn)i1,i′ > 0. Therefore we can find i2, . . . , in ∈ D such that

(Mj1)i1,i2 · · · (Mjn−1
)in−1,in(Mjn)in,i′ > 0.

Hence the word (i, j)(i1, j1) · · · (in, jn)(i′, j′) is A-admissible. Therefore ΣA is

irreducible.
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12 D.-J. Feng, C.-H. Lo and S. Shen

Notice that

(i1, j1) · · · (in, jn) ∈ L(ΣA)⇐⇒ (Mj1)i1,i2 · · · (Mjn−1
)in−1,in > 0.

It follows that

Mj1...jn 6= 0⇐⇒ (i1, j1) · · · (in, jn) ∈ L(ΣA) for some i1, . . . , in ∈ D. (3.1)

Define τ : F → A by (i, j) 7→ j. Extend τ to a map π : FN → AN by

π ((xn)∞n=1) = (τ(xn))
∞
n=1 .

By (3.1), we have YM = π(ΣA). Clearly, π is a factor map. Hence YM is an

irreducible sofic shift. By (3.1), we also have Ln(YM) = {J ∈ An : MJ 6= 0} for

n ∈ N. 2

Recall that the pressure function P (M, ·) is defined as in (1.11). Write

P (M) := P (M, 1) (3.2)

and call it the topological pressure of M.

Lemma 3.3. P (M) = log ρ(M1 + · · ·+Mk).

Proof. The result was proved in [46] under a more general setting that each of the

matrices Mi has a common invariant cone. For the convenience of the reader, we

include here a self-contained proof. Since Mi are non-negative, we have

∑
i1···in∈An

‖Mi1 · · ·Min‖ =

∥∥∥∥∥ ∑
i1···in∈An

Mi1 · · ·Min

∥∥∥∥∥ = ‖(M1 + · · ·+Mk)n‖.

Now the lemma follows from the definition of P (M) and Gelfand’s Formula. 2

Let r(M) be defined as in (1.4).

Definition 3.4. We say that M is normalized if r(M) = 1.

Remark 3.5. Let a > 0. Then P (aM) = P (M) + log a and YaM = YM. Hence

r(aM) = ar(M).

Lemma 3.6. (i) 1
r(M)M is normalized.

(ii) M has a uniform Lyapunov exponent modulo 0 if and only if

‖MJ‖ ≈ (r(M))|J| for J ∈ L(YM).

Proof. Property (i) follows from Remark 3.5. Next we prove (ii). By the definition

of YM, we see that M has a uniform Lyapunov exponent modulo 0 if and only if

there exists a constant λ ∈ R such that

‖MJ‖ ≈ exp(λ|J |) for J ∈ L(YM). (3.3)
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To show (ii), it suffices to show that

λ = log r(M) = P (M)− htop(YM) (3.4)

when (3.3) holds.

Now suppose (3.3) holds. Then∑
i1···in∈An

‖Mi1···in‖ =
∑

i1···in∈Ln(YM)

‖Mi1···in‖

≈ eλn#(Ln(YM)).

Hence by definition, P (M) = λ + limn→∞(1/n) log #(Ln(YM)) = λ + htop(YM),

and (3.4) holds. 2

Proposition 3.7. Suppose furthermore that M is normalized. Then the following

three statements are equivalent.

(1) ‖MJ‖ < 1 for J ∈ L(YM).

(2) ‖MJ‖ 4 1 for J ∈ L(YM).

(3) ‖MJ‖ ≈ 1 for J ∈ L(YM).

Proof. It suffices to show that (1) is equivalent to (2). By Proposition 3.2, YM is

an irreducible sofic shift over A. Let ν denote the Parry measure on YM and µ

the equilibrium measure for (M, 1). Then both µ and ν are ergodic. By Theorems

2.1-2.4, we have

ν([J ]) ≈ exp(−|J |htop(YM)),

µ([J ]) ≈ ‖MJ‖ exp(−|J |P (M))
(3.5)

for J ∈ L(YM). Since M is normalized, we have htop(YM) = P (M). Thus by (3.5),

we have

µ([J ]) ≈ ‖MJ‖ · ν([J ]) for J ∈ L(YM). (3.6)

Below we show that (1) is equivalent to (2).

In one direction, if (1) holds, then µ([J ]) < ν([J ]) for J ∈ L(YM) by (3.6), which

implies ν � µ, and so ν = µ. Here we use the fact that any two distinct ergodic

measures on YM are mutually singular (see, e.g. [54, Theorem 6.10]). This together

with (3.6) yields ‖MJ‖ ≈ 1 for J ∈ L(YM). Hence (2) holds.

In the other direction, if (2) holds, then µ([J ]) 4 ν([J ]) for J ∈ L(YM) by (3.6),

which implies µ � ν, and so ν = µ. Again we have ‖MJ‖ ≈ 1 for J ∈ L(YM).

Hence (1) holds. This completes the proof. 2

Finally, let B be defined as in (1.6) and let T be a permutation matrix so

that T−1BT is a block upper triangular matrix of the form in (1.7), and for each

1 ≤ i ≤ t, either B(i) is positively irreducible or B(i) = 0. Then we have the

following result.
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14 D.-J. Feng, C.-H. Lo and S. Shen

Lemma 3.8. For any J ∈ A∗\{ε} with (MJ)1,1 > 0, T−1MJT is also a block upper

triangular matrix with the same block sizes as that in (1.7). Moreover, for each

1 ≤ i ≤ t, B(i) = 0 if and only if M
(i)
J = 0 for all J ∈ A∗ \ {ε} with (MJ)1,1 > 0.

Proof. It is enough to show that if an entry Bi,j of B is zero, then (MJ)i,j = 0 for

every J ∈ A∗ with (MJ)1,1 > 0. To prove the result, suppose that Bi,j = 0 for

some (i, j) ∈ {1, . . . , d}2. Then by the definition of B, we have (i, j) 6= (1, 1) and

(MJ)i,j = 0 for all J ∈ A∗ with (MJ)1,1 > 0 and |J | ≤ d2. (3.7)

Suppose on the contrary that (MU )i,j > 0 for some U ∈ A∗ with (MU )1,1 > 0.

We may assume that U is such word with minimal length. By (3.7), |U | > d2 .

Write U = u1 · · ·un with n = |U |. Since (MU )i,j > 0 and (MU )1,1 > 0, there exist

two words i1 · · · in+1 and j1 · · · jn+1 over {1, . . . , d} such that

i1 = i, in+1 = j, j1 = 1, jn+1 = 1

and

(Mus)is,is+1 > 0, (Mus)js,js+1 > 0 for s = 1, . . . , n.

Since n > d2, by the pigeon-hole principle, there exist 1 ≤ m < m′ ≤ n such

that (im, jm) = (im′ , jm′). Now set U∗ = u1 · · ·um−1um′ · · ·un. That is, U∗ is

obtained from U by dropping off the sub-word um · · ·um′−1. It is direct to see that

(MU∗)i,j > 0 and (MU∗)1,1 > 0, which contradicts the minimality of the length of

U . 2

In the end of this section, we present the following lemma which was pointed out

to us by Wen Huang [21].

Lemma 3.9. Let A = (A1, . . . , Ak) be a tuple of d×d matrices, and let µ be a fully

supported ergodic measure on AN with A = {1, . . . , k}. Assume that λ(A, µ) = 0,

where λ(A, µ) is the Lyapunov exponent of A with respect to µ (cf. Section 2.3).

Assume furthermore that there exists a constant C > 0 so that

‖AJ‖ ≤ C for all J ∈
∞⋃
n=1

An.

Then we have

‖AJ‖ ≥ C−1 for all J ∈
∞⋃
n=1

An.

Proof. Suppose on the contrary that ‖AJ‖ < C−1 for some finite word J =

j1 · · · jm ∈ Am. Then

γ := C‖AJ‖ ∈ (0, 1).

Below we derive a contradiction.
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By the Birkhoff ergodic theorem (cf. [54, Theorem 1.14]), there exists a Borel

set F ⊂ AN with µ(F ) = 1 such that for all x ∈ F ,

lim
n→∞

1

n

n∑
p=1

χ[J](σ
px) = µ([J ]) > 0, (3.8)

where χ[J] denotes the characteristic function on [J ], and the last inequality follows

from the assumption that µ is fully supported on AN.

For x ∈ F , let n1(x) < n2(x) < · · · be all the positive integers n so that

σnx ∈ [J ], then we have limj→∞ j/nj(x) = µ([J ]) by (3.8).

Fix x ∈ F and let Nj = n(m+1)j(x) for j ≥ 1. Then Nj+1 −Nj ≥ m+ 1 and

lim
j→∞

j

Nj
=
µ([J ])

m+ 1
.

Observe that x can be expressed as

x = W1JW2J · · ·WnJ · · ·

with W1 = x1 · · ·xN1 and Wn = xNn−1+m+1 · · ·xNn for n ≥ 2. Notice that

‖AW1JW2J···WnJ‖ ≤
n∏
j=1

(‖AWn‖ · ‖AJ‖) ≤
n∏
j=1

(C · γC−1) = γn,

which implies

lim inf
n→∞

1

n
log ‖Ax1···xn‖ ≤ lim inf

n→∞

1

Nn +m
log ‖AW1JW2J···WnJ‖

≤ lim inf
n→∞

n log γ

Nn +m
=
µ([J ]) log γ

m+ 1
< 0.

This leads to a contradiction, since by Theorem 2.2

lim
n→∞

1

n
log ‖Ay1···yn‖ = λ(A, µ) = 0

for µ-a.e. y ∈ AN. 2

4. Proof of Theorem 1.7

In this section, we prove Theorem 1.7. Suppose that M is positively irreducible.

Multiplying M by the scalar 1/r(M) if necessary, we may assume that M is

normalized, i.e., r(M) = 1. Recall that

U = {J ∈ A∗ : (MJ)1,1 6= 0}.

We first give two lemmas.

Lemma 4.1. There exists a constant C > 0 such that for any J ∈ L(YM), there

exist I1, I2 ∈ L(YM) satisfying that I1JI2 ∈ U and

C−1‖MJ‖ ≤ ‖MI1JI2‖ ≤ C‖MJ‖.
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Proof. Since M is positively irreducible, for each pair (i, j) with i, j ∈ {1, . . . , d},
we can choose a finite word W (i, j) ∈ L(YM) such that

(MW (i,j))i,j > 0.

Fix these words W (i, j) and set

c1 = min
1≤i,j≤d

(MW (i,j))i,j , c2 = max
1≤i,j≤d

‖MW (i,j)‖.

Clearly c1, c2 > 0.

Now let J ∈ L(YM). Then there exist i, j ∈ {1, . . . , d} such that

(MJ)i,j ≥
1

d2
‖MJ‖.

Set I1 = W (1, i) and I2 = W (j, 1). Then

(MI1JI2)1,1 ≥ (MI1)1,i(MJ)i,j(MI2)j,1 ≥
c21
d2
‖MJ‖,

which implies I1JI2 ∈ U and

c21
d2
‖MJ‖ ≤ ‖MI1JI2‖ ≤ ‖MI1‖‖MI2‖‖MJ‖ ≤ c22‖MJ‖.

This completes the proof of the lemma. 2

Lemma 4.2. Let S be a multiplicative semigroup of non-negative d × d matrices

satisfying

‖A‖ ≈ 1 for A ∈ S.

Then

‖A‖ ≈ 1 for A ∈ co(S),

where co(S) stands for the closure of the convex hull co(S) of S, recalling that

co(S) =

{
n∑
i=1

piAi : n ∈ N, pi > 0, Ai ∈ S and

n∑
i=1

pi = 1

}
.

Proof. It follows from the simple fact that ‖
∑n
i=1 piAi‖ =

∑n
i=1 pi‖Ai‖. 2

For A ⊂ Rd, let aff(A) denote the smallest affine subset of Rd containing A. This

set is called the affine hull of A. It is well known (cf. [48, p. 6]) that

aff(A) =

{
n∑
i=1

aixi : n ∈ N, ai ∈ R, xi ∈ A and

n∑
i=1

ai = 1

}
. (4.1)

Let J , Λ be defined as in (1.5) and (1.8), respectively. Recall that, for each

i ∈ Λ, vi, ui are the left and right positive eigenvectors of B(i) corresponding to

the eigenvalue ρ
(
B(i)

)
, respectively, satisfying v>i ui = 1.

Proposition 4.3. The following statements are equivalent.
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(i) ‖MJ‖ ≈ 1 for J ∈ L(YM).

(ii) ‖MJ‖ ≈ 1 for J ∈ U .

(iii) There exists i ∈ Λ such that ‖M (i)
J ‖ ≈ 1 for J ∈ U .

(iv) There exists i ∈ Λ such that v>i M
(i)
J ui = 1 for J ∈ U .

(v) There exists i ∈ Λ such that v>i M
(i)
J ui = 1 for J ∈ J .

Proof. We divide the proof into small steps.

Step 1. (i) ⇔ (ii). Since U ⊂ L(YM), the direction (i) ⇒ (ii) is trivial. The

reverse direction follows immediately from Lemma 4.1.

Step 2. (ii) ⇒ (iii). Suppose (ii) holds, that is, there exists a constant C > 0

such that

C−1 ≤ ‖MJ‖ ≤ C

for all J ∈ U . Clearly we have ‖M (i)
J ‖ ≤ ‖MJ‖ ≤ C for all J ∈ U and i ∈ Λ.

Next we claim that there exists i ∈ Λ such that ‖M (i)
J ‖ ≥ C−1 for all J ∈ U .

Clearly the claim implies (iii). Suppose on the contrary that the claim is not true.

Then for any i ∈ Λ, we can choose some Ii ∈ U such that

‖M (i)
Ii
‖ < C−1.

Construct a finite subset U1 of U by

U1 = J ∪ {Ii : i ∈ Λ},

and consider the new tuple N := (MW )W∈U1 of non-negative matrices. Let µ be

the Parry measure on the full shift space (U1)N over the alphabet U1. Since the

concatenation of any elements of U1 is in U , by (ii), we have C−1 ≤ ‖MW1···Wn‖ ≤ C
for any W1, . . . ,Wn ∈ U1. It follows that λ(N, µ) = 0, where λ(N, µ) stands for the

Lyapunov exponent of N with respect to µ. By the construction of B and Lemma

3.8, N(i) :=
(
M

(i)
W

)
W∈U1

is positively irreducible whenever i ∈ Λ; otherwise, it

consists only of the zero matrix 0.

By Proposition 2.5, there exists i ∈ Λ such that

λ
(
N(i), µ

)
= 0. (4.2)

Since
∥∥∥M (i)

W1
· · ·M (i)

Wn

∥∥∥ ≤ ‖MW1···Wn
‖ ≤ C for any W1, . . . ,Wn ∈ U1, applying

Lemma 3.9 to the tuple N(i) yields∥∥∥M (i)
W1
· · ·M (i)

Wn

∥∥∥ ≥ C−1 for any W1, . . . ,Wn ∈ U1,

which contradicts
∥∥∥M (i)

Ii

∥∥∥ < C−1. This proves the claim, and hence (iii) holds.
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Step 3. (iii) ⇒ (i). Suppose (iii) holds for some i ∈ Λ. Then

‖MJ‖ ≥
∥∥∥M (i)

J

∥∥∥ < 1 for J ∈ U .

Applying Lemma 4.1, we obtain ‖MJ‖ < 1 for J ∈ L(YM). Then (i) follows by

Proposition 3.7.

Step 4. (iii) ⇐⇒ (iv). Since ui, vi are strictly positive vectors, we see that (iv)

implies (iii). Below we show that (iii) implies (iv).

Suppose that (iii) holds for some i ∈ Λ. Let S = {M (i)
J : J ∈ U}. Clearly S

is a multiplicative semigroup, so are co(S) and co(S). By definition, we see that

(B(i))n ∈ co(S) for n ∈ N. Therefore by Lemma 4.2, ‖(B(i))n‖ ≈ 1 for n ∈ N. Thus

ρ(B(i)) = limn→∞ ‖(B(i))n‖1/n = 1. Since (B(i))n is positively irreducible, by the

Perron-Frobenius theory (see e.g. [20, Theorem 8.6.1]), we have

lim
N→∞

1

N

N∑
n=1

(
B(i)

)n
= lim
N→∞

1

N

N∑
n=1

(
ρ
(
B(i)

)−1

B(i)

)n
= uiv

>
i .

It follows that uiv
>
i ∈ co(S). Since co(S) is a multiplicative semigroup, by Lemma

4.2, we have ∥∥∥(uiv>i M (i)
J

)n∥∥∥ ≈ 1 for J ∈ S, n ∈ N. (4.3)

Since
(
uiv
>
i M

(i)
J

)n
=
(
v>i M

(i)
J ui

)n−1

uiv
T
i M

(i)
J , (4.3) implies that v>i M

(i)
J ui = 1.

Thus (iv) holds.

Step 5. (iv)⇔ (v). Clearly (iv) implies (v). Below we prove the reverse direction.

Suppose that (v) holds, that is, there exists i ∈ Λ such that

v>i M
(i)
J ui = 1 for all J ∈ J . (4.4)

We need to show that v>i M
(i)
J ui = 1 for all J ∈ U . To achieve this purpose, for

n ≥ 1 and s ∈ {1, . . . , d}, let Wn,s be the smallest affine subset of Rdi containing

the following set {
M

(i)
J ui : J ∈ A∗\{ε}, |J | ≤ n, (MJ)s,1 > 0

}
.

By (4.4), Wd2,1 is contained in the hyperplane {u ∈ Rdi : v>i u = 1}. Hence to

show that v>i M
(i)
J ui = 1 for all J ∈ U , it suffices to show that

Wn,1 = Wd2,1 for all n > d2. (4.5)

By definition, we see that Wn+1,s ⊃Wn,s for all n, s, and moreover

dimWn+1,s > dimWn,s if Wn+1,s 6= Wn,s. (4.6)

Let rn =
∑d
s=1 dimWn,s for n ≥ 1. Clearly the sequence (rn) is increasing and

bounded by d2 from above. Therefore, there exists n0 ≤ d2 such that rn0+1 = rn0
.
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By (4.6), we have Wn0+1,s = Wn0,s for all 1 ≤ s ≤ d. Below we show that

Wn,s = Wn0,s for all n ≥ n0 + 1 and 1 ≤ s ≤ d, which implies (4.5).

For this purpose, it is enough to show that if for some n ≥ 1, Wn+1,s = Wn,s

for all 1 ≤ s ≤ d, then Wn+2,s = Wn+1,s for all 1 ≤ s ≤ d. To prove this, suppose

Wn+1,s = Wn,s for all 1 ≤ s ≤ d. Fix s ∈ {1, . . . , d} and J = j1 · · · jn+2 ∈ An+2

so that (MJ)s,1 > 0. Then there exists p ∈ {1, . . . , d} such that (Mj1)s,p > 0

and (Mj2···jn+2)p,1 > 0. Hence M
(i)
j2···jn+2

ui ∈ Wn+1,p = Wn,p. By (4.1), we can

find q ∈ N, a1, . . . , aq ∈ R with a1 + · · · + aq = 1, and J1, . . . , Jq ∈
⋃n
i=1Ai with

(MJm)p,1 > 0 for 1 ≤ m ≤ q, such that

M
(i)
j2···jn+2

ui =

q∑
m=1

amM
(i)
Jm
ui.

It follows that

M
(i)
j1j2···jn+2

ui =

q∑
m=1

amM
(i)
j1
M

(i)
Jm
ui =

q∑
m=1

amM
(i)
j1Jm

ui.

Noticing that (Mj1Jm)s,1 ≥ (Mj1)s,p(MJm)p,1 > 0, the above relation yields that

M
(i)
J ui ∈ Wn+1,s. Letting J run over all elements in An+2 with (MJ)s,1 > 0, we

get Wn+2,s ⊂ Wn+1,s, and so Wn+2,s = Wn+1,s. This completes the proof of the

proposition. 2

Remark 4.4. Here we give an alternative proof of the direction (ii) ⇒ (iii) by

applying the results of Protasov and Voynov in [47]. Suppose (ii) holds. Then

the semigroup {MJ : J ∈ U} has constant spectral radius. By [47, Theorem 1],

there exists i such that the semigroup {M (i)
J : J ∈ U} is positively irreducible and

has constant spectral radius. As it is pointed out in [47], for positively irreducible

semigroups, the constant spectral radius is equivalent to boundedness from above

and from below, from which (iii) follows.

Now we are ready to prove Theorem 1.7.

Proof of Theorem 1.7. It follows directly from Proposition 4.3. 2

5. The proof of Theorem 1.8

In this section we prove Theorem 1.8. Let P (M, ·) be the pressure function

associated with M (see (1.11)). We first give a lemma.

Lemma 5.1. Suppose that M is irreducible or positively irreducible. Then the

function q 7→ P (M, q) is differentiable over (0,∞) with derivative

P ′(M, q) = λ(M, νq), (5.1)

where νq is the equilibrium state for (M, q) and λ(M, νq) is the Lyapunov exponent

of M with respect to νq (see Section 2.3).
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Proof. Let q > 0, and let Iq be the collection of all equilibrium states for (M, q).

By Theorem 2.4, Iq = {νq} is a singleton. Now (5.1) follows from the Ruelle-type

derivative formula of pressure functions obtained in [12, Theorem 1.2]:

P ′(M, q−) = inf{λ(M, µ) : µ ∈ Iq}, P ′(M, q+) = sup{λ(M, µ) : µ ∈ Iq}.

We remark that although [12, Theorem 1.2] only deals with non-negative matrices,

the proof given there works for arbitrary matrices. 2

Proof of Theorem 1.8. Let A = {1, . . . , k}. For n ∈ N, set

Ωn = {I ∈ An : MI 6= 0} and tn = #Ωn.

Clearly we have tn+m ≤ tntm and thus the following limit exists:

lim
n→∞

1

n
log tn =: h.

Next we prove the following three properties are equivalent:

(i) M has a uniform Lyapunov exponent modulo 0;

(ii) P (M, ·) is affine on (0,∞);

(iii) P (M, ·) is affine on (a, b) for some 0 < a < b <∞;

Since (ii)⇒(iii) is trivial, it suffices to prove the directions (i)⇒(ii) and (iii)⇒(i).

We first prove (i)⇒(ii). Suppose that M has a uniform Lyapunov exponent

modulo 0. Then there exists a constant u ∈ R such that

‖MI‖ ≈ eun for n ∈ N, I ∈ Ωn.

Hence for given q > 0, ∑
I∈An

‖MI‖q =
∑
I∈Ωn

‖MI‖q ≈ tneuqn,

which implies P (M, q) = h+ uq. Hence P (M, ·) is affine on (0,∞).

Next we prove (iii)⇒(i). Suppose that P (M, ·) is affine on some finite interval

(a, b) ⊂ (0,∞). Then there exist h1, u1 ∈ R such that

P (M, q) = h1 + u1q

for q ∈ (a, b). By Lemma 5.1, we have

u1 = P ′(M, q) = λ(M, νq) for q ∈ (a, b),

where νq is the equilibrium state for (M, q) (thus P (M, q) = hνq (σ) + qλ(M, νq)).

Hence we have

λ(M, νq) = u1, hνq (σ) = h1 for all q ∈ (a, b).
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Therefore for any q1, q2 ∈ (a, b), νq1 is an equilibrium state for (M, q2) since

P (M, q2) = h1 + u1q2 = hνq1 (σ) + q2λ(M, νq1).

However, (M, q2) has a unique equilibrium state νq2 , so we must have νq1 = νq2 .

Now fix two different elements q1, q2 in (a, b). Since νq1 = νq2 , by Theorem 2.4, we

have

exp(−(h1 + u1q1)n)‖MI‖q1 ≈ exp(−(h1 + u1q2)n)‖MI‖q2 for n ∈ N, I ∈ Ωn,

which implies ‖MI‖ ≈ exp(u1n) for n ∈ N and I ∈ Ωn, that is, M has a uniform

Lyapunov exponent modulo 0. This completes the proof of (iii)⇒(i).

Now suppose that M has a uniform Lyapunov exponent modulo 0. Then P (M, ·)
is affine on (0,∞) and thus (1.12) holds.

Conversely, suppose (1.12) holds. By convexity, P (M, ·) is affine on [2, 6], which

implies that M has a uniform Lyapunov exponent modulo 0. This completes the

proof of the theorem. 2

6. Absolute Continuity of self-similar measures with finite type condition

This section is devoted to the study of an extended version of Question 1.4.

Let {Sj}mj=1 be a family of contractive similitudes on R of the form (1.2). Let K

denote the self-similar set generated by {Sj}mj=1 (cf. [22]), that is, K is the unique

non-empty compact set in R such that

K =

m⋃
j=1

Sj(K).

Given a probability weight {pj}mj=1, let µ be the self-similar measure generated

by {Sj}mj=1 and {pj}mj=1. It is supported on K, and contains no atoms (see e.g. [17,

Proposition 2.2]). As a well-known fact, µ is either singular or absolutely continuous

with respect to L1, the Lebesgue measure on R (see e.g. [43, Proposition 3.1] for

a proof). A similar argument yields that µ is also either singular or absolutely

continuous with respect to Hs
∣∣
K

, where

s = dimH K

is the Hausdorff dimension of K, Hs stands for the s-dimensional Hausdorff

measure, and Hs
∣∣
K

denotes the restriction of Hs on K. The reader is referred to

[9, 35] for the definitions of Hausdorff dimension and Hausdorff measures. Below we

will provide criteria to determine these dichotomies under an additional separation

assumption on {Sj}mj=1.

Write SJ = Sj1 ◦ · · · ◦ Sjn for J = j1 · · · jn.

Definition 6.1. We say that {Sj}mj=1 satisfies the finite type condition if there is

a finite set Γ of non-negative numbers such that for each integer n > 0 and any two
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words of indices J = j1 · · · jn and J ′ = j′1 · · · j′n,

either ρ−n|SJ(0)− SJ′(0)| > c or ρ−n|SJ(0)− SJ′(0)| ∈ Γ,

where c := (1− ρ)−1(bm − b1).

The above definition of finite type condition was adopted from [11], and is

slightly stronger than the one introduced by Ngai and Wang [38]. † The finite

type condition includes many interesting overlapping cases. For instance, if ρ is the

reciprocal of a Pisot number β and bj ∈ Q[β] for j = 1, . . . ,m, where Q[β] stands

for the field of β over Q, then {ρx + bj}mj=1 satisfies the finite type condition (see

e.g. [38]). Recall that β > 1 is called a Pisot number if β is an algebraic integer so

that all its algebraic conjugates are less than 1 in modulus.

It is known (cf. [39]) that the finite type condition implies the weak separation

condition introduced by Lau and Ngai in [31]. Hence due to [55, p. 3535], if

{Sj}mj=1 satisfies the finite type condition, then

0 < Hs(K) <∞; (6.1)

moreover

Hs(K ∩ [x− r, x+ r]) ≈ rs, for x ∈ K, 0 < r < 1. (6.2)

It is known that under the assumption of finite type condition, the distribution

of µ can be characterized through symbolic dynamics and matrix products

(cf. [11, 30]). Below we describe the characterization given in [11].

In [11], Feng constructed an irreducible subshift of finite type ΣA over a finite

alphabet {1, . . . , k}, a positively irreducible tuple M = (M1, . . . ,Mk) of non-

negative d× d matrices for certain d, and a family of closed intervals {∆I}I∈L(ΣA),

where L(ΣA) denotes the collection of all finite admissible words associated with

ΣA including the empty word ε (see Section 2.1), such that the following properties

(C1)-(C5) hold:

(C1) {∆I}I∈L(ΣA) has a nested structure, in the sense that, for each n ∈ N, int(∆I)

(I ∈ Ln(ΣA)) are disjoint subintervals of ∆ε, where int(A) stands for the

interior of A; and moreover ∆i1···in ⊆ ∆i1···in−1
for any i1 · · · in ∈ Ln(ΣA),

where Ln(ΣA) denotes the collection of admissible words of length n.

(C2) The lengths of ∆I ’s satisfy

|∆I | ≈ ρn for n ∈ N, I ∈ Ln(ΣA).

(C3) K ∩∆ε = K ∩
(⋃

I∈Ln(ΣA) ∆I

)
for any n ∈ N. Moreover the endpoints of ∆I

are contained in K for any I ∈ L(ΣA).

(C4) µ(∆I) ≈ ‖Mi1 · · ·Min‖ for n ∈ N, I = i1 · · · in ∈ Ln(ΣA).

† In [32], Lau, Ngai and Rao introduced an essentially identical separation condition called weak
separation condition*.

Prepared using etds.cls



Uniformity of Lyapunov Exponents for non-invertible matrices 23

(C5) For i1 · · · in ∈ {1, . . . , k}n, Mi1 · · ·Min 6= 0 if and only if i1 · · · in ∈ Ln(ΣA).

It can be proved that the properties (C2)-(C3) imply that

s := dimH K = lim
n→∞

log #(Ln(ΣA))

log ρ−n
=
htop(ΣA)

log(1/ρ)
. (6.3)

Now we are ready to state the main result of this section.

Theorem 6.2. Assume that {Sj}mj=1 satisfies the finite type condition. Let M =

(M1, . . . ,Mk) be constructed as above. Let s = dimH K. Then the following

statements hold:

(i) µ� Hs|K if and only if M has a uniform Lyapunov exponent modulo 0.

(ii) µ � L1 if and only if htop(ΣA) = log(1/ρ) and M has a uniform Lyapunov

exponent modulo 0.

Remark 6.3. (i) In [32, Theorem 1.3], Lau, Ngai and Rao proved that, under a

more general assumption on {Sj}mj=1, µ is absolutely continuous with respect

to L1 if and only if certain constructed matrix has spectral radius ρ. Theorem

6.2(ii) provided an alternative approach in deciding the type of µ, which is

checkable by Theorem 1.7.

(ii) In [18, Proposition 3.19], Hare, Hare and Ng gave a sufficient condition (in

terms of certain growth rate of matrix products) for µ to be absolutely

continuous with respect to Hs|K , without indicating how to check that

condition.

Let P (M) be the topological pressure of M (cf. (3.2)), and ν the equilibrium

state for (M, 1) (see Section 2.3). Before proving Theorem 6.2, we first give the

following.

Lemma 6.4. The following properties hold:

(i) P (M) = 0.

(ii) ν satisfies

ν([I]) ≈ ‖Mi1 · · ·Min‖ for n ∈ N, I = i1 · · · in ∈ Ln(ΣA). (6.4)

(iii) ν has no atoms.

(iv) M has a uniform Lyapunov exponent modulo 0 if and only if ν is the Parry

measure on ΣA.

Prepared using etds.cls



24 D.-J. Feng, C.-H. Lo and S. Shen

Proof. To prove (i), recall that µ is supported on K and has no atoms. By (C5),

(C4), (C1) and (C3), we have∑
i1···in∈{1,...,k}n

‖Mi1 · · ·Min‖ =
∑

i1···in∈Ln(ΣA)

‖Mi1 · · ·Min‖

≈
∑

i1···in∈Ln(ΣA)

µ(∆i1···in)

= µ(∆ε),

which implies that P (M) = 0. This proves (i). Property (ii) just follows from (i) and

Theorem 2.4. To see (iii), recall that µ has no atoms. This implies µ(∆i1···in)→ 0

as n → ∞. By (C4) and (6.4), we have ν([i1 · · · in]) → 0 as n → ∞, from which

(iii) follows.

Next we prove (iv). In one direction, suppose that ν is the Parry measure on

ΣA. By Theorem 2.1, ν([I]) ≈ e−|I|htop(ΣA) for I ∈ L(ΣA), which together with

(6.4) and (C5) yields that M has a uniform Lyapunov exponent modulo 0. In the

other direction, suppose that M has a uniform Lyapunov exponent modulo 0. By

(C5) and (6.4), there exists λ ∈ R so that ν([I]) ≈ enλ for I = i1 · · · in ∈ Ln(ΣA).

This implies that enλ · #(Ln(ΣA)) ≈ 1, and so λ = −htop(ΣA) by (2.4). Hence

ν([I]) ≈ e−|I|htop(ΣA) for I ∈ L(ΣA). By Theorem 2.1, ν is the Parry measure on

ΣA. This completes the proof. 2

Proof of Theorem 6.2. Let ν be the equilibrium state for (M, 1). By Lemma 6.4

(iv), M has a uniform Lyapunov exponent modulo 0 if and only if ν is the Parry

measure on ΣA. Hence to prove part (i) of the theorem, it is equivalent to show

that µ� Hs|K if and only if ν is the Parry measure on ΣA.

First assume that ν is the Parry measure on ΣA. By (C4), (6.4) and (6.3),

µ(∆i1···in) ≈ ‖Mi1 · · ·Min‖ ≈ ν([i1 · · · in]) ≈ e−nhtop(ΣA) = ρsn

for i1 · · · in ∈ Ln(ΣA). Thus by (6.2) we have

µ(∆ε ∩ [x− ρn, x+ ρn]) ≈ ρns ≈ Hs|K([x− ρn, x+ ρn]) (6.5)

for n ∈ N and x ∈ K ∩ ∆ε, which implies that µ|∆ε � Hs|K . Since µ is either

purely singular or absolutely continuous with respect to Hs|K , we have µ� Hs|K .

Next assume that µ � Hs|K . Then dimH µ = s, where dimH µ stands for the

Hausdorff dimension of µ (cf. [10]). Define π : ΣA → K ∩∆ε by

{π(i)} =

∞⋂
n=1

∆i1···in , for i = (in)∞n=1.

Let µ̃ = ν ◦ π−1. Since ν has no atoms by Lemma 6.4(iii), we have by (6.4),

µ̃(∆i1···in) = ν([i1 · · · in]) ≈ ‖Mi1 · · ·Min‖ ≈ µ(∆i1...in)
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for n ∈ N and i1 · · · in ∈ Ln(ΣA), which implies that there exists a constant C > 0

such that C−1µ|∆ε
≤ µ̃ ≤ Cµ|∆ε

. Hence dimH µ̃ = dimH µ = s. It follows that (cf.

[10, Theorem 1.2]) that

lim inf
n→∞

log µ̃([x− ρn, x+ ρn])

n log ρ
≥ s for µ̃-a.e. x ∈ R,

equivalently,

lim inf
n→∞

log µ̃([πi− ρn, πi + ρn])

n log ρ
≥ s for ν-a.e. i ∈ ΣA. (6.6)

By (C2), there exists k0 ∈ N such that for any i = (in)∞n=1 ∈ ΣA,

∆i1···in ⊂ [πi− ρn−k0 , πi + ρn−k0 ], n ∈ N.

This together with (6.6) yields that for ν-a.e. i = (in)∞n=1 ∈ ΣA,

lim inf
n→∞

log ν([i1 · · · in])

n log ρ
≥ lim inf

n→∞

log µ̃([πi− ρn−k0 , πi + ρn−k0 ]

n log ρ
≥ s,

from which we obtain

lim inf
n→∞

− log ν([i1 · · · in])

n
≥ s log(1/ρ) = htop(ΣA)

for ν-a.e. i = (in)∞n=1 ∈ ΣA. By the Shannon-McMillan-Breiman theorem (cf. [54,

p. 93]), we have hν(σ) ≥ htop(ΣA), which implies that ν is the Parry measure on

ΣA by Theorem 2.1. This proves (i).

Property (ii) just follows from (i), using the facts that s = htop(ΣA)/ log(1/ρ) = 1

and H1|R is equal to the Lebesgue measure L1 on R. 2

We remark that the following corollary just follows from the proof of Theorem

6.2, together with an additional property that ∆ε ⊂ K whenever dimH K = 1 (to

be concise, we skip the proof of this property).

Corollary 6.5. Under the condition of Theorem 6.2, letting s = dimH K, then

we have

(i) µ� Hs|K ⇐⇒ dimH µ = s⇐⇒ (6.5) holds for n ∈ N and x ∈ K ∩∆ε.

(ii) µ� L1 ⇐⇒ dimH µ = 1⇐⇒ dµ
dx ∈ (c1, c2) on ∆ε for some positive constants

c1, c2.

Remark 6.6. It is worth pointing out that Ruiz [49] proved the equivalence between

µ � L1 and dimH µ = 1, in the special case when {Sj}mj=1 is an integral iterated

function system, i.e., Sj is of the form Sj(x) = 1
N (x+ dj) with N ∈ N and dj ∈ Z.

7. Absolute continuity of a class of self-affine measures

In this section we consider Question 1.5. Let A be a d×d integral expanding matrix

and let {Sj}mj=1 be a family of affine maps on Rd given by

Sj(x) = A−1(x+ dj), j = 1, . . . ,m,
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with dj ∈ Zd. Let K be the self-affine set generated by {Sj}mj=1 (cf. [9]). Given a

probability weight {pj}mj=1, let µ be the self-affine measure generated by {Sj}mj=1

and {pj}mj=1. That is, µ is the unique Borel probability measure on Rd such that

µ =

m∑
j=1

pjµ ◦ S−1
j . (7.1)

It is known that µ is supported on K. Similar to the self-similar case, µ is

either purely singular, or absolutely continuous with respect to the Lebesgue

measure Ld on Rd. Moreover if µ � Ld, then µ and Ld|K are equivalent (see

[1, Proposition 4.1(2)] and [50, Proposition 22(3)]).

In this section we consider the problem of deciding whether µ is absolutely

continuous. First let us recall a known criterion for this decision problem by using

the approach of Fourier analysis. For ξ ∈ Rd, let

µ̂(ξ) =

∫
e−2πi〈ξ, x〉 dµ(x)

be the Fourier transform of µ, where 〈·, ·〉 represents the standard inner product

in Rd. By the self-affine property (7.1), one has µ̂(ξ) = µ̂(Ã−1ξ)P (Ã−1ξ), where

Ã = A> and

P (ξ) :=

m∑
j=1

pje
−2πi〈ξ, dj〉. (7.2)

It follows that

µ̂(ξ) =

∞∏
n=1

P (Ã−nξ).

The following result is known to the experts in the areas of self-affine tilings and

wavelet theory.

Proposition 7.1. The following statements are equivalent:

(i) µ is absolutely continuous with respect to Ld.

(ii) µ̂(m) = 0 for any m ∈ Zd \ {0}.

(iii) For any m ∈ Zd \ {0}, there exists n ∈ N such that P (Ã−nm) = 0.

(iv) µ is the Haar measure on Rd/Zd, where µ stands for the push forward of µ

under the canonical projection π : Rd → Rd/Zd, i.e., µ = µ ◦ π−1.

Proof. It follows from the proof of [29, Theorem 2.1] with minor modifications. 2

Remark 7.2. For the case d = 1, Protasov [45] provided an efficient algorithm

to decide whether (iii) of Proposition 7.1 is fulfilled, and hence to decide whether

µ is absolutely continuous. This algorithm is essentially based on the fact that in

the case d = 1, the mask function P defined in (7.2) has at most finitely many
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(rational) zero points lying in [0, 1). In the higher dimensional case, since P may

have infinitely many (rational) zero points in Rd/Zd, it is unlikely that Protasov’s

algorithm is still efficient.

In this section, we will provide an algorithm to decide the absolute continuity of

µ in the general high dimensional case. Our starting point is the work of Deng, He

and Lau [8] on the structure of µ.

In [8], the authors constructed a Zd-tile T ⊂ Rd, which is the attractor of

certain affine iterated function system {ψi(x) = A−n0(x + ci)}`i=1, with n0 ∈ N,

` = |det(A)|n0 and ci ∈ Zd, such that

µ(∂T + e) = 0 for all e ∈ Zd, (7.3)

where ∂T stands for the boundary of T . Set

E = {e1, . . . , eN} = {e ∈ Zd : K ∩ (int(T ) + e) 6= ∅}

and define the vector-valued measure µµµ on T by

µµµ(E) = [µ((E ∩ T ) + e1), . . . , µ((E ∩ T ) + eN )]>.

For J = j1 · · · jn0
∈ {1, . . . ,m}n0 , set pJ = pj1 · · · pjn0

and dJ =
∑n0

k=1A
n0−kdjk .

Define a tuple M = (M1, . . . ,M`) of N ×N non-negative matrices by

(Mk)i,j =

{
pJ if ck +An0ei − ej = dJ for some J ∈ {1, . . . ,m}n0 ,

0 otherwise,

where 1 ≤ k ≤ `, and 1 ≤ i, j ≤ N . The following theorem is our starting point.

Theorem 7.3 ([8], Theorems 1.1-1.2) (i) The tuple M is positively irre-

ducible.

(ii)
∑`
i=1Mi is Markov, i.e., all its column sums are equal to 1.

(iii) For any I = i1 . . . in ∈ {1, . . . , `}n,

µµµ(ψI(T )) = MIµµµ(T ),

where ψI := ψi1 ◦ · · · ◦ ψin and MI := Mi1 · · ·Min .

(iv) Ld(K) > 0 if and only if MI 6= 0 for every finite word I on {1, . . . , `}.

Remark 7.4. Some equivalent conditions for µ to be absolutely continuous were

given in [8, Proposition 3.8] in terms of joint spectral radius of matrix products.

However, such conditions on the joint spectral radius are undecidable in general

(see [5]). One may see [23, 28, 19] for some related works on the L1-solutions of

scaling equations and the joint spectral radius of matrix products.

We say that the tuple M has a uniform Lyapunov exponent if there exists λ ∈ R
such that ‖MI‖ ≈ eλn for n ∈ N and I ∈ {1, . . . , `}n. One of the main results of

this section is the following.
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Theorem 7.5. The following statements are equivalent:

(i) µ is absolutely continuous.

(ii) M has a uniform Lyapunov exponent.

Proof. Since T is a self-affine Zd-tile of Rd, there exists a Borel set T ′ ⊂ T such

that int(T ′) = int(T ), and Rd =
⋃
e∈Zd(T ′ + e) with the union being disjoint; in

other word, T ′ is a fundamental domain of the torus Rd/Zd. Let π : Rd → Rd/Zd
be the canonical projection and µ = µ ◦ π−1.

By (7.3) and (7.1), one can derive that µ(ψI(∂T ) + e) = 0 and hence

µ(ψI(T ) + e) = µ(ψI(T
′) + e) for any e ∈ Zd and any finite word I on the alphabet

{1, . . . , `}. Combining it with Theorem 7.3(ii) yields

µ(ψI(T
′)) = µ(ψI(T )) = (1, 1, . . . , 1)MIµµµ(T ) ≈ ‖MI‖. (7.4)

Suppose that µ is absolutely continuous, by Proposition 7.1, µ is the Haar

measure on Rd/Zd. Then µ(ψI(T
′)) = `−|I| and thus by (7.4), ‖MI‖ ≈ `−|I|.

Hence M has a uniform Lyapunov exponent.

Next suppose that M has a uniform Lyapunov exponent. Then by (7.4), we have

µ(ψI(T
′)) ≈ µ(ψJ(T ′))

for n ∈ N and I, J ∈ {1, . . . , `}n. It follows that µ(ψI(T
′)) ≈ `−|I| = Ld(ψI(T

′)),

which implies that µ is absolutely continuous with respect to the Haar measure on

Rd/Zd. Hence µ is absolutely continuous with respect to Ld. 2

In the remaining part of this section, we prove the following additional property

of µ.

Theorem 7.6. µ is absolutely continuous if dimH µ = d.

First we give an equivalent condition for dimH µ = d in terms of measure-

theoretic entropies. Recall that for a Borel probability measure η on Rd and a

finite or countable Borel partition P = {C1, . . . , Ck, . . .} of Rd, the entropy of η

with respect to P is defined by

Hη(P) = −
∞∑
k=1

η(Ck) log η(Ck).

Lemma 7.7. Let Q denote the partition {[0, 1)d + α : α ∈ Zd}. Set Qn := A−nQ

for n ∈ N. Then the limit

h∗µ := lim
n→∞

Hµ(Qn)

n

exists. Furthermore dimH µ = d if and only if h∗µ = log |det(A)|.
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Proof. The first result follows directly from [14, Theorem 2.3(i)]. The second one

can be derived from a formula of dimH µ established in [14, Theorem 2.11(ii)]. To

avoid introducing too many terminologies, we simply give the proof for the special

case when d = 2 and A = diag(a, b) with 1 < a < b. The proof for the general case

is similar in spirit.

In this special case, the formula of dimH µ given in [14] can be rewritten as

dimH µ =

(
1

log a
− 1

log b

)
H1 +

h∗µ
log b

, (7.5)

where

H1 = lim
n→∞

Hν(Dn)

n
,

here ν is the push-forward of µ under the projection τ : R2 → R given by (x, y) 7→ x,

that is, ν = µ ◦ τ−1; and Dn = a−nD with

D = {[0, 1) + β : β ∈ Z}. (7.6)

Again the existence of the limit in defining H1 follows from [14, Theorem 2.3(i)].

Next we claim that

h∗µ ≤ log(ab) and H1 ≤ log a. (7.7)

We only prove the first inequality, the second one follows by a similar argument.

Notice that µ is supported on K which is compact. Set

Q̃n = {Q ∈ Qn : µ(Q) > 0}.

Since any member of Q̃n intersects K and has volume (ab)−n, a simple volume

argument yields that

#Q̃n ≤ C(ab)n

for some constant C > 0 depending on the diameter of K. Hence

Hµ(Qn) = Hµ(Q̃n) ≤ log
(

#Q̃n
)
≤ n log(ab) + logC,

from which the inequality h∗µ ≤ log(ab) follows.

Now by (7.5) and (7.7), we have

dimH µ ≤
(

1

log a
− 1

log b

)
log a+

log(ab)

log b
= 2,

and hence the condition dimH µ = 2 holds if and only if that h∗µ = log(ab) and

H1 = log a.

To complete the proof, we need to show that h∗µ = log(ab) implies that

H1 = log a. To see this implication, suppose h∗µ = log(ab). For n ∈ N, define

two partitions En and Fn of R2 by

En = {E × R : E ∈ a−nD}, Fn = {R× F : F ∈ b−nD},
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where D is given as in (7.6). It is direct to check that

Qn = En ∨ Fn := {C ∩D : C ∈ En, D ∈ Fn}.

Hence we have

Hµ(Qn) ≤ Hµ(En) +Hµ(Fn). (7.8)

(cf. [54, Theorem 4.3]). Noticing that Hµ(En) = Hν(Dn), we have

lim
n→∞

1

n
Hµ(En) = H1 ≤ log a;

similarly, we can prove limn→∞(1/n)Hµ(Fn) ≤ log b. Thus by (7.8), we have

log(ab) = lim
n→∞

Hµ(Qn)

n
≤ lim
n→∞

Hµ(En)

n
+ lim
n→∞

Hµ(Fn)

n
≤ log a+ log b,

from which the equality H1 = log a follows. 2

Remark 7.8. We emphasize that in Lemma 7.7, the assumption that A and dj’s

are integral is not needed.

Let σ be the left shift map on Σ := {1, . . . , `}N.

Lemma 7.9. Let h∗µ be defined as in Lemma 7.7. Then

h∗µ =
hξ(σ)

n0
,

where ξ is the equilibrium state for (M, 1).

Proof. Since
∑`
i=1Mi is Markov by Theorem 7.3(ii), we have ρ

(∑`
i=1Mi

)
= 1

and hence P (M) = 0. By Theorem 2.4, ξ is the unique ergodic invariant measure

on Σ so that

ξ([I]) ≈ ‖MI‖, I ∈
∞⋃
n=1

{1, . . . , `}n. (7.9)

Set

c = min {non-zero entries of Mi : i = 1, . . . , `} .

Clearly c > 0 and

‖MI‖ ≥ c|I| for all I with MI 6= 0. (7.10)

Let π : Rd → Rd/Zd be the canonical projection and µ = µ ◦ π−1. Let T ′ ⊂ T

be defined as in the proof of Theorem 7.5. For n ∈ N, set Σn := {1, . . . , `}n. Then

µ is supported on
⋂∞
n=1

⋃
I∈Σn

ψI(T
′). By (7.4), (7.9) and (7.10), there exists a

constant t ≥ 1 such that

t−2c|I| ≤ t−1ξ([I]) ≤ µ(ψI(T
′)) ≤ tξ([I]) for all I ∈

∞⋃
n=1

{1, . . . , `}n. (7.11)
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Below, we show that

lim
n→∞

1

n

∑
I∈Σn

(−µ(ψI(T
′)) logµ(ψI(T

′))) = hξ(σ). (7.12)

To see this, by the Shannon-McMillan-Breiman theorem we obtain that, for any

ε > 0, there exists k(ε) ∈ N such that for all n ≥ k(ε),∑
I∈Ωn,ε

ξ([I]) < ε, (7.13)

where

Ωn,ε :=

{
I ∈ Σn :

∣∣∣∣ log ξ([I])

(−n)
− hξ(σ)

∣∣∣∣ > ε

}
.

By (7.11) and the definition of Ωn,ε, we have∣∣∣∣ logµ(ψI(T
′))

(−n)
− hξ(σ)

∣∣∣∣ ≤ { | log c|+ hξ(σ) + 2n−1 log t if I ∈ Σn,

ε+ n−1 log t if I ∈ Σn\Ωn,ε.

Hence ∑
I∈Σn

µ(ψI(T
′))

∣∣∣∣ logµ(ψI(T
′))

(−n)
− hξ(σ)

∣∣∣∣
≤

 ∑
I∈Ωn,ε

µ(ψI(T
′))

(| log c|+ hξ(σ) +
2

n
log t

)

+

 ∑
I∈Σn\Ωn,ε

µ(ψI(T
′))

(ε+
1

n
log t

)

≤t

 ∑
I∈Ωn,ε

ξ([I])

(| log c|+ hξ(σ) +
2

n
log t

)
+

(
ε+

1

n
log t

)

≤tε
(
| log c|+ hξ(σ) +

2

n
log t

)
+

(
ε+

1

n
log t

)
,

which is bounded from above by c̃ε for certain positive constant c̃ when n is large

enough. Now (7.12) follows by letting ε→ 0.

Next for k ∈ N, construct 2 partitions Q̃k, P̃k of supp(µ) by

Q̃k := {Q ∈ Qk : µ(Q) > 0},

P̃k :=

{
N⋃
i=1

(ψI(T
′) + ei) : I ∈ Σk

}
.

A simple geometric argument yields that there exists u ∈ N (which is independent

of k) such that each member in Q̃kn0
intersects at most u members of P̃k, and vice

versa. This implies that ∣∣∣Hµ

(
Q̃kn0

)
−Hµ

(
P̃k
)∣∣∣ ≤ log u.
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For a proof, see e.g. [14, Lemma 4.6]. Clearly Hµ(Q̃k) = Hµ(Qk). Since

µ

(
N⋃
i=1

(ψI(T
′) + ei)

)
= µ(ψI(T

′))

for each I ∈ Σk, we get

Hµ

(
P̃k
)

=
∑
I∈Σk

(−µ(ψI(T
′)) logµ(ψI(T

′))) .

Hence by (7.12), we get

lim
k→∞

1

k
Hµ(Qkn0

) = lim
k→∞

1

k
Hµ(Q̃kn0

) = lim
k→∞

1

k
Hµ(P̃k) = hξ(σ),

from which we obtain h∗µ = hξ(σ)/n0. 2

Proof of Theorem 7.6. Suppose that dimH µ = d. By Lemma 7.7, we have

h∗µ = log |detA|. Thus by Lemma 7.9, we get

hξ(σ) = n0h
∗
µ = n0 log |detA| = log `.

It follows that ξ is the Parry measure on Σ, and hence by (7.9),

‖MI‖ ≈ ξ([I]) = `−n for n ∈ N and I ∈ {1, . . . , `}n.

Therefore, M has a uniform Lyapunov exponent. By Theorem 7.5, µ is absolutely

continuous. 2

8. Projections of Parry measures under factor maps

This section is devoted to the study of Question 1.6.

Let n,m ∈ N. Let τ be a mapping from {1, . . . , n} to {1, . . . ,m}. Then τ induces

a one-block mapping π : {1, . . . , n}N → {1, . . . ,m}N by

π ((xk)∞k=1) = (τ(xk)∞k=1) , for (xk)∞k=1 ∈ {1, . . . , n}N.

Let (ΣA, σ) be the subshift of finite type over {1, . . . , n}, associated with

a positively irreducible 0-1 matrix A = (ai,j)1≤i,j≤n (see Section 2.1). Then

Y = π(ΣA) is an irreducible sofic shift. Let µ, ν denote the Parry measures on

ΣA and Y , respectively (see Section 2.2). Question 1.6 asks whether ν = µ ◦ π−1.

For each ` ∈ {1, . . . ,m}, define an n× n matrix E` = ((E`)i,j)1≤i,j≤n by

(E`)i,j =

{
ai,j if τ(j) = `,

0 otherwise.

The main result of this section is the following.

Theorem 8.1. The tuple E = (E1, . . . , Em) is positively irreducible. Moreover,

ν = µ ◦ π−1 if and only if E has a uniform Lyapunov exponent modulo 0.
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To prove the above theorem, we first give a simple lemma.

Lemma 8.2. (i) For y1, . . . , yk ∈ {1, . . . ,m} and i, j ∈ {1, . . . , n}, we have

(Ey1 · · ·Eyk)i,j = #{x1 · · ·xk ∈ Lk(ΣA) : τ(x`) = y` for 1 ≤ ` ≤ k,
xk = j and ai,x1 = 1}.

(ii) Ey1 · · ·Eyk 6= 0 if and only if y1 · · · yk ∈ L(Y ).

(iii) ‖Ey1 · · ·Eyk‖ ≈ N(y1 · · · yk) for y1 · · · yk ∈ L(Y ), where

N(y1 · · · yk) := #{x1 · · ·xk ∈ Lk(ΣA) : τ(x`) = y` for 1 ≤ ` ≤ k}. (8.1)

(iv)
∑m
k=1Ek = A, and hence E is positively irreducible.

Proof. By the definition of E1, . . . , Em, we have

(Ey1 · · ·Eyk)i,j =
∑

1≤x1,...,xk−1≤n

(Ey1)i,x1(Ey2)x1,x2 · · · (Eyk)xk−1,j

=
∑

1≤x1,...,xk−1≤n
τ(x`)=y`, 1≤`≤k−1

τ(j)=yk

ai,x1ax1,x2 · · · axk−1,j ,

from which (i) follows.

Clearly (ii) follows from (i), and (iv) follows from the definitions of Ek’s. To see

(iii), one can directly deduce from (i) that

N(y1 · · · yk) ≤ ‖Ey1 · · ·Eyk‖ ≤ n2N(y1 · · · yk).

2

Proof of Theorem 8.1. By Lemma 8.2(iv), E is positively irreducible. Let

α = exp(htop(ΣA)), β = exp(htop(Y )).

Since µ and ν are the Parry measures on ΣA and Y , by Theorem 2.1, we have

µ([I]) ≈ α−k for k ∈ N and I ∈ Lk(ΣA) (8.2)

and

ν([J ]) ≈ β−k for k ∈ N and J ∈ Lk(Y ). (8.3)

Notice that for J ∈ Lk(Y ),

µ ◦ π−1([J ]) =
∑

I∈Lk(ΣA), π(I)=J

µ([I]),

where π(I) := τ(i1) · · · τ(ik) for I = i1 · · · ik. By (8.2), we have

µ ◦ π−1([J ]) ≈ N(J)α−|J| for J ∈ L(Y ), (8.4)
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where N(J) is defined as in (8.1).

Suppose ν = µ ◦ π−1. Then by (8.3) and (8.4), we have

N(J) ≈ (α/β)|J| for J ∈ L(Y ). (8.5)

By Lemma 8.2(iii), we obtain

‖Ey1 · · ·Eyk‖ ≈ N(y1 · · · yk) ≈ (α/β)k

for y1 · · · yk ∈ L(Y ). This together with Lemma 8.2(ii) shows that E has a uniform

Lyapunov exponent modulo 0.

Conversely, suppose that E has a uniform Lyapunov exponent modulo 0. Then

by Lemma 8.2(ii), there exists λ ∈ R such that

‖Ey1 · · ·Eyk‖ ≈ ekλ for k ∈ N and y1 · · · yk ∈ L(Y ).

Hence by Lemma 8.2(iii), N(J) ≈ eλ|J| for J ∈ L(Y ). By (8.4), we have

µ ◦ π−1([J ]) ≈ (eλα−1)|J| for J ∈ L(Y ). (8.6)

This yields

1 =
∑

J∈Lk(Y )

µ ◦ π−1([J ]) ≈ #(Lk(Y ))(eλα−1)k for k ∈ N.

It implies eλ = α/β since limk→∞(1/k) log #(Lk(Y )) = htop(Y ) = log β. Therefore

by (8.6) and (8.3),

µ ◦ π−1([J ]) ≈ e−|J|htop(Y ) ≈ ν([J ]) for J ∈ L(Y ).

By Theorem 2.1, we have µ ◦π−1 = ν. This completes the proof of the theorem. 2

Remark 8.3. Theorem 8.1 was partially proved in the second author’s master

thesis [34].

9. Final remarks and questions

In this section we give a few more remarks.

First we remark that without any assumption of irreducibility, there is no

algorithm to check whether a given tuple M of square matrices has a uniform

Lyapunov exponent modulo 0. This fact was first pointed out in [47, Theorem 8]

in a different context. Indeed, let A1, . . . , Ak be a finite family of n×n non-negative

matrices with rational entries and ρ(A1 + · · ·+Ak) ≤ k. Set M = (M1, . . . ,Mk) by

Mi =

(
1 0

0 Ai

)
, i = 1, . . . , k.

It is easy to see that M is normalized. Moreover, M has a uniform Lyapunov

exponent modulo 0 if and only if the semigroup generated by {A1, . . . , Ak} is

bounded. However, as proved by Blondel and Tsitsiklis [4], the problem of
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determining whether the semigroup generated by a finite set of non-negative

matrices with rational entries is bounded, is in general arithmetically undecidable.

Hence, there is no algorithm to check whether the constructed M has a uniform

Lyapunov exponent modulo 0 within finite time.

We also remark that in Theorem 1.8, the irreducibility (resp. positively

irreducibility) assumption on M can be replaced by a more general assumption:

there exist C > 0 and m ∈ N such that∑
K∈A∗: |K|≤m

‖MIKJ‖ ≥ C‖MI‖‖MJ‖ for all I, J ∈ A∗. (9.1)

Here we allow M to contain complex matrices. Indeed under the above condition,

the conclusion of Theorem 2.4 still holds (see [13, Theorem 5.5]) and the proof of

Theorem 1.8 remains valid. It is a natural problem to decide whether a given tuple

M of real or complex matrices satisfies the condition (9.1) for some C and m.

Next we present an extended version of Question 1.3. Let (X,T ) be a topological

dynamical system, that is, X is a compact metric space and T : X → X a

continuous transformation. Let M be a Borel function on X taking values in the

set of real (or complex) d× d matrices.

Definition 9.1. We say that M has a uniform Lyapunov exponent on (X,T ) if

there exists λ ∈ R such that

‖M(n, x)‖ ≈ eλn, n ∈ N, x ∈ X,

where M(n, x) := M(x)M(Tx) · · ·M(Tn−1x).

For a given tuple M = (M1, . . . ,Mk) of non-negative matrices, defining

M(x) = Mx1 for x = (xn)∞n=1 ∈ {1, . . . , k}N, (9.2)

we see that M has a uniform Lyapunov exponent modulo 0 if and only if that M

has a uniform Lyapunov exponent on (YM, σ), where YM is defined as in (1.3).

As a general extension of Question 1.3, one may ask under which condition, a

matrix-valued function M on a given topological dynamical system (X,T ) has a

uniform Lyapunov exponent on (X,T ) and how to check it.

In the end of this paper, we mention a particular example of the above general

question. Let M = (M1, . . . ,Mk) be a tuple of non-negative d× d matrices and let

ΣA be an irreducible subshift of finite type over the alphabet {1, . . . , k}. Let M

be the matrix-valued function defined as in (9.2). We remark that in this setting,

the preceding assumption of positive irreducibility on M is no longer sufficient to

guarantee that one can check whether M has a uniform Lyapunov exponent on

(ΣA, σ). Nevertheless, the following stronger assumption on M (acting on ΣA)

is enough for providing an affirmative answer to the deciding problem: for any

i, i′ ∈ {1, . . . , d} and j, j′ ∈ {1, . . . , k}, there exists a finite word J such that

jJj′ ∈ L(ΣA) and (MJ)i,i′ > 0. The justification is quite similar to that of
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Theorem 1.7. The details of the proof and the counter example will be included in

the Ph.D. thesis of the second author.
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pages 39–65. Birkhäuser, Basel, 2000.
[44] A. I. Popov. On matrix semigroups bounded above and below. Linear Algebra Appl.,

438(11):4439–4447, 2013.

[45] V. Y. Protasov. Refinement equations with nonnegative coefficients. J. Fourier Anal.

Appl., 6(1):55–78, 2000.
[46] V. Y. Protasov. When do several linear operators share an invariant cone? Linear Algebra

Appl., 433(4): 781–789, 2010.
[47] V. Y. Protasov and A. S. Voynov. Matrix semigroups with constant spectral radius. Linear

Algebra Appl., 513:376–408, 2017.

[48] R. T. Rockafellar. Convex analysis. Princeton Mathematical Series, No. 28. Princeton

Prepared using etds.cls



38 D.-J. Feng, C.-H. Lo and S. Shen

University Press, Princeton, N.J., 1970.

[49] V. Ruiz. Dimension of homogeneous rational self-similar measures with overlaps. J. Math.
Anal. Appl., 353(1):350–361, 2009.

[50] P. Shmerkin. Overlapping self-affine sets. Indiana Univ. Math. J., 55(4):1291–1331, 2006.
[51] P. Shmerkin. On the exceptional set for absolute continuity of Bernoulli convolutions.

Geom. Funct. Anal., 24(3):946–958, 2014.

[52] P. Shmerkin and B. Solomyak. Absolute continuity of self-similar measures, their
projections and convolutions. Trans. Amer. Math. Soc., 368(7):5125–5151, 2016.

[53] B. Solomyak. On the random series
∑
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